Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
gaoqiong
composable_kernel
Commits
5771a040
Commit
5771a040
authored
Apr 27, 2022
by
carlushuang
Browse files
fix a bug in general index calculation
parent
5e6cca6f
Changes
3
Expand all
Hide whitespace changes
Inline
Side-by-side
Showing
3 changed files
with
1217 additions
and
1179 deletions
+1217
-1179
include/ck/tensor_operation/cpu/thread/threadwise_tensor_slice_transfer_avx2_specialization.hpp
.../threadwise_tensor_slice_transfer_avx2_specialization.hpp
+1085
-1084
library/src/tensor_operation_instance/cpu/conv2d_fwd/device_conv2d_fwd_avx2_nhwc_kyxc_nhwk_instance.cpp
...2d_fwd/device_conv2d_fwd_avx2_nhwc_kyxc_nhwk_instance.cpp
+79
-80
test/convnd_fwd_cpu/conv2d_fwd_cpu.cpp
test/convnd_fwd_cpu/conv2d_fwd_cpu.cpp
+53
-15
No files found.
include/ck/tensor_operation/cpu/thread/threadwise_tensor_slice_transfer_avx2_specialization.hpp
View file @
5771a040
This diff is collapsed.
Click to expand it.
library/src/tensor_operation_instance/cpu/conv2d_fwd/device_conv2d_fwd_avx2_nhwc_kyxc_nhwk_instance.cpp
View file @
5771a040
#include <stdlib.h>
#include <stdlib.h>
#include "convolution_forward_specialization_cpu.hpp"
#include "convolution_forward_specialization_cpu.hpp"
#include "config.hpp"
#include "config.hpp"
#include "device_convnd_fwd_avx2_nhwc_kyxc_nhwk.hpp"
#include "device_convnd_fwd_avx2_nhwc_kyxc_nhwk.hpp"
#include "element_wise_operation_cpu.hpp"
#include "element_wise_operation_cpu.hpp"
#include "device_operation_instance.hpp"
#include "device_operation_instance.hpp"
namespace
ck
{
namespace
ck
{
namespace
tensor_operation
{
namespace
tensor_operation
{
namespace
cpu
{
namespace
cpu
{
namespace
device
{
namespace
device
{
namespace
device_conv2d_fwd_avx2_instance
{
namespace
device_conv2d_fwd_avx2_instance
{
using
InType
=
float
;
using
InType
=
float
;
using
WeiType
=
float
;
using
WeiType
=
float
;
using
OutType
=
float
;
using
OutType
=
float
;
using
AccType
=
float
;
using
AccType
=
float
;
using
InLayout
=
ck
::
tensor_layout
::
gemm
::
RowMajor
;
// NHWC
using
InLayout
=
ck
::
tensor_layout
::
gemm
::
RowMajor
;
// NHWC
using
WeiLayout
=
ck
::
tensor_layout
::
gemm
::
ColumnMajor
;
// KYXC
using
WeiLayout
=
ck
::
tensor_layout
::
gemm
::
ColumnMajor
;
// KYXC
static
constexpr
bool
NonTemporalStore
=
false
;
static
constexpr
bool
NonTemporalStore
=
false
;
using
PT
=
ck
::
tensor_operation
::
cpu
::
element_wise
::
PassThrough
;
using
PT
=
ck
::
tensor_operation
::
cpu
::
element_wise
::
PassThrough
;
using
ThreadwiseGemmAvx2_MxN_4x24_Dispatch
=
using
ThreadwiseGemmAvx2_MxN_4x24_Dispatch
=
ck
::
cpu
::
ThreadwiseGemmAvx2_MxN_4x24_Dispatch
<
InType
,
ck
::
cpu
::
ThreadwiseGemmAvx2_MxN_4x24_Dispatch
<
InType
,
WeiType
,
WeiType
,
OutType
,
OutType
,
InLayout
,
InLayout
,
WeiLayout
,
WeiLayout
,
NonTemporalStore
>
;
NonTemporalStore
>
;
static
constexpr
auto
ConvFwdDefault
=
static
constexpr
auto
ConvFwdDefault
=
ck
::
tensor_operation
::
cpu
::
device
::
ConvolutionForwardSpecialization_t
