conv2d_fwd_cpu.cpp 18.3 KB
Newer Older
1
#include <sstream>
2
3
4
5
6
7
8
9
10
11
12
13
14
15
#include "config.hpp"
#include "device.hpp"
#include "host_tensor.hpp"
#include "host_tensor_generator.hpp"
#include "tensor_layout.hpp"
#include "device_tensor.hpp"
#include "device_convnd_fwd_avx2_nhwc_kyxc_nhwk.hpp"
#include "element_wise_operation_cpu.hpp"
#include "reference_conv_fwd.hpp"
#include "element_wise_operation_cpu.hpp"
#include "dynamic_buffer_cpu.hpp"
#include <omp.h>

#define AVX2_DATA_ALIGNMENT 32
carlushuang's avatar
carlushuang committed
16
17
18
19
20

#define TEST_FUSION_PASSTHROUGH 0
#define TEST_FUSION_RELU 1
#define TEST_FUSION TEST_FUSION_RELU

21
22
23
24
25
26
27
28
29
30
using F32 = float;
using F16 = ck::half_t;

namespace ck {
namespace tensor_operation {
namespace cpu {
namespace device {
namespace device_conv2d_fwd_avx2_instance {

using PassThrough = ck::tensor_operation::cpu::element_wise::PassThrough;
carlushuang's avatar
carlushuang committed
31
using Relu        = ck::tensor_operation::cpu::element_wise::Relu;
32
33
34
35

void add_device_conv2d_fwd_avx2_nhwc_kyxc_nhwk(
    std::vector<DeviceConvFwdPtr<PassThrough, PassThrough, PassThrough>>& instances);

36
37
38
39
40
41
void add_device_conv2d_fwd_avx2_nhwc_kyxc_nhwk_local_c(
    std::vector<DeviceConvFwdPtr<PassThrough, PassThrough, PassThrough>>& instances);

void add_device_conv2d_fwd_avx2_nhwc_kyxc_nhwk_mt(
    std::vector<DeviceConvFwdPtr<PassThrough, PassThrough, PassThrough>>& instances);

carlushuang's avatar
carlushuang committed
42
43
44
45
46
47
48
49
50
void add_device_conv2d_fwd_avx2_nhwc_kyxc_nhwk_relu(
    std::vector<DeviceConvFwdPtr<PassThrough, PassThrough, Relu>>& instances);

void add_device_conv2d_fwd_avx2_nhwc_kyxc_nhwk_local_c_relu(
    std::vector<DeviceConvFwdPtr<PassThrough, PassThrough, Relu>>& instances);

void add_device_conv2d_fwd_avx2_nhwc_kyxc_nhwk_mt_relu(
    std::vector<DeviceConvFwdPtr<PassThrough, PassThrough, Relu>>& instances);

51
52
53
54
55
56
57
58
} // namespace device_conv2d_fwd_avx2_instance
} // namespace device
} // namespace cpu
} // namespace tensor_operation
} // namespace ck

using InElementOp  = ck::tensor_operation::cpu::element_wise::PassThrough;
using WeiElementOp = ck::tensor_operation::cpu::element_wise::PassThrough;
carlushuang's avatar
carlushuang committed
59
#if TEST_FUSION == TEST_FUSION_PASSTHROUGH
60
using OutElementOp = ck::tensor_operation::cpu::element_wise::PassThrough;
carlushuang's avatar
carlushuang committed
61
62
63
64
#endif
#if TEST_FUSION == TEST_FUSION_RELU
using OutElementOp = ck::tensor_operation::cpu::element_wise::Relu;
#endif
65
66

template <typename T>
67
68
static bool
check_out(const Tensor<T>& ref, const Tensor<T>& result, double nrms, int per_pixel_check = 0)
69
70
{
    int error_count = 0;
71
72
73
74
75
    float max_diff  = 1e-5;

    double square_difference = .0;
    double mag1              = .0;
    double mag2              = .0;
76
77
78

    for(int i = 0; i < ref.mData.size(); ++i)
    {
79
80
81
82
83
        double ri = (double)ref.mData[i];
        double pi = (double)result.mData[i];
        double d  = ri - pi;

        if(per_pixel_check)
84
        {
85
86
87
88
89
90
91
92
93
            if(max_diff < std::abs(d))
            {
                error_count++;
                printf("idx:%3d, ref:%f, res:%f (diff:%f)\n",
                       i,
                       double(ref.mData[i]),
                       double(result.mData[i]),
                       d);
            }
94
        }
95
96
97
98
99
100

        square_difference += d * d;
        if(std::abs(mag1) < std::abs(ri))
            mag1 = ri;
        if(std::abs(mag2) < std::abs(pi))
            mag2 = pi;
101
102
    }

