conv2d_fwd_cpu.cpp 18.3 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
#include "config.hpp"
#include "device.hpp"
#include "host_tensor.hpp"
#include "host_tensor_generator.hpp"
#include "tensor_layout.hpp"
#include "device_tensor.hpp"
#include "device_convnd_fwd_avx2_nhwc_kyxc_nhwk.hpp"
#include "element_wise_operation_cpu.hpp"
#include "reference_conv_fwd.hpp"
#include "element_wise_operation_cpu.hpp"
#include "dynamic_buffer_cpu.hpp"
#include <omp.h>

#define AVX2_DATA_ALIGNMENT 32
carlushuang's avatar
carlushuang committed
15
16
17
18
19

#define TEST_FUSION_PASSTHROUGH 0
#define TEST_FUSION_RELU 1
#define TEST_FUSION TEST_FUSION_RELU

20
21
22
23
24
25
26
27
28
29
using F32 = float;
using F16 = ck::half_t;

namespace ck {
namespace tensor_operation {
namespace cpu {
namespace device {
namespace device_conv2d_fwd_avx2_instance {

using PassThrough = ck::tensor_operation::cpu::element_wise::PassThrough;
carlushuang's avatar
carlushuang committed
30
using Relu        = ck::tensor_operation::cpu::element_wise::Relu;
31
32
33
34

void add_device_conv2d_fwd_avx2_nhwc_kyxc_nhwk(
    std::vector<DeviceConvFwdPtr<PassThrough, PassThrough, PassThrough>>& instances);

35
36
37
38
39
40
void add_device_conv2d_fwd_avx2_nhwc_kyxc_nhwk_local_c(
    std::vector<DeviceConvFwdPtr<PassThrough, PassThrough, PassThrough>>& instances);

void add_device_conv2d_fwd_avx2_nhwc_kyxc_nhwk_mt(
    std::vector<DeviceConvFwdPtr<PassThrough, PassThrough, PassThrough>>& instances);

carlushuang's avatar
carlushuang committed
41
42
43
44
45
46
47
48
49
void add_device_conv2d_fwd_avx2_nhwc_kyxc_nhwk_relu(
    std::vector<DeviceConvFwdPtr<PassThrough, PassThrough, Relu>>& instances);

void add_device_conv2d_fwd_avx2_nhwc_kyxc_nhwk_local_c_relu(
    std::vector<DeviceConvFwdPtr<PassThrough, PassThrough, Relu>>& instances);

void add_device_conv2d_fwd_avx2_nhwc_kyxc_nhwk_mt_relu(
    std::vector<DeviceConvFwdPtr<PassThrough, PassThrough, Relu>>& instances);

50
51
52
53
54
55
56
57
} // namespace device_conv2d_fwd_avx2_instance
} // namespace device
} // namespace cpu
} // namespace tensor_operation
} // namespace ck

using InElementOp  = ck::tensor_operation::cpu::element_wise::PassThrough;
using WeiElementOp = ck::tensor_operation::cpu::element_wise::PassThrough;
carlushuang's avatar
carlushuang committed
58
#if TEST_FUSION == TEST_FUSION_PASSTHROUGH
59
using OutElementOp = ck::tensor_operation::cpu::element_wise::PassThrough;
carlushuang's avatar
carlushuang committed
60
61
62
63
#endif
#if TEST_FUSION == TEST_FUSION_RELU
using OutElementOp = ck::tensor_operation::cpu::element_wise::Relu;
#endif
64
65

template <typename T>
66
67
static bool
check_out(const Tensor<T>& ref, const Tensor<T>& result, double nrms, int per_pixel_check = 0)
68
69
{
    int error_count = 0;
70
71
72
73
74
    float max_diff  = 1e-5;

    double square_difference = .0;
    double mag1              = .0;
    double mag2              = .0;
75
76
77

    for(int i = 0; i < ref.mData.size(); ++i)
    {
78
79
80
81
82
        double ri = (double)ref.mData[i];
        double pi = (double)result.mData[i];
        double d  = ri - pi;

        if(per_pixel_check)
83
        {
84
85
86
87
88
89
90
91
92
            if(max_diff < std::abs(d))
            {
                error_count++;
                printf("idx:%3d, ref:%f, res:%f (diff:%f)\n",
                       i,
                       double(ref.mData[i]),
                       double(result.mData[i]),
                       d);
            }
93
        }
94
95
96
97
98
99

        square_difference += d * d;
        if(std::abs(mag1) < std::abs(ri))
            mag1 = ri;
        if(std::abs(mag2) < std::abs(pi))
            mag2 = pi;
100
101
    }