::
Default
;
ck
::
tensor_operation
::
cpu
::
device
::
ConvolutionForwardSpecialization_t
::
Default
;
static
constexpr
auto
ConvFwd1x1P0
=
static
constexpr
auto
ConvFwd1x1P0
=
ck
::
tensor_operation
::
cpu
::
device
::
ConvolutionForwardSpecialization_t
::
Filter1x1Pad0
;
ck
::
tensor_operation
::
cpu
::
device
::
ConvolutionForwardSpecialization_t
::
Filter1x1Pad0
;
static
constexpr
auto
ConvFwd1x1S1P0
=
static
constexpr
auto
ConvFwd1x1S1P0
=
ck
::
tensor_operation
::
cpu
::
device
::
ConvolutionForwardSpecialization_t
::
Filter1x1Stride1Pad0
;
ck
::
tensor_operation
::
cpu
::
device
::
ConvolutionForwardSpecialization_t
::
Filter1x1Stride1Pad0
;
static
constexpr
auto
DefaultGemmKLoop
=
static
constexpr
auto
DefaultGemmKLoop
=
ck
::
tensor_operation
::
cpu
::
device
::
ConvolutionForwardGemmKSpecialization_t
::
DefaultGemmKLoop
;
ck
::
tensor_operation
::
cpu
::
device
::
ConvolutionForwardGemmKSpecialization_t
::
DefaultGemmKLoop
;
static
constexpr
auto
GemmKLoopOverC
=
static
constexpr
auto
GemmKLoopOverC
=
ck
::
tensor_operation
::
cpu
::
device
::
ConvolutionForwardGemmKSpecialization_t
::
NHWC_GemmKLoopOverC
;
ck
::
tensor_operation
::
cpu
::
device
::
ConvolutionForwardGemmKSpecialization_t
::
NHWC_GemmKLoopOverC
;
static
constexpr
auto
LoopOver_MNK
=
ck
::
tensor_operation
::
cpu
::
device
::
LoopOver_MNK
;
static
constexpr
auto
LoopOver_MNK
=
ck
::
tensor_operation
::
cpu
::
device
::
LoopOver_MNK
;
static
constexpr
auto
LoopOver_MKN
=
ck
::
tensor_operation
::
cpu
::
device
::
LoopOver_MKN
;
static
constexpr
auto
LoopOver_MKN
=
ck
::
tensor_operation
::
cpu
::
device
::
LoopOver_MKN
;
// clang-format off
// clang-format off
#define DEVICE_CONV2D_FWD_AVX2_NHWC_KYXC_NHWK_F32(a_elem_op, b_elem_op, c_elem_op, m_per_block, n_per_block, k_per_block, m_per_thread, n_per_thread, a_local_buf, b_local_buf, c_local_buf) \
#define DEVICE_CONV2D_FWD_AVX2_NHWC_KYXC_NHWK_F32(a_elem_op, b_elem_op, c_elem_op, m_per_block, n_per_block, k_per_block, m_per_thread, n_per_thread, a_local_buf, b_local_buf, c_local_buf) \
DeviceConvNDFwdAvx2_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K
<
float
,
float
,
float
,
a_elem_op
,
b_elem_op
,
c_elem_op
,
ConvFwdDefault
,
GemmKLoopOverC
,
LoopOver_MNK
,
2
,
m_per_block
,
n_per_block
,
k_per_block
,
m_per_thread
,
n_per_thread
,
a_local_buf
,
b_local_buf
,
c_local_buf
>
,
\
DeviceConvNDFwdAvx2_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K<float , float , float, a_elem_op, b_elem_op, c_elem_op, ConvFwdDefault, GemmKLoopOverC , LoopOver_MNK, 2, m_per_block, n_per_block, k_per_block, m_per_thread, n_per_thread, a_local_buf, b_local_buf, c_local_buf>, \
DeviceConvNDFwdAvx2_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K
<
float
,
float
,
float
,
a_elem_op
,
b_elem_op
,
c_elem_op
,
ConvFwd1x1P0
,
GemmKLoopOverC
,
LoopOver_MNK
,
2
,
m_per_block
,
n_per_block
,
k_per_block
,
m_per_thread
,
n_per_thread
,
a_local_buf
,
b_local_buf
,
c_local_buf
>
,
\