103
104
105
106
107
108
109
110
111
112
113
    double mag = std::max({std::fabs(mag1), std::fabs(mag2), std::numeric_limits<double>::min()});
    double computed_nrms = std::sqrt(square_difference) / (std::sqrt(ref.mData.size()) * mag);

    if(computed_nrms >= nrms)
        printf("nrms:%lf, mag1:%lf, mag2:%lf, expected_nrms is %1f\n",
               computed_nrms,
               mag1,
               mag2,
               nrms);

    return computed_nrms < nrms && error_count == 0;
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
}

float calculate_gflops() {}

int main(int argc, char* argv[])
{
    int data_type   = 0;
    int init_method = 0;

    // Conv shape
    ck::index_t N               = 2;
    ck::index_t K               = 256;
    ck::index_t C               = 192;
    ck::index_t Y               = 3;
    ck::index_t X               = 3;
    ck::index_t Hi              = 71;
    ck::index_t Wi              = 71;
    ck::index_t conv_stride_h   = 1;
    ck::index_t conv_stride_w   = 1;
    ck::index_t conv_dilation_h = 1;
    ck::index_t conv_dilation_w = 1;
    ck::index_t in_left_pad_h   = 1;
    ck::index_t in_left_pad_w   = 1;
    ck::index_t in_right_pad_h  = 1;
    ck::index_t in_right_pad_w  = 1;

    if(argc == 1)
    {
        data_type   = 0;
        init_method = 1;
    }
    else if(argc == 3)
    {
        data_type   = std::stoi(argv[1]);
        init_method = std::stoi(argv[2]);
    }
    else if(argc == 18)
    {
        data_type   = std::stoi(argv[1]);
        init_method = std::stoi(argv[2]);

        N               = std::stoi(argv[3]);
        K               = std::stoi(argv[4]);
        C               = std::stoi(argv[5]);
        Y               = std::stoi(argv[6]);
        X               = std::stoi(argv[7]);
        Hi              = std::stoi(argv[8]);
        Wi              = std::stoi(argv[9]);
        conv_stride_h   = std::stoi(argv[10]);
        conv_stride_w   = std::stoi(argv[11]);
        conv_dilation_h = std::stoi(argv[12]);
        conv_dilation_w = std::stoi(argv[13]);
        in_left_pad_h   = std::stoi(argv[14]);
        in_left_pad_w   = std::stoi(argv[15]);
        in_right_pad_h  = std::stoi(argv[16]);
        in_right_pad_w  = std::stoi(argv[17]);
    }
    else
    {
        printf("arg1: data type (0=fp32, 1=fp16)\n");
        printf("arg2: initialization (0=no init, 1=integer value, 2=decimal value)\n");
        printf("arg3 to 17: N, K, C, Y, X, Hi, Wi, Sy, Sx, Dy, Dx, LeftPy, LeftPx, RightPy, "
               "RightPx\n");
        exit(1);
    }

    auto Run = [&](auto input_type, auto wei_type, auto out_type) {
        using InDataType  = decltype(input_type);
        using WeiDataType = decltype(wei_type);
        using OutDataType = decltype(out_type);

        using ReferenceConvFwdInstance = ck::tensor_operation::host::ReferenceConvFwd<InDataType,
                                                                                      WeiDataType,
                                                                                      OutDataType,
                                                                                      InElementOp,
                                                                                      WeiElementOp,
                                                                                      OutElementOp>;

        const ck::index_t YEff = (Y - 1) * conv_dilation_h + 1;
        const ck::index_t XEff = (X - 1) * conv_dilation_w + 1;

        const ck::index_t Ho = (Hi + in_left_pad_h + in_right_pad_h - YEff) / conv_stride_h + 1;
        const ck::index_t Wo = (Wi + in_left_pad_w + in_right_pad_w - XEff) / conv_stride_w + 1;