102
103
104
105
106
107
108
109
110
111
112
    double mag = std::max({std::fabs(mag1), std::fabs(mag2), std::numeric_limits<double>::min()});
    double computed_nrms = std::sqrt(square_difference) / (std::sqrt(ref.mData.size()) * mag);

    if(computed_nrms >= nrms)
        printf("nrms:%lf, mag1:%lf, mag2:%lf, expected_nrms is %1f\n",
               computed_nrms,
               mag1,
               mag2,
               nrms);

    return computed_nrms < nrms && error_count == 0;
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
}

float calculate_gflops() {}

int main(int argc, char* argv[])
{
    int data_type   = 0;
    int init_method = 0;

    // Conv shape
    ck::index_t N               = 2;
    ck::index_t K               = 256;
    ck::index_t C               = 192;
    ck::index_t Y               = 3;
    ck::index_t X               = 3;
    ck::index_t Hi              = 71;
    ck::index_t Wi              = 71;
    ck::index_t conv_stride_h   = 1;
    ck::index_t conv_stride_w   = 1;
    ck::index_t conv_dilation_h = 1;
    ck::index_t conv_dilation_w = 1;
    ck::index_t in_left_pad_h   = 1;
    ck::index_t in_left_pad_w   = 1;
    ck::index_t in_right_pad_h  = 1;
    ck::index_t in_right_pad_w  = 1;

    if(argc == 1)
    {
        data_type   = 0;
        init_method = 1;
    }
    else if(argc == 3)
    {
        data_type   = std::stoi(argv[1]);
        init_method = std::stoi(argv[2]);
    }
    else if(argc == 18)
    {
        data_type   = std::stoi(argv[1]);
        init_method = std::stoi(argv[2]);

        N               = std::stoi(argv[3]);
        K               = std::stoi(argv[4]);
        C               = std::stoi(argv[5]);
        Y               = std::stoi(argv[6]);
        X               = std::stoi(argv[7]);
        Hi              = std::stoi(argv[8]);
        Wi              = std::stoi(argv[9]);
        conv_stride_h   = std::stoi(argv[10]);
        conv_stride_w   = std::stoi(argv[11]);
        conv_dilation_h = std::stoi(argv[12]);
        conv_dilation_w = std::stoi(argv[13]);
        in_left_pad_h   = std::stoi(argv[14]);
        in_left_pad_w   = std::stoi(argv[15]);
        in_right_pad_h  = std::stoi(argv[16]);
        in_right_pad_w  = std::stoi(argv[17]);
    }
    else
    {
        printf("arg1: data type (0=fp32, 1=fp16)\n");
        printf("arg2: initialization (0=no init, 1=integer value, 2=decimal value)\n");
        printf("arg3 to 17: N, K, C, Y, X, Hi, Wi, Sy, Sx, Dy, Dx, LeftPy, LeftPx, RightPy, "
               "RightPx\n");
        exit(1);
    }

    auto Run = [&](auto input_type, auto wei_type, auto out_type) {
        using InDataType  = decltype(input_type);
        using WeiDataType = decltype(wei_type);
        using OutDataType = decltype(out_type);

        using ReferenceConvFwdInstance = ck::tensor_operation::host::ReferenceConvFwd<InDataType,
                                                                                      WeiDataType,
                                                                                      OutDataType,
                                                                                      InElementOp,
                                                                                      WeiElementOp,
                                                                                      OutElementOp>;

        const ck::index_t YEff = (Y - 1) * conv_dilation_h + 1;
        const ck::index_t XEff = (X - 1) * conv_dilation_w + 1;

        const ck::index_t Ho = (Hi + in_left_pad_h + in_right_pad_h - YEff) / conv_stride_h + 1;
        const ck::index_t Wo = (Wi + in_left_pad_w + in_right_pad_w - XEff) / conv_stride_w + 1;