DeviceConvNDFwdAvx2_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K<float , float , float, a_elem_op, b_elem_op, c_elem_op, ConvFwd1x1P0, GemmKLoopOverC , LoopOver_MNK, 2, m_per_block, n_per_block, k_per_block, m_per_thread, n_per_thread, a_local_buf, b_local_buf, c_local_buf>, \
DeviceConvNDFwdAvx2_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K
<
float
,
float
,
float
,
a_elem_op
,
b_elem_op
,
c_elem_op
,
ConvFwdDefault
,
DefaultGemmKLoop
,
LoopOver_MNK
,
2
,
m_per_block
,
n_per_block
,
k_per_block
,
m_per_thread
,
n_per_thread
,
a_local_buf
,
b_local_buf
,
c_local_buf
>
,
\
DeviceConvNDFwdAvx2_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K<float , float , float, a_elem_op, b_elem_op, c_elem_op, ConvFwdDefault, DefaultGemmKLoop, LoopOver_MNK, 2, m_per_block, n_per_block, k_per_block, m_per_thread, n_per_thread, a_local_buf, b_local_buf, c_local_buf>, \
DeviceConvNDFwdAvx2_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K
<
float
,
float
,
float
,
a_elem_op
,
b_elem_op
,
c_elem_op
,
ConvFwd1x1P0
,
DefaultGemmKLoop
,
LoopOver_MNK
,
2
,
m_per_block
,
n_per_block
,
k_per_block
,
m_per_thread
,
n_per_thread
,
a_local_buf
,
b_local_buf
,
c_local_buf
>
,
\
DeviceConvNDFwdAvx2_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K<float , float , float, a_elem_op, b_elem_op, c_elem_op, ConvFwd1x1P0, DefaultGemmKLoop, LoopOver_MNK, 2, m_per_block, n_per_block, k_per_block, m_per_thread, n_per_thread, a_local_buf, b_local_buf, c_local_buf>, \
DeviceConvNDFwdAvx2_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K
<
float
,
float
,
float
,
a_elem_op
,
b_elem_op
,
c_elem_op
,
ConvFwdDefault
,
GemmKLoopOverC
,
LoopOver_MKN
,
2
,
m_per_block
,
n_per_block
,
k_per_block
,
m_per_thread
,
n_per_thread
,
a_local_buf
,
b_local_buf
,
c_local_buf
>
,
\
DeviceConvNDFwdAvx2_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K<float , float , float, a_elem_op, b_elem_op, c_elem_op, ConvFwdDefault, GemmKLoopOverC , LoopOver_MKN, 2, m_per_block, n_per_block, k_per_block, m_per_thread, n_per_thread, a_local_buf, b_local_buf, c_local_buf>, \
DeviceConvNDFwdAvx2_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K
<
float
,
float
,
float
,
a_elem_op
,
b_elem_op
,
c_elem_op
,
ConvFwd1x1P0
,
GemmKLoopOverC
,
LoopOver_MKN
,
2
,
m_per_block
,
n_per_block
,
k_per_block
,
m_per_thread
,
n_per_thread
,
a_local_buf
,
b_local_buf
,
c_local_buf
>
,
\
DeviceConvNDFwdAvx2_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K<float , float , float, a_elem_op, b_elem_op, c_elem_op, ConvFwd1x1P0, GemmKLoopOverC , LoopOver_MKN, 2, m_per_block, n_per_block, k_per_block, m_per_thread, n_per_thread, a_local_buf, b_local_buf, c_local_buf>, \
DeviceConvNDFwdAvx2_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K
<
float
,
float
,
float
,
a_elem_op
,
b_elem_op
,
c_elem_op
,
ConvFwdDefault
,
DefaultGemmKLoop
,
LoopOver_MKN
,
2
,
m_per_block
,
n_per_block
,
k_per_block
,
m_per_thread
,
n_per_thread
,
a_local_buf
,
b_local_buf
,
c_local_buf
>
,
\