        const std::vector<ck::index_t> input_spatial_lengths{{Hi, Wi}};
        const std::vector<ck::index_t> filter_spatial_lengths{{Y, X}};
        const std::vector<ck::index_t> output_spatial_lengths{{Ho, Wo}};
        const std::vector<ck::index_t> conv_filter_strides{{conv_stride_h, conv_stride_w}};
        const std::vector<ck::index_t> conv_filter_dilations{{conv_dilation_h, conv_dilation_w}};
        const std::vector<ck::index_t> input_left_pads{{in_left_pad_h, in_left_pad_w}};
        const std::vector<ck::index_t> input_right_pads{{in_right_pad_h, in_right_pad_w}};

        auto f_host_tensor_descriptor = [](std::size_t N_,
                                           std::size_t C_,
                                           std::size_t H_,
                                           std::size_t W_) {
            return HostTensorDescriptor(std::vector<std::size_t>({N_, C_, H_, W_}),
                                        std::vector<std::size_t>({C_ * H_ * W_, 1, W_ * C_, C_}));
        };

        Tensor<InDataType> in_n_c_hi_wi(f_host_tensor_descriptor(N, C, Hi, Wi));
        Tensor<WeiDataType> wei_k_c_y_x(f_host_tensor_descriptor(K, C, Y, X));
        Tensor<OutDataType> out_n_k_ho_wo_host_result(f_host_tensor_descriptor(N, K, Ho, Wo));
        Tensor<OutDataType> out_n_k_ho_wo_device_result(f_host_tensor_descriptor(N, K, Ho, Wo));

        std::cout << "in (N, C, Hi, Wi): " << in_n_c_hi_wi.mDesc << std::endl;
        std::cout << "wei(K, C,  Y,  X): " << wei_k_c_y_x.mDesc << std::endl;
        std::cout << "out(N, K, Ho, Wo): " << out_n_k_ho_wo_host_result.mDesc << std::endl;
        std::cout << "LPad(H, W):" << in_left_pad_h << "," << in_left_pad_w
                  << ", RPad(H, W):" << in_right_pad_h << "," << in_right_pad_w
                  << ", Stride(H, W):" << conv_stride_h << ", " << conv_stride_w
                  << ", Dilation(H, W):" << conv_dilation_h << ", " << conv_dilation_w
                  << ", Threads:" << omp_get_max_threads() << std::endl;

228
        int per_pixel_check = 0;
229
230
        switch(init_method)
        {
231
232
233
234
235
        case 0:
            in_n_c_hi_wi.GenerateTensorValue(GeneratorTensor_1<InDataType>{});
            wei_k_c_y_x.GenerateTensorValue(GeneratorTensor_1<WeiDataType>{});
            per_pixel_check = 1;
            break;
236
237
238
239
240
241
        case 1:

            in_n_c_hi_wi.GenerateTensorValue(GeneratorTensor_2<InDataType>{-5, 5});
            // in_n_c_hi_wi.GenerateTensorValue(GeneratorTensor_1<InDataType>{});
            wei_k_c_y_x.GenerateTensorValue(GeneratorTensor_2<WeiDataType>{-5, 5});
            // wei_k_c_y_x.GenerateTensorValue(GeneratorTensor_1<WeiDataType>{});
242
            per_pixel_check = 1;
243
            break;
244

245
        case 2:
246
247
            in_n_c_hi_wi.GenerateTensorValue(GeneratorTensor_3<InDataType>{0.0, 1.0});
            wei_k_c_y_x.GenerateTensorValue(GeneratorTensor_3<WeiDataType>{-0.5, 0.5});
248
            break;
249

250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
        case 3:

#define PACK_32(v24, v16, v8, v0) \
    (((v24 & 0xff) << 24) | ((v16 & 0xff) << 16) | ((v8 & 0xff) << 8) | ((v0 & 0xff) << 0))

            for(auto i_n = 0; i_n < N; i_n++)
            {
                for(auto i_c = 0; i_c < C; i_c++)
                {
                    for(auto i_hi = 0; i_hi < Hi; i_hi++)
                    {
                        for(auto i_wi = 0; i_wi < Wi; i_wi++)
                        {
                            uint32_t v                         = PACK_32(i_n, i_c, i_hi, i_wi);
                            in_n_c_hi_wi(i_n, i_c, i_hi, i_wi) = *reinterpret_cast<float*>(&v);
                        }
                    }
                }
            }

