run_translation.py 27.3 KB
Newer Older
1
#!/usr/bin/env python
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
# coding=utf-8
# Copyright The HuggingFace Team and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Fine-tuning the library models for sequence to sequence.
"""
# You can also adapt this script on your own sequence to sequence task. Pointers for this are left as comments.

import logging
import os
import sys
from dataclasses import dataclass, field
from typing import Optional

27
import datasets
28
29
30
31
32
33
34
35
36
37
import numpy as np
from datasets import load_dataset, load_metric

import transformers
from transformers import (
    AutoConfig,
    AutoModelForSeq2SeqLM,
    AutoTokenizer,
    DataCollatorForSeq2Seq,
    HfArgumentParser,
38
39
40
    M2M100Tokenizer,
    MBart50Tokenizer,
    MBart50TokenizerFast,
41
    MBartTokenizer,
42
    MBartTokenizerFast,
43
44
45
46
47
    Seq2SeqTrainer,
    Seq2SeqTrainingArguments,
    default_data_collator,
    set_seed,
)
48
from transformers.trainer_utils import get_last_checkpoint
49
from transformers.utils import check_min_version
50
from transformers.utils.versions import require_version
51
52


53
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
Lysandre Debut's avatar
Lysandre Debut committed
54
check_min_version("4.20.0.dev0")
Sylvain Gugger's avatar
Sylvain Gugger committed
55

56
require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/translation/requirements.txt")
57

58
59
logger = logging.getLogger(__name__)

60
61
62
# A list of all multilingual tokenizer which require src_lang and tgt_lang attributes.
MULTILINGUAL_TOKENIZERS = [MBartTokenizer, MBartTokenizerFast, MBart50Tokenizer, MBart50TokenizerFast, M2M100Tokenizer]

63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93

@dataclass
class ModelArguments:
    """
    Arguments pertaining to which model/config/tokenizer we are going to fine-tune from.
    """

    model_name_or_path: str = field(
        metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"}
    )
    config_name: Optional[str] = field(
        default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"}
    )
    tokenizer_name: Optional[str] = field(
        default=None, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"}
    )
    cache_dir: Optional[str] = field(
        default=None,
        metadata={"help": "Where to store the pretrained models downloaded from huggingface.co"},
    )
    use_fast_tokenizer: bool = field(
        default=True,
        metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."},
    )
    model_revision: str = field(
        default="main",
        metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."},
    )
    use_auth_token: bool = field(
        default=False,
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
94
95
96
97
            "help": (
                "Will use the token generated when running `transformers-cli login` (necessary to use this script "
                "with private models)."
            )
98
99
100
101
102
103
104
105
106
107
        },
    )


@dataclass
class DataTrainingArguments:
    """
    Arguments pertaining to what data we are going to input our model for training and eval.
    """

108
109
110
    source_lang: str = field(default=None, metadata={"help": "Source language id for translation."})
    target_lang: str = field(default=None, metadata={"help": "Target language id for translation."})