DeviceConvNDFwdAvx2_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K<float , float , float, a_elem_op, b_elem_op, c_elem_op, ConvFwdDefault, DefaultGemmKLoop, LoopOver_MKN, 2, m_per_block, n_per_block, k_per_block, m_per_thread, n_per_thread, a_local_buf, b_local_buf, c_local_buf>, \
DeviceConvNDFwdAvx2_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K
<
float
,
float
,
float
,
a_elem_op
,
b_elem_op
,
c_elem_op
,
ConvFwd1x1P0
,
DefaultGemmKLoop
,
LoopOver_MKN
,
2
,
m_per_block
,
n_per_block
,
k_per_block
,
m_per_thread
,
n_per_thread
,
a_local_buf
,
b_local_buf
,
c_local_buf
>
DeviceConvNDFwdAvx2_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K<float , float , float, a_elem_op, b_elem_op, c_elem_op, ConvFwd1x1P0, DefaultGemmKLoop, LoopOver_MKN, 2, m_per_block, n_per_block, k_per_block, m_per_thread, n_per_thread, a_local_buf, b_local_buf, c_local_buf>
// clang-format on
// clang-format on
using
device_conv2d_fwd_avx2_nhwc_kyxc_nhwk_f32_instances
=
std
::
tuple
<
using
device_conv2d_fwd_avx2_nhwc_kyxc_nhwk_f32_instances
=
std
::
tuple
<
// clang-format off
// clang-format off
DEVICE_CONV2D_FWD_AVX2_NHWC_KYXC_NHWK_F32
(
PT
,
PT
,
PT
,
256
,
120
,
64
,
4
,
24
,
true
,
true
,
false
),
DEVICE_CONV2D_FWD_AVX2_NHWC_KYXC_NHWK_F32
(
PT
,
PT
,
PT
,
256
,
120
,
64
,
4
,
24
,
true
,
true
,
false
),
DEVICE_CONV2D_FWD_AVX2_NHWC_KYXC_NHWK_F32
(
PT
,
PT
,
PT
,
512
,
144
,
128
,
4
,
24
,
true
,
true
,
false
),
DEVICE_CONV2D_FWD_AVX2_NHWC_KYXC_NHWK_F32
(
PT
,
PT
,
PT
,
512
,
144
,
128
,
4
,
24
,
true
,
true
,
false
),
DEVICE_CONV2D_FWD_AVX2_NHWC_KYXC_NHWK_F32
(
PT
,
PT
,
PT
,
512
,
240
,
128
,
4
,
24
,
true
,
true
,
false
),
DEVICE_CONV2D_FWD_AVX2_NHWC_KYXC_NHWK_F32
(
PT
,
PT
,
PT
,
512
,
240
,
128
,
4
,
24
,
true
,
true
,
false
),
// DEVICE_CONV2D_FWD_AVX2_NHWC_KYXC_NHWK_F32(PT, PT, PT, 768, 192, 128, 4, 24, true, true, false),
// DEVICE_CONV2D_FWD_AVX2_NHWC_KYXC_NHWK_F32(PT, PT, PT, 768, 192, 128, 4, 24, true, true, false),
DEVICE_CONV2D_FWD_AVX2_NHWC_KYXC_NHWK_F32
(
PT
,
PT
,
PT
,
768
,
288
,
128
,
4
,
24
,
true
,
true
,
false
)
>
;
DEVICE_CONV2D_FWD_AVX2_NHWC_KYXC_NHWK_F32
(
PT
,
PT
,
PT
,
768
,
288
,
128
,
4
,
24
,
true
,
true
,
false
)
>
;
// clang-format on
// clang-format on
void
add_device_conv2d_fwd_avx2_nhwc_kyxc_nhwk
(
std
::
vector
<
DeviceConvFwdPtr
<
PT
,
PT
,
PT
>>&
instances
)
void
add_device_conv2d_fwd_avx2_nhwc_kyxc_nhwk
(
std
::
vector
<
DeviceConvFwdPtr
<
PT
,
PT
,
PT
>>&
instances
)
{
{
ck
::
tensor_operation
::
device
::
add_device_operation_instances
(
ck
::
tensor_operation
::
device
::
add_device_operation_instances
(
instances
,
device_conv2d_fwd_avx2_nhwc_kyxc_nhwk_f32_instances
{});
instances
,
device_conv2d_fwd_avx2_nhwc_kyxc_nhwk_f32_instances
{});
}
}
}
// namespace device_conv2d_fwd_avx2_instance
}
// namespace device_conv2d_fwd_avx2_instance
}
// namespace device
}
// namespace device
}
// namespace cpu
}
// namespace cpu
}
// namespace tensor_operation
}
// namespace tensor_operation
}
// namespace ck
}
// namespace ck
test/convnd_fwd_cpu/conv2d_fwd_cpu.cpp
View file @
5771a040
...