            for(auto i_k = 0; i_k < K; i_k++)
            {
                for(auto i_c = 0; i_c < C; i_c++)
                {
                    for(auto i_y = 0; i_y < Y; i_y++)
                    {
                        for(auto i_x = 0; i_x < X; i_x++)
                        {
                            uint32_t v                      = PACK_32(i_k, i_c, i_y, i_x);
                            wei_k_c_y_x(i_k, i_c, i_y, i_x) = *reinterpret_cast<float*>(&v);
                        }
                    }
                }
            }
            break;
        default:
            in_n_c_hi_wi.GenerateTensorValue(GeneratorTensor_3<InDataType>{0, 1});
            wei_k_c_y_x.GenerateTensorValue(GeneratorTensor_3<WeiDataType>{-1, 1});
        }

        DeviceAlignedMemCPU in_device_buf(sizeof(InDataType) * in_n_c_hi_wi.mDesc.GetElementSpace(),
                                          AVX2_DATA_ALIGNMENT);
        DeviceAlignedMemCPU wei_device_buf(
            sizeof(WeiDataType) * wei_k_c_y_x.mDesc.GetElementSpace(), AVX2_DATA_ALIGNMENT);
        DeviceAlignedMemCPU out_device_buf(sizeof(OutDataType) *
                                               out_n_k_ho_wo_host_result.mDesc.GetElementSpace(),
                                           AVX2_DATA_ALIGNMENT);

        in_device_buf.ToDevice(in_n_c_hi_wi.mData.data());
        wei_device_buf.ToDevice(wei_k_c_y_x.mData.data());

        // get host result
        {
            auto ref_conv    = ReferenceConvFwdInstance{};
            auto ref_invoker = ref_conv.MakeInvoker();

            auto ref_argument = ref_conv.MakeArgument(in_n_c_hi_wi,
                                                      wei_k_c_y_x,
                                                      out_n_k_ho_wo_host_result,
                                                      conv_filter_strides,
                                                      conv_filter_dilations,
                                                      input_left_pads,
                                                      input_right_pads,
                                                      InElementOp{},
                                                      WeiElementOp{},
                                                      OutElementOp{});
            ref_invoker.Run(ref_argument);
        }

carlushuang's avatar
carlushuang committed
319
320
321
        using PassThrough = ck::tensor_operation::cpu::element_wise::PassThrough;
        using Relu        = ck::tensor_operation::cpu::element_wise::Relu;
#if TEST_FUSION == TEST_FUSION_PASSTHROUGH
322
323
        using DeviceConvFwdNoOpPtr = ck::tensor_operation::cpu::device::
            DeviceConvFwdPtr<PassThrough, PassThrough, PassThrough>;
carlushuang's avatar
carlushuang committed
324
325
326
327
328
#endif
#if TEST_FUSION == TEST_FUSION_RELU
        using DeviceConvFwdNoOpPtr =
            ck::tensor_operation::cpu::device::DeviceConvFwdPtr<PassThrough, PassThrough, Relu>;
#endif
329
330
331
332
333
334
335
336

        // add device Conv instances
        std::vector<DeviceConvFwdNoOpPtr> conv_ptrs;