        const std::vector<ck::index_t> input_spatial_lengths{{Hi, Wi}};
        const std::vector<ck::index_t> filter_spatial_lengths{{Y, X}};
        const std::vector<ck::index_t> output_spatial_lengths{{Ho, Wo}};
        const std::vector<ck::index_t> conv_filter_strides{{conv_stride_h, conv_stride_w}};
        const std::vector<ck::index_t> conv_filter_dilations{{conv_dilation_h, conv_dilation_w}};
        const std::vector<ck::index_t> input_left_pads{{in_left_pad_h, in_left_pad_w}};
        const std::vector<ck::index_t> input_right_pads{{in_right_pad_h, in_right_pad_w}};

        auto f_host_tensor_descriptor = [](std::size_t N_,
                                           std::size_t C_,
                                           std::size_t H_,
                                           std::size_t W_) {
            return HostTensorDescriptor(std::vector<std::size_t>({N_, C_, H_, W_}),
                                        std::vector<std::size_t>({C_ * H_ * W_, 1, W_ * C_, C_}));
        };

        Tensor<InDataType> in_n_c_hi_wi(f_host_tensor_descriptor(N, C, Hi, Wi));
        Tensor<WeiDataType> wei_k_c_y_x(f_host_tensor_descriptor(K, C, Y, X));
        Tensor<OutDataType> out_n_k_ho_wo_host_result(f_host_tensor_descriptor(N, K, Ho, Wo));
        Tensor<OutDataType> out_n_k_ho_wo_device_result(f_host_tensor_descriptor(N, K, Ho, Wo));

        std::cout << "in (N, C, Hi, Wi): " << in_n_c_hi_wi.mDesc << std::endl;
        std::cout << "wei(K, C,  Y,  X): " << wei_k_c_y_x.mDesc << std::endl;
        std::cout << "out(N, K, Ho, Wo): " << out_n_k_ho_wo_host_result.mDesc << std::endl;
        std::cout << "LPad(H, W):" << in_left_pad_h << "," << in_left_pad_w
                  << ", RPad(H, W):" << in_right_pad_h << "," << in_right_pad_w
                  << ", Stride(H, W):" << conv_stride_h << ", " << conv_stride_w
                  << ", Dilation(H, W):" << conv_dilation_h << ", " << conv_dilation_w
                  << ", Threads:" << omp_get_max_threads() << std::endl;

227
        int per_pixel_check = 0;
228
229
        switch(init_method)
        {
230
231
232
233
234
        case 0:
            in_n_c_hi_wi.GenerateTensorValue(GeneratorTensor_1<InDataType>{});
            wei_k_c_y_x.GenerateTensorValue(GeneratorTensor_1<WeiDataType>{});
            per_pixel_check = 1;
            break;
235
236
237
238
239
240
        case 1:

            in_n_c_hi_wi.GenerateTensorValue(GeneratorTensor_2<InDataType>{-5, 5});
            // in_n_c_hi_wi.GenerateTensorValue(GeneratorTensor_1<InDataType>{});
            wei_k_c_y_x.GenerateTensorValue(GeneratorTensor_2<WeiDataType>{-5, 5});
            // wei_k_c_y_x.GenerateTensorValue(GeneratorTensor_1<WeiDataType>{});
241
            per_pixel_check = 1;
242
            break;
243

244
        case 2:
245
246
            in_n_c_hi_wi.GenerateTensorValue(GeneratorTensor_3<InDataType>{0.0, 1.0});
            wei_k_c_y_x.GenerateTensorValue(GeneratorTensor_3<WeiDataType>{-0.5, 0.5});
247
            break;
248

249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
        case 3:

#define PACK_32(v24, v16, v8, v0) \
    (((v24 & 0xff) << 24) | ((v16 & 0xff) << 16) | ((v8 & 0xff) << 8) | ((v0 & 0xff) << 0))

            for(auto i_n = 0; i_n < N; i_n++)
            {
                for(auto i_c = 0; i_c < C; i_c++)
                {
                    for(auto i_hi = 0; i_hi < Hi; i_hi++)
                    {
                        for(auto i_wi = 0; i_wi < Wi; i_wi++)
                        {
                            uint32_t v                         = PACK_32(i_n, i_c, i_hi, i_wi);
                            in_n_c_hi_wi(i_n, i_c, i_hi, i_wi) = *reinterpret_cast<float*>(&v);
                        }
                    }
                }
            }