@@ -37,26 +37,53 @@ using WeiElementOp = ck::tensor_operation::cpu::element_wise::PassThrough;
...
@@ -37,26 +37,53 @@ using WeiElementOp = ck::tensor_operation::cpu::element_wise::PassThrough;
using
OutElementOp
=
ck
::
tensor_operation
::
cpu
::
element_wise
::
PassThrough
;
using
OutElementOp
=
ck
::
tensor_operation
::
cpu
::
element_wise
::
PassThrough
;
template
<
typename
T
>
template
<
typename
T
>
static
bool
check_out
(
const
Tensor
<
T
>&
ref
,
const
Tensor
<
T
>&
result
)
static
bool
check_out
(
const
Tensor
<
T
>&
ref
,
const
Tensor
<
T
>&
result
,
double
nrms
,
int
per_pixel_check
=
0
)
{
{
int
error_count
=
0
;
int
error_count
=
0
;
float
max_diff
=
1e-6
;
float
max_diff
=
1e-5
;
double
square_difference
=
.0
;
double
mag1
=
.0
;
double
mag2
=
.0
;
for
(
int
i
=
0
;
i
<
ref
.
mData
.
size
();
++
i
)
for
(
int
i
=
0
;
i
<
ref
.
mData
.
size
();
++
i
)
{
{
float
diff
=
std
::
abs
(
double
(
ref
.
mData
[
i
])
-
double
(
result
.
mData
[
i
]));
double
ri
=
(
double
)
ref
.
mData
[
i
];
if
(
max_diff
<
diff
)
double
pi
=
(
double
)
result
.
mData
[
i
];
double
d
=
ri
-
pi
;
if
(
per_pixel_check
)
{
{
error_count
++
;
if
(
max_diff
<
std
::
abs
(
d
))
printf
(
"idx:%3d, ref:%f, res:%f (diff:%f)
\n
"
,
{
i
,
error_count
++
;
double
(
ref
.
mData
[
i
]),
printf
(
"idx:%3d, ref:%f, res:%f (diff:%f)
\n
"
,
double
(
result
.
mData
[
i
]),
i
,
diff
);
double
(
ref
.
mData
[
i
]),
double
(
result
.
mData
[
i
]),
d
);
}
}
}
square_difference
+=
d
*
d
;
if
(
std
::
abs
(
mag1
)
<
std
::
abs
(
ri
))
mag1
=
ri
;
if
(
std
::
abs
(
mag2
)
<
std
::
abs
(
pi
))
mag2
=
pi
;
}
}
return
error_count
==
0
;
double
mag
=
std
::
max
({
std
::
fabs
(
mag1
),
std
::
fabs
(
mag2
),
std
::
numeric_limits
<
double
>::
min
()});
double
computed_nrms
=
std
::
sqrt
(
square_difference
)
/
(
std
::
sqrt
(
ref
.
mData
.
size
())
*
mag
);
if
(
computed_nrms
>=
nrms
)
printf
(
"nrms:%lf, mag1:%lf, mag2:%lf, expected_nrms is %1f
\n
"
,
computed_nrms
,
mag1
,
mag2
,
nrms
);
return
computed_nrms
<
nrms
&&
error_count
==
0
;
}
}
float
calculate_gflops
()
{}
float
calculate_gflops
()
{}
...