        if constexpr(ck::is_same_v<ck::remove_cv_t<InDataType>, float> &&
                     ck::is_same_v<ck::remove_cv_t<WeiDataType>, float> &&
                     ck::is_same_v<ck::remove_cv_t<OutDataType>, float>)
        {
carlushuang's avatar
carlushuang committed
337
#if TEST_FUSION == TEST_FUSION_PASSTHROUGH
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
            if(omp_get_max_threads() > 1)
            {
                ck::tensor_operation::cpu::device::device_conv2d_fwd_avx2_instance::
                    add_device_conv2d_fwd_avx2_nhwc_kyxc_nhwk_mt(conv_ptrs);
                ck::tensor_operation::cpu::device::device_conv2d_fwd_avx2_instance::
                    add_device_conv2d_fwd_avx2_nhwc_kyxc_nhwk(conv_ptrs);
            }
            else
            {
                if(K % 8 == 0)
                    ck::tensor_operation::cpu::device::device_conv2d_fwd_avx2_instance::
                        add_device_conv2d_fwd_avx2_nhwc_kyxc_nhwk(conv_ptrs);
                else
                    ck::tensor_operation::cpu::device::device_conv2d_fwd_avx2_instance::
                        add_device_conv2d_fwd_avx2_nhwc_kyxc_nhwk_local_c(conv_ptrs);
            }
carlushuang's avatar
carlushuang committed
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
#endif
#if TEST_FUSION == TEST_FUSION_RELU
            if(omp_get_max_threads() > 1)
            {
                ck::tensor_operation::cpu::device::device_conv2d_fwd_avx2_instance::
                    add_device_conv2d_fwd_avx2_nhwc_kyxc_nhwk_mt_relu(conv_ptrs);
                ck::tensor_operation::cpu::device::device_conv2d_fwd_avx2_instance::
                    add_device_conv2d_fwd_avx2_nhwc_kyxc_nhwk_relu(conv_ptrs);
            }
            else
            {
                if(K % 8 == 0)
                    ck::tensor_operation::cpu::device::device_conv2d_fwd_avx2_instance::
                        add_device_conv2d_fwd_avx2_nhwc_kyxc_nhwk_relu(conv_ptrs);
                else
                    ck::tensor_operation::cpu::device::device_conv2d_fwd_avx2_instance::
                        add_device_conv2d_fwd_avx2_nhwc_kyxc_nhwk_local_c_relu(conv_ptrs);
            }
#endif
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
        }

        if(conv_ptrs.size() <= 0)
        {
            throw std::runtime_error("wrong! no device Conv instance found");
        }

        // profile device Conv instances
        bool success                    = true;
        double fastest_kernel_time      = std::numeric_limits<double>::max();
        std::string fastest_kernel_name = "";
        double fastest_kernel_gflops    = 0;
        for(auto& conv_ptr : conv_ptrs)
        {
            auto argument_ptr = conv_ptr->MakeArgumentPointer(
                static_cast<InDataType*>(in_device_buf.GetDeviceBuffer()),
                static_cast<WeiDataType*>(wei_device_buf.GetDeviceBuffer()),
                static_cast<OutDataType*>(out_device_buf.GetDeviceBuffer()),
                N,
                K,
                C,
                input_spatial_lengths,
                filter_spatial_lengths,
                output_spatial_lengths,
                conv_filter_strides,
                conv_filter_dilations,
                input_left_pads,
                input_right_pads,
                InElementOp{},
                WeiElementOp{},
                OutElementOp{});

            if(conv_ptr->IsSupportedArgument(argument_ptr.get()))
            {
                auto invoker_ptr = conv_ptr->MakeInvokerPointer();
408
                double time      = invoker_ptr->Run(argument_ptr.get(), StreamConfig{}, 10);
409
410
411
412
413
414
415

                double total_flop = static_cast<double>(2) * N * C * Ho * Wo * K * Y * X;

                double gflops = (total_flop * 1e-6) / time;

                out_device_buf.FromDevice(out_n_k_ho_wo_device_result.mData.data());

416
417
418
419
                if(!check_out(out_n_k_ho_wo_host_result,
                              out_n_k_ho_wo_device_result,
                              1e-6,
                              per_pixel_check))
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
                {
                    std::cout << "Fail Info: " << conv_ptr->GetTypeString() << std::endl;
                    success = false;
                }
                else
                {
                    std::cout << "Pass Info: " << conv_ptr->GetTypeString() << ", Time:" << time
                              << "ms, Gflops:" << gflops << std::endl;

                    if(time < fastest_kernel_time)
                    {
                        fastest_kernel_time   = time;
                        fastest_kernel_name   = conv_ptr->GetTypeString();
                        fastest_kernel_gflops = gflops;
                    }
                }
            }
            else
            {
                std::cout << "Not support Info: " << conv_ptr->GetTypeString() << std::endl;
            }
        }

        if(fastest_kernel_time != std::numeric_limits<double>::max())
        {
            std::cout << "  fastest:" << fastest_kernel_name << ", time:" << fastest_kernel_time
                      << "ms, Gflops:" << fastest_kernel_gflops << std::endl;
        }
        return 0;
        // if(success)
        // {
        //     std::cout << "test conv2d fwd cpu : Pass" << std::endl;
        //     return 0;
        // }
        // else
        // {
        //     std::cout << "test conv2d fwd cpu: Fail " << std::endl;
        //     return -1;
        // }
    };

    if(data_type == 0)
    {
        return Run(F32(), F32(), F32());
    }
    else
    {
        return 1;
    }
}