            for(auto i_k = 0; i_k < K; i_k++)
            {
                for(auto i_c = 0; i_c < C; i_c++)
                {
                    for(auto i_y = 0; i_y < Y; i_y++)
                    {
                        for(auto i_x = 0; i_x < X; i_x++)
                        {
                            uint32_t v                      = PACK_32(i_k, i_c, i_y, i_x);
                            wei_k_c_y_x(i_k, i_c, i_y, i_x) = *reinterpret_cast<float*>(&v);
                        }
                    }
                }
            }
            break;
        default:
            in_n_c_hi_wi.GenerateTensorValue(GeneratorTensor_3<InDataType>{0, 1});
            wei_k_c_y_x.GenerateTensorValue(GeneratorTensor_3<WeiDataType>{-1, 1});
        }

        DeviceAlignedMemCPU in_device_buf(sizeof(InDataType) * in_n_c_hi_wi.mDesc.GetElementSpace(),
                                          AVX2_DATA_ALIGNMENT);
        DeviceAlignedMemCPU wei_device_buf(
            sizeof(WeiDataType) * wei_k_c_y_x.mDesc.GetElementSpace(), AVX2_DATA_ALIGNMENT);
        DeviceAlignedMemCPU out_device_buf(sizeof(OutDataType) *
                                               out_n_k_ho_wo_host_result.mDesc.GetElementSpace(),
                                           AVX2_DATA_ALIGNMENT);

        in_device_buf.ToDevice(in_n_c_hi_wi.mData.data());
        wei_device_buf.ToDevice(wei_k_c_y_x.mData.data());

        // get host result
        {
            auto ref_conv    = ReferenceConvFwdInstance{};
            auto ref_invoker = ref_conv.MakeInvoker();

            auto ref_argument = ref_conv.MakeArgument(in_n_c_hi_wi,
                                                      wei_k_c_y_x,
                                                      out_n_k_ho_wo_host_result,
                                                      conv_filter_strides,
                                                      conv_filter_dilations,
                                                      input_left_pads,
                                                      input_right_pads,
                                                      InElementOp{},
                                                      WeiElementOp{},
                                                      OutElementOp{});
            ref_invoker.Run(ref_argument);
        }

carlushuang's avatar
carlushuang committed
318
319
320
        using PassThrough = ck::tensor_operation::cpu::element_wise::PassThrough;
        using Relu        = ck::tensor_operation::cpu::element_wise::Relu;
#if TEST_FUSION == TEST_FUSION_PASSTHROUGH
321
322
        using DeviceConvFwdNoOpPtr = ck::tensor_operation::cpu::device::
            DeviceConvFwdPtr<PassThrough, PassThrough, PassThrough>;
carlushuang's avatar
carlushuang committed
323
324
325
326
327
#endif
#if TEST_FUSION == TEST_FUSION_RELU
        using DeviceConvFwdNoOpPtr =
            ck::tensor_operation::cpu::device::DeviceConvFwdPtr<PassThrough, PassThrough, Relu>;
#endif
328
329
330
331
332
333
334
335

        // add device Conv instances
        std::vector<DeviceConvFwdNoOpPtr> conv_ptrs;