@@ -171,20 +198,28 @@ int main(int argc, char* argv[])
...
@@ -171,20 +198,28 @@ int main(int argc, char* argv[])
<<
", Dilation(H, W):"
<<
conv_dilation_h
<<
", "
<<
conv_dilation_w
<<
", Dilation(H, W):"
<<
conv_dilation_h
<<
", "
<<
conv_dilation_w
<<
", Threads:"
<<
omp_get_max_threads
()
<<
std
::
endl
;
<<
", Threads:"
<<
omp_get_max_threads
()
<<
std
::
endl
;
int
per_pixel_check
=
0
;
switch
(
init_method
)
switch
(
init_method
)
{
{
case
0
:
break
;
case
0
:
in_n_c_hi_wi
.
GenerateTensorValue
(
GeneratorTensor_1
<
InDataType
>
{});
wei_k_c_y_x
.
GenerateTensorValue
(
GeneratorTensor_1
<
WeiDataType
>
{});
per_pixel_check
=
1
;
break
;
case
1
:
case
1
:
in_n_c_hi_wi
.
GenerateTensorValue
(
GeneratorTensor_2
<
InDataType
>
{
-
5
,
5
});
in_n_c_hi_wi
.
GenerateTensorValue
(
GeneratorTensor_2
<
InDataType
>
{
-
5
,
5
});
// in_n_c_hi_wi.GenerateTensorValue(GeneratorTensor_1<InDataType>{});
// in_n_c_hi_wi.GenerateTensorValue(GeneratorTensor_1<InDataType>{});
wei_k_c_y_x
.
GenerateTensorValue
(
GeneratorTensor_2
<
WeiDataType
>
{
-
5
,
5
});
wei_k_c_y_x
.
GenerateTensorValue
(
GeneratorTensor_2
<
WeiDataType
>
{
-
5
,
5
});
// wei_k_c_y_x.GenerateTensorValue(GeneratorTensor_1<WeiDataType>{});
// wei_k_c_y_x.GenerateTensorValue(GeneratorTensor_1<WeiDataType>{});
per_pixel_check
=
1
;
break
;
break
;
case
2
:
case
2
:
in_n_c_hi_wi
.
GenerateTensorValue
(
GeneratorTensor_
1
<
InDataType
>
{});
in_n_c_hi_wi
.
GenerateTensorValue
(
GeneratorTensor_
3
<
InDataType
>
{
0.0
,
1.0
});
wei_k_c_y_x
.
GenerateTensorValue
(
GeneratorTensor_
1
<
WeiDataType
>
{});
wei_k_c_y_x
.
GenerateTensorValue
(
GeneratorTensor_
3
<
WeiDataType
>
{
-
0.5
,
0.5
});
break
;
break
;
case
3
:
case
3
:
#define PACK_32(v24, v16, v8, v0) \
#define PACK_32(v24, v16, v8, v0) \
...
@@ -310,7 +345,10 @@ int main(int argc, char* argv[])
...
@@ -310,7 +345,10 @@ int main(int argc, char* argv[])
out_device_buf
.
FromDevice
(
out_n_k_ho_wo_device_result
.
mData
.
data
());
out_device_buf
.
FromDevice
(
out_n_k_ho_wo_device_result
.
mData
.
data
());
if
(
!
check_out
(
out_n_k_ho_wo_host_result
,
out_n_k_ho_wo_device_result
))
if
(
!
check_out
(
out_n_k_ho_wo_host_result
,
out_n_k_ho_wo_device_result
,
1e-6
,
per_pixel_check
))
{
{
std
::
cout
<<
"Fail Info: "
<<
conv_ptr
->
GetTypeString
()
<<
std
::
endl
;
std
::
cout
<<
"Fail Info: "
<<
conv_ptr
->
GetTypeString
()
<<
std
::
endl
;
success
=
false
;
success
=
false
;
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment