run_translation.py 29.7 KB
Newer Older
1
#!/usr/bin/env python
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
# coding=utf-8
# Copyright The HuggingFace Team and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Fine-tuning the library models for sequence to sequence.
"""
# You can also adapt this script on your own sequence to sequence task. Pointers for this are left as comments.

import logging
import os
import sys
from dataclasses import dataclass, field
from typing import Optional

27
import datasets
28
import evaluate
29
import numpy as np
30
from datasets import load_dataset
31
32
33
34
35
36
37
38

import transformers
from transformers import (
    AutoConfig,
    AutoModelForSeq2SeqLM,
    AutoTokenizer,
    DataCollatorForSeq2Seq,
    HfArgumentParser,
39
40
41
    M2M100Tokenizer,
    MBart50Tokenizer,
    MBart50TokenizerFast,
42
    MBartTokenizer,
43
    MBartTokenizerFast,
44
45
46
47
48
    Seq2SeqTrainer,
    Seq2SeqTrainingArguments,
    default_data_collator,
    set_seed,
)
49
from transformers.trainer_utils import get_last_checkpoint
50
from transformers.utils import check_min_version, send_example_telemetry
51
from transformers.utils.versions import require_version
52
53


54
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
Lysandre's avatar
Lysandre committed
55
check_min_version("4.44.0.dev0")
Sylvain Gugger's avatar
Sylvain Gugger committed
56

57
require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/translation/requirements.txt")
58

59
60
logger = logging.getLogger(__name__)

61
62
63
# A list of all multilingual tokenizer which require src_lang and tgt_lang attributes.
MULTILINGUAL_TOKENIZERS = [MBartTokenizer, MBartTokenizerFast, MBart50Tokenizer, MBart50TokenizerFast, M2M100Tokenizer]

64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91

@dataclass
class ModelArguments:
    """
    Arguments pertaining to which model/config/tokenizer we are going to fine-tune from.
    """

    model_name_or_path: str = field(
        metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"}
    )
    config_name: Optional[str] = field(
        default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"}
    )
    tokenizer_name: Optional[str] = field(
        default=None, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"}
    )
    cache_dir: Optional[str] = field(
        default=None,
        metadata={"help": "Where to store the pretrained models downloaded from huggingface.co"},
    )
    use_fast_tokenizer: bool = field(
        default=True,
        metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."},
    )
    model_revision: str = field(
        default="main",
        metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."},
    )
92
93
    token: str = field(
        default=None,
94
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
95
            "help": (
96
97
                "The token to use as HTTP bearer authorization for remote files. If not specified, will use the token "
                "generated when running `huggingface-cli login` (stored in `~/.huggingface`)."
Sylvain Gugger's avatar
Sylvain Gugger committed
98
            )
99
100
        },
    )
101
102
103
104
    trust_remote_code: bool = field(
        default=False,
        metadata={
            "help": (
105
106
107
                "Whether to trust the execution of code from datasets/models defined on the Hub."
                " This option should only be set to `True` for repositories you trust and in which you have read the"
                " code, as it will execute code present on the Hub on your local machine."
108
109
110
            )
        },
    )
111
112
113
114
115
116
117
118


@dataclass
class DataTrainingArguments:
    """
    Arguments pertaining to what data we are going to input our model for training and eval.
    """

119
120
121
    source_lang: str = field(default=None, metadata={"help": "Source language id for translation."})
    target_lang: str = field(default=None, metadata={"help": "Target language id for translation."})

122
123
124
125
126
127
    dataset_name: Optional[str] = field(
        default=None, metadata={"help": "The name of the dataset to use (via the datasets library)."}
    )
    dataset_config_name: Optional[str] = field(
        default=None, metadata={"help": "The configuration name of the dataset to use (via the datasets library)."}
    )
128
    train_file: Optional[str] = field(default=None, metadata={"help": "The input training data file (a jsonlines)."})
129
130
    validation_file: Optional[str] = field(
        default=None,
131
        metadata={
132
            "help": "An optional input evaluation data file to evaluate the metrics (sacrebleu) on a jsonlines file."
133
134
135
136
        },
    )
    test_file: Optional[str] = field(
        default=None,
137
        metadata={"help": "An optional input test data file to evaluate the metrics (sacrebleu) on a jsonlines file."},
138
139
140
141
142
143
144
145
146
147
148
    )
    overwrite_cache: bool = field(
        default=False, metadata={"help": "Overwrite the cached training and evaluation sets"}
    )
    preprocessing_num_workers: Optional[int] = field(
        default=None,
        metadata={"help": "The number of processes to use for the preprocessing."},
    )
    max_source_length: Optional[int] = field(
        default=1024,
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
149
150
151
152
            "help": (
                "The maximum total input sequence length after tokenization. Sequences longer "
                "than this will be truncated, sequences shorter will be padded."
            )
153
154
155
156
157
        },
    )
    max_target_length: Optional[int] = field(
        default=128,
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
158
159
160
161
            "help": (
                "The maximum total sequence length for target text after tokenization. Sequences longer "
                "than this will be truncated, sequences shorter will be padded."
            )
162
163
164
        },
    )
    val_max_target_length: Optional[int] = field(
165
        default=None,
166
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
167
168
            "help": (
                "The maximum total sequence length for validation target text after tokenization. Sequences longer "
169
                "than this will be truncated, sequences shorter will be padded. Will default to `max_target_length`. "
Sylvain Gugger's avatar
Sylvain Gugger committed
170
171
172
                "This argument is also used to override the ``max_length`` param of ``model.generate``, which is used "
                "during ``evaluate`` and ``predict``."
            )
173
174
175
176
177
        },
    )
    pad_to_max_length: bool = field(
        default=False,
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
178
179
180
181
182
            "help": (
                "Whether to pad all samples to model maximum sentence length. "
                "If False, will pad the samples dynamically when batching to the maximum length in the batch. More "
                "efficient on GPU but very bad for TPU."
            )
183
184
185
186
187
        },
    )
    max_train_samples: Optional[int] = field(
        default=None,
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
188
189
190
191
            "help": (
                "For debugging purposes or quicker training, truncate the number of training examples to this "
                "value if set."
            )
192
193
        },
    )
194
    max_eval_samples: Optional[int] = field(
195
196
        default=None,
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
197
198
199
200
            "help": (
                "For debugging purposes or quicker training, truncate the number of evaluation examples to this "
                "value if set."
            )
201
202
        },
    )
203
    max_predict_samples: Optional[int] = field(
204
205
        default=None,
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
206
207
208
209
            "help": (
                "For debugging purposes or quicker training, truncate the number of prediction examples to this "
                "value if set."
            )
210
211
212
        },
    )
    num_beams: Optional[int] = field(
213
        default=1,
214
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
215
216
217
218
            "help": (
                "Number of beams to use for evaluation. This argument will be passed to ``model.generate``, "
                "which is used during ``evaluate`` and ``predict``."
            )
219
220
        },
    )
221
222
223
224
225
226
    ignore_pad_token_for_loss: bool = field(
        default=True,
        metadata={
            "help": "Whether to ignore the tokens corresponding to padded labels in the loss computation or not."
        },
    )
227
228
229
    source_prefix: Optional[str] = field(
        default=None, metadata={"help": "A prefix to add before every source text (useful for T5 models)."}
    )
230
231
232
    forced_bos_token: Optional[str] = field(
        default=None,
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
233
234
235
236
237
            "help": (
                "The token to force as the first generated token after the :obj:`decoder_start_token_id`.Useful for"
                " multilingual models like :doc:`mBART <../model_doc/mbart>` where the first generated token needs to"
                " be the target language token.(Usually it is the target language token)"
            )
238
239
        },
    )
240
241
242
243

    def __post_init__(self):
        if self.dataset_name is None and self.train_file is None and self.validation_file is None:
            raise ValueError("Need either a dataset name or a training/validation file.")
244
245
246
        elif self.source_lang is None or self.target_lang is None:
            raise ValueError("Need to specify the source language and the target language.")

247
248
249
250
        # accepting both json and jsonl file extensions, as
        # many jsonlines files actually have a .json extension
        valid_extensions = ["json", "jsonl"]

251
252
        if self.train_file is not None:
            extension = self.train_file.split(".")[-1]
253
            assert extension in valid_extensions, "`train_file` should be a jsonlines file."
254
255
        if self.validation_file is not None:
            extension = self.validation_file.split(".")[-1]
256
            assert extension in valid_extensions, "`validation_file` should be a jsonlines file."
257
258
        if self.val_max_target_length is None:
            self.val_max_target_length = self.max_target_length
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273


def main():
    # See all possible arguments in src/transformers/training_args.py
    # or by passing the --help flag to this script.
    # We now keep distinct sets of args, for a cleaner separation of concerns.

    parser = HfArgumentParser((ModelArguments, DataTrainingArguments, Seq2SeqTrainingArguments))
    if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
        # If we pass only one argument to the script and it's the path to a json file,
        # let's parse it to get our arguments.
        model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1]))
    else:
        model_args, data_args, training_args = parser.parse_args_into_dataclasses()

274
275
276
277
    # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The
    # information sent is the one passed as arguments along with your Python/PyTorch versions.
    send_example_telemetry("run_translation", model_args, data_args)

278
279
    # Setup logging
    logging.basicConfig(
280
        format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
281
282
283
        datefmt="%m/%d/%Y %H:%M:%S",
        handlers=[logging.StreamHandler(sys.stdout)],
    )
284

285
286
287
288
    if training_args.should_log:
        # The default of training_args.log_level is passive, so we set log level at info here to have that default.
        transformers.utils.logging.set_verbosity_info()

289
    log_level = training_args.get_process_log_level()
290
291
292
    logger.setLevel(log_level)
    datasets.utils.logging.set_verbosity(log_level)
    transformers.utils.logging.set_verbosity(log_level)
293
294
    transformers.utils.logging.enable_default_handler()
    transformers.utils.logging.enable_explicit_format()
295
296
297

    # Log on each process the small summary:
    logger.warning(
298
        f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}, "
299
        + f"distributed training: {training_args.parallel_mode.value == 'distributed'}, 16-bits training: {training_args.fp16}"
300
301
302
    )
    logger.info(f"Training/evaluation parameters {training_args}")

303
    if data_args.source_prefix is None and model_args.model_name_or_path in [
304
305
306
307
308
        "google-t5/t5-small",
        "google-t5/t5-base",
        "google-t5/t5-large",
        "google-t5/t5-3b",
        "google-t5/t5-11b",
309
310
311
312
313
314
    ]:
        logger.warning(
            "You're running a t5 model but didn't provide a source prefix, which is expected, e.g. with "
            "`--source_prefix 'translate English to German: ' `"
        )

315
316
317
318
319
320
321
322
323
    # Detecting last checkpoint.
    last_checkpoint = None
    if os.path.isdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir:
        last_checkpoint = get_last_checkpoint(training_args.output_dir)
        if last_checkpoint is None and len(os.listdir(training_args.output_dir)) > 0:
            raise ValueError(
                f"Output directory ({training_args.output_dir}) already exists and is not empty. "
                "Use --overwrite_output_dir to overcome."
            )
324
        elif last_checkpoint is not None and training_args.resume_from_checkpoint is None:
325
326
327
328
            logger.info(
                f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change "
                "the `--output_dir` or add `--overwrite_output_dir` to train from scratch."
            )
329
330
331
332

    # Set seed before initializing model.
    set_seed(training_args.seed)

333
    # Get the datasets: you can either provide your own JSON training and evaluation files (see below)
334
335
336
337
338
339
340
341
342
343
    # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/
    # (the dataset will be downloaded automatically from the datasets Hub).
    #
    # For translation, only JSON files are supported, with one field named "translation" containing two keys for the
    # source and target languages (unless you adapt what follows).
    #
    # In distributed training, the load_dataset function guarantee that only one local process can concurrently
    # download the dataset.
    if data_args.dataset_name is not None:
        # Downloading and loading a dataset from the hub.
344
        raw_datasets = load_dataset(
345
346
347
            data_args.dataset_name,
            data_args.dataset_config_name,
            cache_dir=model_args.cache_dir,
348
            token=model_args.token,
349
            trust_remote_code=model_args.trust_remote_code,
350
        )
351
352
353
354
355
356
357
358
    else:
        data_files = {}
        if data_args.train_file is not None:
            data_files["train"] = data_args.train_file
            extension = data_args.train_file.split(".")[-1]
        if data_args.validation_file is not None:
            data_files["validation"] = data_args.validation_file
            extension = data_args.validation_file.split(".")[-1]
359
360
361
        if data_args.test_file is not None:
            data_files["test"] = data_args.test_file
            extension = data_args.test_file.split(".")[-1]
362
363
364
365
        if extension == "jsonl":
            builder_name = "json"  # the "json" builder reads both .json and .jsonl files
        else:
            builder_name = extension  # e.g. "parquet"
366
        raw_datasets = load_dataset(
367
            builder_name,
368
369
            data_files=data_files,
            cache_dir=model_args.cache_dir,
370
            token=model_args.token,
371
        )
372
    # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at
373
    # https://huggingface.co/docs/datasets/loading.
374
375
376
377
378
379
380
381
382
383

    # Load pretrained model and tokenizer
    #
    # Distributed training:
    # The .from_pretrained methods guarantee that only one local process can concurrently
    # download model & vocab.
    config = AutoConfig.from_pretrained(
        model_args.config_name if model_args.config_name else model_args.model_name_or_path,
        cache_dir=model_args.cache_dir,
        revision=model_args.model_revision,
384
        token=model_args.token,
385
        trust_remote_code=model_args.trust_remote_code,
386
387
388
389
390
391
    )
    tokenizer = AutoTokenizer.from_pretrained(
        model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path,
        cache_dir=model_args.cache_dir,
        use_fast=model_args.use_fast_tokenizer,
        revision=model_args.model_revision,
392
        token=model_args.token,
393
        trust_remote_code=model_args.trust_remote_code,
394
395
396
397
398
399
400
    )
    model = AutoModelForSeq2SeqLM.from_pretrained(
        model_args.model_name_or_path,
        from_tf=bool(".ckpt" in model_args.model_name_or_path),
        config=config,
        cache_dir=model_args.cache_dir,
        revision=model_args.model_revision,
401
        token=model_args.token,
402
        trust_remote_code=model_args.trust_remote_code,
403
404
    )

405
406
407
408
409
    # We resize the embeddings only when necessary to avoid index errors. If you are creating a model from scratch
    # on a small vocab and want a smaller embedding size, remove this test.
    embedding_size = model.get_input_embeddings().weight.shape[0]
    if len(tokenizer) > embedding_size:
        model.resize_token_embeddings(len(tokenizer))
Suraj Patil's avatar
Suraj Patil committed
410

411
    # Set decoder_start_token_id
412
413
414
415
416
417
    if model.config.decoder_start_token_id is None and isinstance(tokenizer, (MBartTokenizer, MBartTokenizerFast)):
        if isinstance(tokenizer, MBartTokenizer):
            model.config.decoder_start_token_id = tokenizer.lang_code_to_id[data_args.target_lang]
        else:
            model.config.decoder_start_token_id = tokenizer.convert_tokens_to_ids(data_args.target_lang)

418
419
420
    if model.config.decoder_start_token_id is None:
        raise ValueError("Make sure that `config.decoder_start_token_id` is correctly defined")

421
    prefix = data_args.source_prefix if data_args.source_prefix is not None else ""
422

423
424
425
    # Preprocessing the datasets.
    # We need to tokenize inputs and targets.
    if training_args.do_train:
426
        column_names = raw_datasets["train"].column_names
427
    elif training_args.do_eval:
428
        column_names = raw_datasets["validation"].column_names
429
    elif training_args.do_predict:
430
        column_names = raw_datasets["test"].column_names
431
432
433
    else:
        logger.info("There is nothing to do. Please pass `do_train`, `do_eval` and/or `do_predict`.")
        return
434
435
436

    # For translation we set the codes of our source and target languages (only useful for mBART, the others will
    # ignore those attributes).
437
438
439
440
441
442
443
444
445
446
447
448
449
450
    if isinstance(tokenizer, tuple(MULTILINGUAL_TOKENIZERS)):
        assert data_args.target_lang is not None and data_args.source_lang is not None, (
            f"{tokenizer.__class__.__name__} is a multilingual tokenizer which requires --source_lang and "
            "--target_lang arguments."
        )

        tokenizer.src_lang = data_args.source_lang
        tokenizer.tgt_lang = data_args.target_lang

        # For multilingual translation models like mBART-50 and M2M100 we need to force the target language token
        # as the first generated token. We ask the user to explicitly provide this as --forced_bos_token argument.
        forced_bos_token_id = (
            tokenizer.lang_code_to_id[data_args.forced_bos_token] if data_args.forced_bos_token is not None else None
        )
451
        model.config.forced_bos_token_id = forced_bos_token_id
452

453
454
455
    # Get the language codes for input/target.
    source_lang = data_args.source_lang.split("_")[0]
    target_lang = data_args.target_lang.split("_")[0]
456

457
458
459
460
461
462
463
464
465
466
467
468
469
    # Check the whether the source target length fits in the model, if it has absolute positional embeddings
    if (
        hasattr(model.config, "max_position_embeddings")
        and not hasattr(model.config, "relative_attention_max_distance")
        and model.config.max_position_embeddings < data_args.max_source_length
    ):
        raise ValueError(
            f"`--max_source_length` is set to {data_args.max_source_length}, but the model only has"
            f" {model.config.max_position_embeddings} position encodings. Consider either reducing"
            f" `--max_source_length` to {model.config.max_position_embeddings} or using a model with larger position "
            "embeddings"
        )

470
471
472
473
    # Temporarily set max_target_length for training.
    max_target_length = data_args.max_target_length
    padding = "max_length" if data_args.pad_to_max_length else False

474
    if training_args.label_smoothing_factor > 0 and not hasattr(model, "prepare_decoder_input_ids_from_labels"):
475
        logger.warning(
476
            "label_smoothing is enabled but the `prepare_decoder_input_ids_from_labels` method is not defined for "
477
478
479
            f"`{model.__class__.__name__}`. This will lead to loss being calculated twice and will take up more memory"
        )

480
    def preprocess_function(examples):
481
482
        inputs = [ex[source_lang] for ex in examples["translation"]]
        targets = [ex[target_lang] for ex in examples["translation"]]
483
        inputs = [prefix + inp for inp in inputs]
484
485
        model_inputs = tokenizer(inputs, max_length=data_args.max_source_length, padding=padding, truncation=True)

486
487
        # Tokenize targets with the `text_target` keyword argument
        labels = tokenizer(text_target=targets, max_length=max_target_length, padding=padding, truncation=True)
488
489
490
491
492
493
494
495
496
497
498
499

        # If we are padding here, replace all tokenizer.pad_token_id in the labels by -100 when we want to ignore
        # padding in the loss.
        if padding == "max_length" and data_args.ignore_pad_token_for_loss:
            labels["input_ids"] = [
                [(l if l != tokenizer.pad_token_id else -100) for l in label] for label in labels["input_ids"]
            ]

        model_inputs["labels"] = labels["input_ids"]
        return model_inputs

    if training_args.do_train:
500
        if "train" not in raw_datasets:
501
            raise ValueError("--do_train requires a train dataset")
502
        train_dataset = raw_datasets["train"]
503
        if data_args.max_train_samples is not None:
504
505
            max_train_samples = min(len(train_dataset), data_args.max_train_samples)
            train_dataset = train_dataset.select(range(max_train_samples))
506
507
508
509
510
511
512
513
514
        with training_args.main_process_first(desc="train dataset map pre-processing"):
            train_dataset = train_dataset.map(
                preprocess_function,
                batched=True,
                num_proc=data_args.preprocessing_num_workers,
                remove_columns=column_names,
                load_from_cache_file=not data_args.overwrite_cache,
                desc="Running tokenizer on train dataset",
            )
515
516
517

    if training_args.do_eval:
        max_target_length = data_args.val_max_target_length
518
        if "validation" not in raw_datasets:
519
            raise ValueError("--do_eval requires a validation dataset")
520
        eval_dataset = raw_datasets["validation"]
521
        if data_args.max_eval_samples is not None:
522
523
            max_eval_samples = min(len(eval_dataset), data_args.max_eval_samples)
            eval_dataset = eval_dataset.select(range(max_eval_samples))
524
525
526
527
528
529
530
531
532
        with training_args.main_process_first(desc="validation dataset map pre-processing"):
            eval_dataset = eval_dataset.map(
                preprocess_function,
                batched=True,
                num_proc=data_args.preprocessing_num_workers,
                remove_columns=column_names,
                load_from_cache_file=not data_args.overwrite_cache,
                desc="Running tokenizer on validation dataset",
            )
533

534
535
    if training_args.do_predict:
        max_target_length = data_args.val_max_target_length
536
        if "test" not in raw_datasets:
537
            raise ValueError("--do_predict requires a test dataset")
538
        predict_dataset = raw_datasets["test"]
539
        if data_args.max_predict_samples is not None:
540
541
            max_predict_samples = min(len(predict_dataset), data_args.max_predict_samples)
            predict_dataset = predict_dataset.select(range(max_predict_samples))
542
543
544
545
546
547
548
549
550
        with training_args.main_process_first(desc="prediction dataset map pre-processing"):
            predict_dataset = predict_dataset.map(
                preprocess_function,
                batched=True,
                num_proc=data_args.preprocessing_num_workers,
                remove_columns=column_names,
                load_from_cache_file=not data_args.overwrite_cache,
                desc="Running tokenizer on prediction dataset",
            )
551

552
553
554
555
556
    # Data collator
    label_pad_token_id = -100 if data_args.ignore_pad_token_for_loss else tokenizer.pad_token_id
    if data_args.pad_to_max_length:
        data_collator = default_data_collator
    else:
557
558
        data_collator = DataCollatorForSeq2Seq(
            tokenizer,
559
            model=model,
560
561
562
            label_pad_token_id=label_pad_token_id,
            pad_to_multiple_of=8 if training_args.fp16 else None,
        )
563
564

    # Metric
565
    metric = evaluate.load("sacrebleu", cache_dir=model_args.cache_dir)
566

567
568
    def postprocess_text(preds, labels):
        preds = [pred.strip() for pred in preds]
569
        labels = [[label.strip()] for label in labels]
570
571
572

        return preds, labels

573
574
575
576
    def compute_metrics(eval_preds):
        preds, labels = eval_preds
        if isinstance(preds, tuple):
            preds = preds[0]
577
578
        # Replace -100s used for padding as we can't decode them
        preds = np.where(preds != -100, preds, tokenizer.pad_token_id)
579
        decoded_preds = tokenizer.batch_decode(preds, skip_special_tokens=True)
580
        labels = np.where(labels != -100, labels, tokenizer.pad_token_id)
581
582
583
        decoded_labels = tokenizer.batch_decode(labels, skip_special_tokens=True)

        # Some simple post-processing
584
        decoded_preds, decoded_labels = postprocess_text(decoded_preds, decoded_labels)
585

586
587
        result = metric.compute(predictions=decoded_preds, references=decoded_labels)
        result = {"bleu": result["score"]}
588
589
590

        prediction_lens = [np.count_nonzero(pred != tokenizer.pad_token_id) for pred in preds]
        result["gen_len"] = np.mean(prediction_lens)
591
        result = {k: round(v, 4) for k, v in result.items()}
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
        return result

    # Initialize our Trainer
    trainer = Seq2SeqTrainer(
        model=model,
        args=training_args,
        train_dataset=train_dataset if training_args.do_train else None,
        eval_dataset=eval_dataset if training_args.do_eval else None,
        tokenizer=tokenizer,
        data_collator=data_collator,
        compute_metrics=compute_metrics if training_args.predict_with_generate else None,
    )

    # Training
    if training_args.do_train:
607
608
609
610
        checkpoint = None
        if training_args.resume_from_checkpoint is not None:
            checkpoint = training_args.resume_from_checkpoint
        elif last_checkpoint is not None:
611
612
            checkpoint = last_checkpoint
        train_result = trainer.train(resume_from_checkpoint=checkpoint)
613
614
        trainer.save_model()  # Saves the tokenizer too for easy upload

615
616
617
618
619
        metrics = train_result.metrics
        max_train_samples = (
            data_args.max_train_samples if data_args.max_train_samples is not None else len(train_dataset)
        )
        metrics["train_samples"] = min(max_train_samples, len(train_dataset))
620

621
622
623
        trainer.log_metrics("train", metrics)
        trainer.save_metrics("train", metrics)
        trainer.save_state()
624
625

    # Evaluation
626
    results = {}
627
628
629
630
631
632
    max_length = (
        training_args.generation_max_length
        if training_args.generation_max_length is not None
        else data_args.val_max_target_length
    )
    num_beams = data_args.num_beams if data_args.num_beams is not None else training_args.generation_num_beams
633
634
635
    if training_args.do_eval:
        logger.info("*** Evaluate ***")

636
        metrics = trainer.evaluate(max_length=max_length, num_beams=num_beams, metric_key_prefix="eval")
637
638
        max_eval_samples = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(eval_dataset)
        metrics["eval_samples"] = min(max_eval_samples, len(eval_dataset))
639

640
641
        trainer.log_metrics("eval", metrics)
        trainer.save_metrics("eval", metrics)
642

643
    if training_args.do_predict:
644
        logger.info("*** Predict ***")
645

646
        predict_results = trainer.predict(
647
            predict_dataset, metric_key_prefix="predict", max_length=max_length, num_beams=num_beams
648
        )
649
650
651
652
653
        metrics = predict_results.metrics
        max_predict_samples = (
            data_args.max_predict_samples if data_args.max_predict_samples is not None else len(predict_dataset)
        )
        metrics["predict_samples"] = min(max_predict_samples, len(predict_dataset))
654

655
656
        trainer.log_metrics("predict", metrics)
        trainer.save_metrics("predict", metrics)
657

658
        if trainer.is_world_process_zero():
659
            if training_args.predict_with_generate:
660
661
                predictions = predict_results.predictions
                predictions = np.where(predictions != -100, predictions, tokenizer.pad_token_id)
662
                predictions = tokenizer.batch_decode(
663
                    predictions, skip_special_tokens=True, clean_up_tokenization_spaces=True
664
                )
665
666
                predictions = [pred.strip() for pred in predictions]
                output_prediction_file = os.path.join(training_args.output_dir, "generated_predictions.txt")
667
                with open(output_prediction_file, "w", encoding="utf-8") as writer:
668
                    writer.write("\n".join(predictions))
669

670
671
672
673
674
675
676
677
    kwargs = {"finetuned_from": model_args.model_name_or_path, "tasks": "translation"}
    if data_args.dataset_name is not None:
        kwargs["dataset_tags"] = data_args.dataset_name
        if data_args.dataset_config_name is not None:
            kwargs["dataset_args"] = data_args.dataset_config_name
            kwargs["dataset"] = f"{data_args.dataset_name} {data_args.dataset_config_name}"
        else:
            kwargs["dataset"] = data_args.dataset_name
Sylvain Gugger's avatar
Sylvain Gugger committed
678

679
680
681
682
683
    languages = [l for l in [data_args.source_lang, data_args.target_lang] if l is not None]
    if len(languages) > 0:
        kwargs["language"] = languages

    if training_args.push_to_hub:
Sylvain Gugger's avatar
Sylvain Gugger committed
684
        trainer.push_to_hub(**kwargs)
685
686
    else:
        trainer.create_model_card(**kwargs)
Sylvain Gugger's avatar
Sylvain Gugger committed
687

688
689
    return results

690
691
692
693
694
695
696
697

def _mp_fn(index):
    # For xla_spawn (TPUs)
    main()


if __name__ == "__main__":
    main()