        if constexpr(ck::is_same_v<ck::remove_cv_t<InDataType>, float> &&
                     ck::is_same_v<ck::remove_cv_t<WeiDataType>, float> &&
                     ck::is_same_v<ck::remove_cv_t<OutDataType>, float>)
        {
carlushuang's avatar
carlushuang committed
336
#if TEST_FUSION == TEST_FUSION_PASSTHROUGH
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
            if(omp_get_max_threads() > 1)
            {
                ck::tensor_operation::cpu::device::device_conv2d_fwd_avx2_instance::
                    add_device_conv2d_fwd_avx2_nhwc_kyxc_nhwk_mt(conv_ptrs);
                ck::tensor_operation::cpu::device::device_conv2d_fwd_avx2_instance::
                    add_device_conv2d_fwd_avx2_nhwc_kyxc_nhwk(conv_ptrs);
            }
            else
            {
                if(K % 8 == 0)
                    ck::tensor_operation::cpu::device::device_conv2d_fwd_avx2_instance::
                        add_device_conv2d_fwd_avx2_nhwc_kyxc_nhwk(conv_ptrs);
                else
                    ck::tensor_operation::cpu::device::device_conv2d_fwd_avx2_instance::
                        add_device_conv2d_fwd_avx2_nhwc_kyxc_nhwk_local_c(conv_ptrs);
            }
carlushuang's avatar
carlushuang committed
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
#endif
#if TEST_FUSION == TEST_FUSION_RELU
            if(omp_get_max_threads() > 1)
            {
                ck::tensor_operation::cpu::device::device_conv2d_fwd_avx2_instance::
                    add_device_conv2d_fwd_avx2_nhwc_kyxc_nhwk_mt_relu(conv_ptrs);
                ck::tensor_operation::cpu::device::device_conv2d_fwd_avx2_instance::
                    add_device_conv2d_fwd_avx2_nhwc_kyxc_nhwk_relu(conv_ptrs);
            }
            else
            {
                if(K % 8 == 0)
                    ck::tensor_operation::cpu::device::device_conv2d_fwd_avx2_instance::
                        add_device_conv2d_fwd_avx2_nhwc_kyxc_nhwk_relu(conv_ptrs);
                else
                    ck::tensor_operation::cpu::device::device_conv2d_fwd_avx2_instance::
                        add_device_conv2d_fwd_avx2_nhwc_kyxc_nhwk_local_c_relu(conv_ptrs);
            }
#endif
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
        }

        if(conv_ptrs.size() <= 0)
        {
            throw std::runtime_error("wrong! no device Conv instance found");
        }

        // profile device Conv instances
        bool success                    = true;
        double fastest_kernel_time      = std::numeric_limits<double>::max();
        std::string fastest_kernel_name = "";
        double fastest_kernel_gflops    = 0;
        for(auto& conv_ptr : conv_ptrs)
        {
            auto argument_ptr = conv_ptr->MakeArgumentPointer(
                static_cast<InDataType*>(in_device_buf.GetDeviceBuffer()),
                static_cast<WeiDataType*>(wei_device_buf.GetDeviceBuffer()),
                static_cast<OutDataType*>(out_device_buf.GetDeviceBuffer()),
                N,
                K,
                C,
                input_spatial_lengths,
                filter_spatial_lengths,
                output_spatial_lengths,
                conv_filter_strides,
                conv_filter_dilations,
                input_left_pads,
                input_right_pads,
                InElementOp{},
                WeiElementOp{},
                OutElementOp{});

            if(conv_ptr->IsSupportedArgument(argument_ptr.get()))
            {
                auto invoker_ptr = conv_ptr->MakeInvokerPointer();
                double time      = invoker_ptr->Run(argument_ptr.get(), 10);

                double total_flop = static_cast<double>(2) * N * C * Ho * Wo * K * Y * X;

                double gflops = (total_flop * 1e-6) / time;

                out_device_buf.FromDevice(out_n_k_ho_wo_device_result.mData.data());

415
416
417
418
                if(!check_out(out_n_k_ho_wo_host_result,
                              out_n_k_ho_wo_device_result,
                              1e-6,
                              per_pixel_check))
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
                {
                    std::cout << "Fail Info: " << conv_ptr->GetTypeString() << std::endl;
                    success = false;
                }
                else
                {
                    std::cout << "Pass Info: " << conv_ptr->GetTypeString() << ", Time:" << time
                              << "ms, Gflops:" << gflops << std::endl;

                    if(time < fastest_kernel_time)
                    {
                        fastest_kernel_time   = time;
                        fastest_kernel_name   = conv_ptr->GetTypeString();
                        fastest_kernel_gflops = gflops;
                    }
                }
            }
            else
            {
                std::cout << "Not support Info: " << conv_ptr->GetTypeString() << std::endl;
            }
        }

        if(fastest_kernel_time != std::numeric_limits<double>::max())
        {
            std::cout << "  fastest:" << fastest_kernel_name << ", time:" << fastest_kernel_time
                      << "ms, Gflops:" << fastest_kernel_gflops << std::endl;
        }
        return 0;
        // if(success)
        // {
        //     std::cout << "test conv2d fwd cpu : Pass" << std::endl;
        //     return 0;
        // }
        // else
        // {
        //     std::cout << "test conv2d fwd cpu: Fail " << std::endl;
        //     return -1;
        // }
    };

    if(data_type == 0)
    {
        return Run(F32(), F32(), F32());
    }
    else
    {
        return 1;
    }
}