111
112
113
114
115
116
    dataset_name: Optional[str] = field(
        default=None, metadata={"help": "The name of the dataset to use (via the datasets library)."}
    )
    dataset_config_name: Optional[str] = field(
        default=None, metadata={"help": "The configuration name of the dataset to use (via the datasets library)."}
    )
117
    train_file: Optional[str] = field(default=None, metadata={"help": "The input training data file (a jsonlines)."})
118
119
    validation_file: Optional[str] = field(
        default=None,
120
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
121
            "help": "An optional input evaluation data file to evaluate the metrics (sacreblue) on a jsonlines file."
122
123
124
125
        },
    )
    test_file: Optional[str] = field(
        default=None,
Sylvain Gugger's avatar
Sylvain Gugger committed
126
        metadata={"help": "An optional input test data file to evaluate the metrics (sacreblue) on a jsonlines file."},
127
128
129
130
131
132
133
134
135
136
137
    )
    overwrite_cache: bool = field(
        default=False, metadata={"help": "Overwrite the cached training and evaluation sets"}
    )
    preprocessing_num_workers: Optional[int] = field(
        default=None,
        metadata={"help": "The number of processes to use for the preprocessing."},
    )
    max_source_length: Optional[int] = field(
        default=1024,
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
138
139
140
141
            "help": (
                "The maximum total input sequence length after tokenization. Sequences longer "
                "than this will be truncated, sequences shorter will be padded."
            )
142
143
144
145
146
        },
    )
    max_target_length: Optional[int] = field(
        default=128,
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
147
148
149
150
            "help": (
                "The maximum total sequence length for target text after tokenization. Sequences longer "
                "than this will be truncated, sequences shorter will be padded."
            )
151
152
153
        },
    )
    val_max_target_length: Optional[int] = field(
154
        default=None,
155
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
156
157
158
159
160
161
            "help": (
                "The maximum total sequence length for validation target text after tokenization. Sequences longer "
                "than this will be truncated, sequences shorter will be padded. Will default to `max_target_length`."
                "This argument is also used to override the ``max_length`` param of ``model.generate``, which is used "
                "during ``evaluate`` and ``predict``."
            )
162
163
164
165
166
        },
    )
    pad_to_max_length: bool = field(
        default=False,
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
167
168
169
170
171
            "help": (
                "Whether to pad all samples to model maximum sentence length. "
                "If False, will pad the samples dynamically when batching to the maximum length in the batch. More "
                "efficient on GPU but very bad for TPU."
            )
172
173
174
175
176
        },
    )
    max_train_samples: Optional[int] = field(
        default=None,
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
177
178
179
180
            "help": (
                "For debugging purposes or quicker training, truncate the number of training examples to this "
                "value if set."
            )
181
182
        },
    )
183
    max_eval_samples: Optional[int] = field(
184
185
        default=None,
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
186
187
188
189
            "help": (
                "For debugging purposes or quicker training, truncate the number of evaluation examples to this "
                "value if set."
            )
190
191
        },
    )
192
    max_predict_samples: Optional[int] = field(
193
194
        default=None,
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
195
196
197
198
            "help": (
                "For debugging purposes or quicker training, truncate the number of prediction examples to this "
                "value if set."
            )
199
200
201
202
203
        },
    )
    num_beams: Optional[int] = field(
        default=None,
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
204
205
206
207
            "help": (
                "Number of beams to use for evaluation. This argument will be passed to ``model.generate``, "
                "which is used during ``evaluate`` and ``predict``."
            )
208
209
        },
    )
210
211
212
213
214
215
    ignore_pad_token_for_loss: bool = field(
        default=True,
        metadata={
            "help": "Whether to ignore the tokens corresponding to padded labels in the loss computation or not."
        },
    )
216
217
218
    source_prefix: Optional[str] = field(
        default=None, metadata={"help": "A prefix to add before every source text (useful for T5 models)."}
    )
219
220
221
    forced_bos_token: Optional[str] = field(
        default=None,
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
222
223
224
225
226
            "help": (
                "The token to force as the first generated token after the :obj:`decoder_start_token_id`.Useful for"
                " multilingual models like :doc:`mBART <../model_doc/mbart>` where the first generated token needs to"
                " be the target language token.(Usually it is the target language token)"
            )
227
228
        },
    )
229
230
231
232

    def __post_init__(self):
        if self.dataset_name is None and self.train_file is None and self.validation_file is None:
            raise ValueError("Need either a dataset name or a training/validation file.")
233
234
235
        elif self.source_lang is None or self.target_lang is None:
            raise ValueError("Need to specify the source language and the target language.")

236
237
238
239
        # accepting both json and jsonl file extensions, as
        # many jsonlines files actually have a .json extension
        valid_extensions = ["json", "jsonl"]

240
241
        if self.train_file is not None:
            extension = self.train_file.split(".")[-1]
242
            assert extension in valid_extensions, "`train_file` should be a jsonlines file."
243
244
        if self.validation_file is not None:
            extension = self.validation_file.split(".")[-1]
245
            assert extension in valid_extensions, "`validation_file` should be a jsonlines file."
246
247
        if self.val_max_target_length is None:
            self.val_max_target_length = self.max_target_length
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262


def main():
    # See all possible arguments in src/transformers/training_args.py
    # or by passing the --help flag to this script.
    # We now keep distinct sets of args, for a cleaner separation of concerns.

    parser = HfArgumentParser((ModelArguments, DataTrainingArguments, Seq2SeqTrainingArguments))
    if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
        # If we pass only one argument to the script and it's the path to a json file,
        # let's parse it to get our arguments.
        model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1]))
    else:
        model_args, data_args, training_args = parser.parse_args_into_dataclasses()

263
264
    # Setup logging
    logging.basicConfig(
265
        format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
266
267
268
        datefmt="%m/%d/%Y %H:%M:%S",
        handlers=[logging.StreamHandler(sys.stdout)],
    )
269

270
    log_level = training_args.get_process_log_level()
271
272
273
    logger.setLevel(log_level)
    datasets.utils.logging.set_verbosity(log_level)
    transformers.utils.logging.set_verbosity(log_level)
274
275
    transformers.utils.logging.enable_default_handler()
    transformers.utils.logging.enable_explicit_format()
276
277
278
279
280
281
282
283

    # Log on each process the small summary:
    logger.warning(
        f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}"
        + f"distributed training: {bool(training_args.local_rank != -1)}, 16-bits training: {training_args.fp16}"
    )
    logger.info(f"Training/evaluation parameters {training_args}")

284
285
286
287
288
289
290
291
292
293
294
295
    if data_args.source_prefix is None and model_args.model_name_or_path in [
        "t5-small",
        "t5-base",
        "t5-large",
        "t5-3b",
        "t5-11b",
    ]:
        logger.warning(
            "You're running a t5 model but didn't provide a source prefix, which is expected, e.g. with "
            "`--source_prefix 'translate English to German: ' `"
        )

296
297
298
299
300
301
302
303
304
    # Detecting last checkpoint.
    last_checkpoint = None
    if os.path.isdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir:
        last_checkpoint = get_last_checkpoint(training_args.output_dir)
        if last_checkpoint is None and len(os.listdir(training_args.output_dir)) > 0:
            raise ValueError(
                f"Output directory ({training_args.output_dir}) already exists and is not empty. "
                "Use --overwrite_output_dir to overcome."
            )
305
        elif last_checkpoint is not None and training_args.resume_from_checkpoint is None:
306
307
308
309
            logger.info(
                f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change "
                "the `--output_dir` or add `--overwrite_output_dir` to train from scratch."
            )
310
311
312
313

    # Set seed before initializing model.
    set_seed(training_args.seed)

314
    # Get the datasets: you can either provide your own JSON training and evaluation files (see below)
315
316
317
318
319
320
321
322
323
324
    # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/
    # (the dataset will be downloaded automatically from the datasets Hub).
    #
    # For translation, only JSON files are supported, with one field named "translation" containing two keys for the
    # source and target languages (unless you adapt what follows).
    #
    # In distributed training, the load_dataset function guarantee that only one local process can concurrently
    # download the dataset.
    if data_args.dataset_name is not None:
        # Downloading and loading a dataset from the hub.
325
        raw_datasets = load_dataset(
326
327
328
329
            data_args.dataset_name,
            data_args.dataset_config_name,
            cache_dir=model_args.cache_dir,
            use_auth_token=True if model_args.use_auth_token else None,
330
        )
331
332
333
334
335
336
337
338
    else:
        data_files = {}
        if data_args.train_file is not None:
            data_files["train"] = data_args.train_file
            extension = data_args.train_file.split(".")[-1]
        if data_args.validation_file is not None:
            data_files["validation"] = data_args.validation_file
            extension = data_args.validation_file.split(".")[-1]
339
340
341
        if data_args.test_file is not None:
            data_files["test"] = data_args.test_file
            extension = data_args.test_file.split(".")[-1]
342
343
344
345
346
347
        raw_datasets = load_dataset(
            extension,
            data_files=data_files,
            cache_dir=model_args.cache_dir,
            use_auth_token=True if model_args.use_auth_token else None,
        )
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
    # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at
    # https://huggingface.co/docs/datasets/loading_datasets.html.

    # Load pretrained model and tokenizer
    #
    # Distributed training:
    # The .from_pretrained methods guarantee that only one local process can concurrently
    # download model & vocab.
    config = AutoConfig.from_pretrained(
        model_args.config_name if model_args.config_name else model_args.model_name_or_path,
        cache_dir=model_args.cache_dir,
        revision=model_args.model_revision,
        use_auth_token=True if model_args.use_auth_token else None,
    )
    tokenizer = AutoTokenizer.from_pretrained(
        model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path,
        cache_dir=model_args.cache_dir,
        use_fast=model_args.use_fast_tokenizer,
        revision=model_args.model_revision,
        use_auth_token=True if model_args.use_auth_token else None,
    )
    model = AutoModelForSeq2SeqLM.from_pretrained(
        model_args.model_name_or_path,
        from_tf=bool(".ckpt" in model_args.model_name_or_path),
        config=config,
        cache_dir=model_args.cache_dir,
        revision=model_args.model_revision,
        use_auth_token=True if model_args.use_auth_token else None,
    )

Suraj Patil's avatar
Suraj Patil committed
378
379
    model.resize_token_embeddings(len(tokenizer))

380
    # Set decoder_start_token_id
381
382
383
384
385
386
    if model.config.decoder_start_token_id is None and isinstance(tokenizer, (MBartTokenizer, MBartTokenizerFast)):
        if isinstance(tokenizer, MBartTokenizer):
            model.config.decoder_start_token_id = tokenizer.lang_code_to_id[data_args.target_lang]
        else:
            model.config.decoder_start_token_id = tokenizer.convert_tokens_to_ids(data_args.target_lang)

387
388
389
    if model.config.decoder_start_token_id is None:
        raise ValueError("Make sure that `config.decoder_start_token_id` is correctly defined")

390
    prefix = data_args.source_prefix if data_args.source_prefix is not None else ""
391

392
393
394
    # Preprocessing the datasets.
    # We need to tokenize inputs and targets.
    if training_args.do_train:
395
        column_names = raw_datasets["train"].column_names
396
    elif training_args.do_eval:
397
        column_names = raw_datasets["validation"].column_names
398
    elif training_args.do_predict:
399
        column_names = raw_datasets["test"].column_names
400
401
402
    else:
        logger.info("There is nothing to do. Please pass `do_train`, `do_eval` and/or `do_predict`.")
        return
403
404
405

    # For translation we set the codes of our source and target languages (only useful for mBART, the others will
    # ignore those attributes).
406
407
408
409
410
411
412
413
414
415
416
417
418
419
    if isinstance(tokenizer, tuple(MULTILINGUAL_TOKENIZERS)):
        assert data_args.target_lang is not None and data_args.source_lang is not None, (
            f"{tokenizer.__class__.__name__} is a multilingual tokenizer which requires --source_lang and "
            "--target_lang arguments."
        )

        tokenizer.src_lang = data_args.source_lang
        tokenizer.tgt_lang = data_args.target_lang

        # For multilingual translation models like mBART-50 and M2M100 we need to force the target language token
        # as the first generated token. We ask the user to explicitly provide this as --forced_bos_token argument.
        forced_bos_token_id = (
            tokenizer.lang_code_to_id[data_args.forced_bos_token] if data_args.forced_bos_token is not None else None
        )
420
        model.config.forced_bos_token_id = forced_bos_token_id
421

422
423
424
    # Get the language codes for input/target.
    source_lang = data_args.source_lang.split("_")[0]
    target_lang = data_args.target_lang.split("_")[0]
425
426
427
428
429

    # Temporarily set max_target_length for training.
    max_target_length = data_args.max_target_length
    padding = "max_length" if data_args.pad_to_max_length else False

430
    if training_args.label_smoothing_factor > 0 and not hasattr(model, "prepare_decoder_input_ids_from_labels"):
431
        logger.warning(
432
433
434
435
            "label_smoothing is enabled but the `prepare_decoder_input_ids_from_labels` method is not defined for"
            f"`{model.__class__.__name__}`. This will lead to loss being calculated twice and will take up more memory"
        )

436
    def preprocess_function(examples):
437
438
        inputs = [ex[source_lang] for ex in examples["translation"]]
        targets = [ex[target_lang] for ex in examples["translation"]]
439
        inputs = [prefix + inp for inp in inputs]
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
        model_inputs = tokenizer(inputs, max_length=data_args.max_source_length, padding=padding, truncation=True)

        # Setup the tokenizer for targets
        with tokenizer.as_target_tokenizer():
            labels = tokenizer(targets, max_length=max_target_length, padding=padding, truncation=True)

        # If we are padding here, replace all tokenizer.pad_token_id in the labels by -100 when we want to ignore
        # padding in the loss.
        if padding == "max_length" and data_args.ignore_pad_token_for_loss:
            labels["input_ids"] = [
                [(l if l != tokenizer.pad_token_id else -100) for l in label] for label in labels["input_ids"]
            ]

        model_inputs["labels"] = labels["input_ids"]
        return model_inputs

    if training_args.do_train:
457
        if "train" not in raw_datasets:
458
            raise ValueError("--do_train requires a train dataset")
459
        train_dataset = raw_datasets["train"]
460
        if data_args.max_train_samples is not None:
461
462
            max_train_samples = min(len(train_dataset), data_args.max_train_samples)
            train_dataset = train_dataset.select(range(max_train_samples))
463
464
465
466
467
468
469
470
471
        with training_args.main_process_first(desc="train dataset map pre-processing"):
            train_dataset = train_dataset.map(
                preprocess_function,
                batched=True,
                num_proc=data_args.preprocessing_num_workers,
                remove_columns=column_names,
                load_from_cache_file=not data_args.overwrite_cache,
                desc="Running tokenizer on train dataset",
            )
472
473
474

    if training_args.do_eval:
        max_target_length = data_args.val_max_target_length
475
        if "validation" not in raw_datasets:
476
            raise ValueError("--do_eval requires a validation dataset")
477
        eval_dataset = raw_datasets["validation"]
478
        if data_args.max_eval_samples is not None:
479
480
            max_eval_samples = min(len(eval_dataset), data_args.max_eval_samples)
            eval_dataset = eval_dataset.select(range(max_eval_samples))
481
482
483
484
485
486
487
488
489
        with training_args.main_process_first(desc="validation dataset map pre-processing"):
            eval_dataset = eval_dataset.map(
                preprocess_function,
                batched=True,
                num_proc=data_args.preprocessing_num_workers,
                remove_columns=column_names,
                load_from_cache_file=not data_args.overwrite_cache,
                desc="Running tokenizer on validation dataset",
            )
490

491
492
    if training_args.do_predict:
        max_target_length = data_args.val_max_target_length
493
        if "test" not in raw_datasets:
494
            raise ValueError("--do_predict requires a test dataset")
495
        predict_dataset = raw_datasets["test"]
496
        if data_args.max_predict_samples is not None:
497
498
            max_predict_samples = min(len(predict_dataset), data_args.max_predict_samples)
            predict_dataset = predict_dataset.select(range(max_predict_samples))
499
500
501
502
503
504
505
506
507
        with training_args.main_process_first(desc="prediction dataset map pre-processing"):
            predict_dataset = predict_dataset.map(
                preprocess_function,
                batched=True,
                num_proc=data_args.preprocessing_num_workers,
                remove_columns=column_names,
                load_from_cache_file=not data_args.overwrite_cache,
                desc="Running tokenizer on prediction dataset",
            )
508

509
510
511
512
513
    # Data collator
    label_pad_token_id = -100 if data_args.ignore_pad_token_for_loss else tokenizer.pad_token_id
    if data_args.pad_to_max_length:
        data_collator = default_data_collator
    else:
514
515
        data_collator = DataCollatorForSeq2Seq(
            tokenizer,
516
            model=model,
517
518
519
            label_pad_token_id=label_pad_token_id,
            pad_to_multiple_of=8 if training_args.fp16 else None,
        )
520
521

    # Metric
522
    metric = load_metric("sacrebleu")
523

524
525
    def postprocess_text(preds, labels):
        preds = [pred.strip() for pred in preds]
526
        labels = [[label.strip()] for label in labels]
527
528
529

        return preds, labels

530
531
532
533
534
535
536
537
538
539
540
    def compute_metrics(eval_preds):
        preds, labels = eval_preds
        if isinstance(preds, tuple):
            preds = preds[0]
        decoded_preds = tokenizer.batch_decode(preds, skip_special_tokens=True)
        if data_args.ignore_pad_token_for_loss:
            # Replace -100 in the labels as we can't decode them.
            labels = np.where(labels != -100, labels, tokenizer.pad_token_id)
        decoded_labels = tokenizer.batch_decode(labels, skip_special_tokens=True)

        # Some simple post-processing
541
        decoded_preds, decoded_labels = postprocess_text(decoded_preds, decoded_labels)
542

543
544
        result = metric.compute(predictions=decoded_preds, references=decoded_labels)
        result = {"bleu": result["score"]}
545
546
547

        prediction_lens = [np.count_nonzero(pred != tokenizer.pad_token_id) for pred in preds]
        result["gen_len"] = np.mean(prediction_lens)
548
        result = {k: round(v, 4) for k, v in result.items()}
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
        return result

    # Initialize our Trainer
    trainer = Seq2SeqTrainer(
        model=model,
        args=training_args,
        train_dataset=train_dataset if training_args.do_train else None,
        eval_dataset=eval_dataset if training_args.do_eval else None,
        tokenizer=tokenizer,
        data_collator=data_collator,
        compute_metrics=compute_metrics if training_args.predict_with_generate else None,
    )

    # Training
    if training_args.do_train:
564
565
566
567
        checkpoint = None
        if training_args.resume_from_checkpoint is not None:
            checkpoint = training_args.resume_from_checkpoint
        elif last_checkpoint is not None:
568
569
            checkpoint = last_checkpoint
        train_result = trainer.train(resume_from_checkpoint=checkpoint)
570
571
        trainer.save_model()  # Saves the tokenizer too for easy upload

572
573
574
575
576
        metrics = train_result.metrics
        max_train_samples = (
            data_args.max_train_samples if data_args.max_train_samples is not None else len(train_dataset)
        )
        metrics["train_samples"] = min(max_train_samples, len(train_dataset))
577

578
579
580
        trainer.log_metrics("train", metrics)
        trainer.save_metrics("train", metrics)
        trainer.save_state()
581
582

    # Evaluation
583
    results = {}
584
585
586
587
588
589
    max_length = (
        training_args.generation_max_length
        if training_args.generation_max_length is not None
        else data_args.val_max_target_length
    )
    num_beams = data_args.num_beams if data_args.num_beams is not None else training_args.generation_num_beams
590
591
592
    if training_args.do_eval:
        logger.info("*** Evaluate ***")

593
        metrics = trainer.evaluate(max_length=max_length, num_beams=num_beams, metric_key_prefix="eval")
594
595
        max_eval_samples = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(eval_dataset)
        metrics["eval_samples"] = min(max_eval_samples, len(eval_dataset))
596

597
598
        trainer.log_metrics("eval", metrics)
        trainer.save_metrics("eval", metrics)
599

600
    if training_args.do_predict:
601
        logger.info("*** Predict ***")
602

603
        predict_results = trainer.predict(
604
            predict_dataset, metric_key_prefix="predict", max_length=max_length, num_beams=num_beams
605
        )
606
607
608
609
610
        metrics = predict_results.metrics
        max_predict_samples = (
            data_args.max_predict_samples if data_args.max_predict_samples is not None else len(predict_dataset)
        )
        metrics["predict_samples"] = min(max_predict_samples, len(predict_dataset))
611

612
613
        trainer.log_metrics("predict", metrics)
        trainer.save_metrics("predict", metrics)
614

615
        if trainer.is_world_process_zero():
616
            if training_args.predict_with_generate:
617
618
                predictions = tokenizer.batch_decode(
                    predict_results.predictions, skip_special_tokens=True, clean_up_tokenization_spaces=True
619
                )
620
621
                predictions = [pred.strip() for pred in predictions]
                output_prediction_file = os.path.join(training_args.output_dir, "generated_predictions.txt")
622
                with open(output_prediction_file, "w", encoding="utf-8") as writer:
623
                    writer.write("\n".join(predictions))
624

625
626
627
628
629
630
631
632
    kwargs = {"finetuned_from": model_args.model_name_or_path, "tasks": "translation"}
    if data_args.dataset_name is not None:
        kwargs["dataset_tags"] = data_args.dataset_name
        if data_args.dataset_config_name is not None:
            kwargs["dataset_args"] = data_args.dataset_config_name
            kwargs["dataset"] = f"{data_args.dataset_name} {data_args.dataset_config_name}"
        else:
            kwargs["dataset"] = data_args.dataset_name
Sylvain Gugger's avatar
Sylvain Gugger committed
633

634
635
636
637
638
    languages = [l for l in [data_args.source_lang, data_args.target_lang] if l is not None]
    if len(languages) > 0:
        kwargs["language"] = languages

    if training_args.push_to_hub:
Sylvain Gugger's avatar
Sylvain Gugger committed
639
        trainer.push_to_hub(**kwargs)
640
641
    else:
        trainer.create_model_card(**kwargs)
Sylvain Gugger's avatar
Sylvain Gugger committed
642

643
644
    return results

645
646
647
648
649
650
651
652

def _mp_fn(index):
    # For xla_spawn (TPUs)
    main()


if __name__ == "__main__":
    main()