"vscode:/vscode.git/clone" did not exist on "73306d028b379694b8eda56902ef735215cb570a"
test_seq2seq_examples.py 22.2 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
import argparse
import logging
import os
import sys
import tempfile
import unittest
from pathlib import Path
from unittest.mock import patch

import pytest
11
import pytorch_lightning as pl
12
13
14
import torch
from torch.utils.data import DataLoader

15
import lightning_base
16
17
from transformers import AutoConfig, AutoModelForSeq2SeqLM, AutoTokenizer
from transformers.hf_api import HfApi
18
from transformers.modeling_bart import shift_tokens_right
19
from transformers.testing_utils import CaptureStderr, CaptureStdout, require_multigpu, require_torch_and_cuda, slow
20

21
from .convert_pl_checkpoint_to_hf import convert_pl_to_hf
22
from .distillation import distill_main, evaluate_checkpoint
23
from .finetune import SummarizationModule, main
24
from .pack_dataset import pack_data_dir
25
from .run_eval import generate_summaries_or_translations, run_generate
26
from .run_eval_search import run_search
27
from .utils import LegacySeq2SeqDataset, Seq2SeqDataset, label_smoothed_nll_loss, lmap, load_json
28
29
30
31
32
33
34


logging.basicConfig(level=logging.DEBUG)

logger = logging.getLogger()
CUDA_AVAILABLE = torch.cuda.is_available()
CHEAP_ARGS = {
35
36
    "supervise_forward": True,
    "normalize_hidden": True,
37
    "label_smoothing": 0.2,
38
    "eval_max_gen_length": None,
39
    "eval_beams": 1,
40
    "val_metric": "loss",
41
    "save_top_k": 1,
Sam Shleifer's avatar
Sam Shleifer committed
42
    "adafactor": True,
43
    "early_stopping_patience": 2,
44
    "logger_name": "default",
45
46
47
48
49
50
51
52
53
54
55
56
57
    "length_penalty": 0.5,
    "cache_dir": "",
    "task": "summarization",
    "num_workers": 2,
    "alpha_hid": 0,
    "freeze_embeds": True,
    "enc_only": False,
    "tgt_suffix": "",
    "resume_from_checkpoint": None,
    "sortish_sampler": True,
    "student_decoder_layers": 1,
    "val_check_interval": 1.0,
    "output_dir": "",
Sam Shleifer's avatar
Sam Shleifer committed
58
    "fp16": False,  # TODO(SS): set this to CUDA_AVAILABLE if ci installs apex or start using native amp
59
60
61
62
63
64
65
    "no_teacher": False,
    "fp16_opt_level": "O1",
    "gpus": 1 if CUDA_AVAILABLE else 0,
    "n_tpu_cores": 0,
    "max_grad_norm": 1.0,
    "do_train": True,
    "do_predict": True,
66
    "accumulate_grad_batches": 1,
67
68
69
70
71
72
73
74
    "server_ip": "",
    "server_port": "",
    "seed": 42,
    "model_name_or_path": "sshleifer/bart-tiny-random",
    "config_name": "",
    "tokenizer_name": "facebook/bart-large",
    "do_lower_case": False,
    "learning_rate": 0.3,
75
    "lr_scheduler": "linear",
76
77
78
    "weight_decay": 0.0,
    "adam_epsilon": 1e-08,
    "warmup_steps": 0,
79
    "max_epochs": 1,
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
    "train_batch_size": 2,
    "eval_batch_size": 2,
    "max_source_length": 12,
    "max_target_length": 12,
    "val_max_target_length": 12,
    "test_max_target_length": 12,
    "fast_dev_run": False,
    "no_cache": False,
    "n_train": -1,
    "n_val": -1,
    "n_test": -1,
    "student_encoder_layers": 1,
    "alpha_loss_encoder": 0.0,
    "freeze_encoder": False,
    "auto_scale_batch_size": False,
}


def _dump_articles(path: Path, articles: list):
99
100
    content = "\n".join(articles)
    Path(path).open("w").writelines(content)
101
102


103
ARTICLES = [" Sam ate lunch today.", "Sams lunch ingredients."]
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
SUMMARIES = ["A very interesting story about what I ate for lunch.", "Avocado, celery, turkey, coffee"]
T5_TINY = "patrickvonplaten/t5-tiny-random"
BART_TINY = "sshleifer/bart-tiny-random"
MBART_TINY = "sshleifer/tiny-mbart"
MARIAN_TINY = "sshleifer/tiny-marian-en-de"
stream_handler = logging.StreamHandler(sys.stdout)
logger.addHandler(stream_handler)
logging.disable(logging.CRITICAL)  # remove noisy download output from tracebacks


def make_test_data_dir(**kwargs):
    tmp_dir = Path(tempfile.mkdtemp(**kwargs))
    for split in ["train", "val", "test"]:
        _dump_articles((tmp_dir / f"{split}.source"), ARTICLES)
        _dump_articles((tmp_dir / f"{split}.target"), SUMMARIES)
    return tmp_dir


class TestSummarizationDistiller(unittest.TestCase):
    @classmethod
    def setUpClass(cls):
        logging.disable(logging.CRITICAL)  # remove noisy download output from tracebacks
        return cls

128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
    @slow
    @require_torch_and_cuda
    def test_hub_configs(self):
        """I put require_torch_and_cuda cause I only want this to run with self-scheduled."""

        model_list = HfApi().model_list()
        org = "sshleifer"
        model_ids = [x.modelId for x in model_list if x.modelId.startswith(org)]
        allowed_to_be_broken = ["sshleifer/blenderbot-3B", "sshleifer/blenderbot-90M"]
        failures = []
        for m in model_ids:
            if m in allowed_to_be_broken:
                continue
            try:
                AutoConfig.from_pretrained(m)
            except Exception:
                failures.append(m)
        assert not failures, f"The following models could not be loaded through AutoConfig: {failures}"

147
    @require_multigpu
148
    def test_multigpu(self):
Lysandre's avatar
Lysandre committed
149
150
151
152
        updates = dict(
            no_teacher=True,
            freeze_encoder=True,
            gpus=2,
153
            sortish_sampler=True,
Lysandre's avatar
Lysandre committed
154
        )
155
        self._test_distiller_cli(updates, check_contents=False)
156
157
158
159
160
161
162
163
164

    def test_distill_no_teacher(self):
        updates = dict(student_encoder_layers=2, student_decoder_layers=1, no_teacher=True)
        self._test_distiller_cli(updates)

    def test_distill_checkpointing_with_teacher(self):
        updates = dict(
            student_encoder_layers=2,
            student_decoder_layers=1,
165
            max_epochs=4,
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
            val_check_interval=0.25,
            alpha_hid=2.0,
            model_name_or_path="IGNORE_THIS_IT_DOESNT_GET_USED",
        )
        model = self._test_distiller_cli(updates, check_contents=False)

        ckpts = list(Path(model.output_dir).glob("*.ckpt"))
        self.assertEqual(1, len(ckpts))
        transformer_ckpts = list(Path(model.output_dir).glob("**/*.bin"))
        self.assertEqual(len(transformer_ckpts), 2)
        examples = lmap(str.strip, model.hparams.data_dir.joinpath("test.source").open().readlines())
        out_path = tempfile.mktemp()
        generate_summaries_or_translations(examples, out_path, str(model.output_dir / "best_tfmr"))
        self.assertTrue(Path(out_path).exists())

        evaluate_checkpoint(ckpts[0], dest_dir=Path(tempfile.mkdtemp()))
182
183
184
        out_path_new = tempfile.mkdtemp()
        convert_pl_to_hf(ckpts[0], transformer_ckpts[0].parent, out_path_new)
        assert os.path.exists(os.path.join(out_path_new, "pytorch_model.bin"))
185

186
    def test_loss_fn(self):
187
        model = AutoModelForSeq2SeqLM.from_pretrained(BART_TINY, return_dict=True)
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
        input_ids, mask = model.dummy_inputs["input_ids"], model.dummy_inputs["attention_mask"]
        target_ids = torch.tensor([[0, 4, 8, 2], [0, 8, 2, 1]], dtype=torch.long, device=model.device)
        decoder_input_ids = target_ids[:, :-1].contiguous()  # Why this line?
        lm_labels = target_ids[:, 1:].clone()  # why clone?
        model_computed_loss = model(
            input_ids, attention_mask=mask, decoder_input_ids=decoder_input_ids, labels=lm_labels, use_cache=False
        ).loss

        logits = model(input_ids, attention_mask=mask, decoder_input_ids=decoder_input_ids, use_cache=False).logits

        lprobs = torch.nn.functional.log_softmax(logits, dim=-1)
        smoothed_loss, nll_loss = label_smoothed_nll_loss(
            lprobs, lm_labels, 0.1, ignore_index=model.config.pad_token_id
        )
        with self.assertRaises(AssertionError):
            # TODO: understand why this breaks
            self.assertEqual(nll_loss, model_computed_loss)

206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
    def test_distill_mbart(self):
        updates = dict(
            student_encoder_layers=2,
            student_decoder_layers=1,
            num_train_epochs=4,
            val_check_interval=0.25,
            alpha_hid=2.0,
            task="translation",
            model_name_or_path="IGNORE_THIS_IT_DOESNT_GET_USED",
            tokenizer_name=MBART_TINY,
            teacher=MBART_TINY,
            src_lang="en_XX",
            tgt_lang="ro_RO",
        )
        model = self._test_distiller_cli(updates, check_contents=False)
221
        assert model.model.config.model_type == "mbart"
222
223
224
225
226
227
228
229
230
231

        ckpts = list(Path(model.output_dir).glob("*.ckpt"))
        self.assertEqual(1, len(ckpts))
        transformer_ckpts = list(Path(model.output_dir).glob("**/*.bin"))
        all_files = list(Path(model.output_dir).glob("best_tfmr/*"))
        assert len(all_files) > 2
        self.assertEqual(len(transformer_ckpts), 2)

        evaluate_checkpoint(ckpts[0], dest_dir=Path(tempfile.mkdtemp()))

232
233
234
235
236
237
238
239
240
241
242
243
244
245
    @unittest.skip("T5 distillation is broken at the moment")
    def test_distill_t5(self):
        updates = dict(
            student_encoder_layers=1,
            student_decoder_layers=1,
            alpha_hid=2.0,
            teacher=T5_TINY,
            model_name_or_path=T5_TINY,
            tokenizer_name=T5_TINY,
        )
        self._test_distiller_cli(updates)

    def _test_distiller_cli(self, updates, check_contents=True):
        default_updates = dict(
246
            label_smoothing=0.0,
247
            early_stopping_patience=-1,
248
249
            train_batch_size=1,
            eval_batch_size=2,
250
            max_epochs=2,
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
            alpha_mlm=0.2,
            alpha_ce=0.8,
            do_predict=True,
            model_name_or_path="sshleifer/tinier_bart",
            teacher=CHEAP_ARGS["model_name_or_path"],
            val_check_interval=0.5,
            alpha_encoder_loss=0.4,
        )
        default_updates.update(updates)
        args_d: dict = CHEAP_ARGS.copy()
        tmp_dir = make_test_data_dir()
        output_dir = tempfile.mkdtemp(prefix="output_")

        args_d.update(data_dir=tmp_dir, output_dir=output_dir, **default_updates)
        model = distill_main(argparse.Namespace(**args_d))
        if not check_contents:
            return model
        contents = os.listdir(output_dir)
        contents = {os.path.basename(p) for p in contents}
270
271
        ckpt_files = [p for p in contents if p.endswith("ckpt")]
        assert len(ckpt_files) > 0
272
273
274
275
276
277
278
279
280

        self.assertIn("test_generations.txt", contents)
        self.assertIn("test_results.txt", contents)

        metrics = load_json(model.metrics_save_path)
        last_step_stats = metrics["val"][-1]
        self.assertGreaterEqual(last_step_stats["val_avg_gen_time"], 0.01)
        self.assertGreaterEqual(1.0, last_step_stats["val_avg_gen_time"])
        self.assertIsInstance(last_step_stats[f"val_avg_{model.val_metric}"], float)
281
        desired_n_evals = int(args_d["max_epochs"] * (1 / args_d["val_check_interval"]) + 1)
282
283
284
285
286
        self.assertEqual(len(metrics["val"]), desired_n_evals)
        self.assertEqual(len(metrics["test"]), 1)
        return model


287
@pytest.mark.parametrize("model", [pytest.param(T5_TINY), pytest.param(BART_TINY), pytest.param(MBART_TINY)])
288
def test_run_eval(model):
289
290
    input_file_name = Path(tempfile.mkdtemp()) / "utest_input.source"
    output_file_name = input_file_name.parent / "utest_output.txt"
291
292
    assert not output_file_name.exists()
    articles = [" New York (CNN)When Liana Barrientos was 23 years old, she got married in Westchester County."]
293
    _dump_articles(input_file_name, articles)
294
295
296
297
298
299
300
301
302
303
304
    score_path = str(Path(tempfile.mkdtemp()) / "scores.json")
    task = "translation_en_to_de" if model == T5_TINY else "summarization"
    testargs = [
        "run_eval.py",
        model,
        str(input_file_name),
        str(output_file_name),
        "--score_path",
        score_path,
        "--task",
        task,
305
306
307
308
        "--num_beams",
        "2",
        "--length_penalty",
        "2.0",
309
    ]
310
311
312
313
314
    with patch.object(sys, "argv", testargs):
        run_generate()
        assert Path(output_file_name).exists()
        os.remove(Path(output_file_name))

315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
@slow
@pytest.mark.parametrize("model", [pytest.param(T5_TINY)])
def test_run_eval_search(model):
    input_file_name = Path(tempfile.mkdtemp()) / "utest_input.source"
    output_file_name = input_file_name.parent / "utest_output.txt"
    assert not output_file_name.exists()

    text = {
        "en": ["Machine learning is great, isn't it?", "I like to eat bananas", "Tomorrow is another great day!"],
        "de": [
            "Maschinelles Lernen ist gro脽artig, oder?",
            "Ich esse gerne Bananen",
            "Morgen ist wieder ein toller Tag!",
        ],
    }

    tmp_dir = Path(tempfile.mkdtemp())
    score_path = str(tmp_dir / "scores.json")
    reference_path = str(tmp_dir / "val.target")
    _dump_articles(input_file_name, text["en"])
    _dump_articles(reference_path, text["de"])
    task = "translation_en_to_de" if model == T5_TINY else "summarization"
    testargs = [
        "run_eval_search.py",
        model,
        str(input_file_name),
        str(output_file_name),
        "--score_path",
        score_path,
        "--reference_path",
        reference_path,
        "--task",
        task,
        "--search",
        "num_beams=1:2 length_penalty=0.9:1.0",
    ]
    with patch.object(sys, "argv", testargs):
        with CaptureStdout() as cs:
            run_search()
        expected_strings = [" num_beams | length_penalty", model, "Best score args"]
        un_expected_strings = ["Info"]
        if "translation" in task:
            expected_strings.append("bleu")
        else:
            expected_strings.extend(["rouge1", "rouge2", "rougeL"])
        for w in expected_strings:
            assert w in cs.out
        for w in un_expected_strings:
            assert w not in cs.out
        assert Path(output_file_name).exists()
        os.remove(Path(output_file_name))

367
368

@pytest.mark.parametrize(
Lysandre's avatar
Lysandre committed
369
370
    ["model"],
    [pytest.param(T5_TINY), pytest.param(BART_TINY), pytest.param(MBART_TINY), pytest.param(MARIAN_TINY)],
371
372
373
374
)
def test_finetune(model):
    args_d: dict = CHEAP_ARGS.copy()
    task = "translation" if model in [MBART_TINY, MARIAN_TINY] else "summarization"
375
376
    args_d["label_smoothing"] = 0.1 if task == "translation" else 0

377
378
379
380
381
382
383
384
385
386
387
    tmp_dir = make_test_data_dir()
    output_dir = tempfile.mkdtemp(prefix="output_")
    args_d.update(
        data_dir=tmp_dir,
        model_name_or_path=model,
        tokenizer_name=None,
        train_batch_size=2,
        eval_batch_size=2,
        output_dir=output_dir,
        do_predict=True,
        task=task,
388
389
390
391
        src_lang="en_XX",
        tgt_lang="ro_RO",
        freeze_encoder=True,
        freeze_embeds=True,
392
393
394
    )
    assert "n_train" in args_d
    args = argparse.Namespace(**args_d)
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
    module = main(args)

    input_embeds = module.model.get_input_embeddings()
    assert not input_embeds.weight.requires_grad
    if model == T5_TINY:
        lm_head = module.model.lm_head
        assert not lm_head.weight.requires_grad
        assert (lm_head.weight == input_embeds.weight).all().item()

    else:
        bart = module.model.model
        embed_pos = bart.decoder.embed_positions
        assert not embed_pos.weight.requires_grad
        assert not bart.shared.weight.requires_grad
        # check that embeds are the same
        assert bart.decoder.embed_tokens == bart.encoder.embed_tokens
        assert bart.decoder.embed_tokens == bart.shared
412
413


414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
def test_finetune_extra_model_args():
    args_d: dict = CHEAP_ARGS.copy()

    task = "summarization"
    tmp_dir = make_test_data_dir()

    args_d.update(
        data_dir=tmp_dir,
        tokenizer_name=None,
        train_batch_size=2,
        eval_batch_size=2,
        do_predict=False,
        task=task,
        src_lang="en_XX",
        tgt_lang="ro_RO",
        freeze_encoder=True,
        freeze_embeds=True,
    )

    # test models whose config includes the extra_model_args
    model = BART_TINY
    output_dir = tempfile.mkdtemp(prefix="output_1_")
    args_d1 = args_d.copy()
    args_d1.update(
Lysandre's avatar
Lysandre committed
438
439
        model_name_or_path=model,
        output_dir=output_dir,
440
441
442
443
444
445
446
447
448
449
450
451
452
453
    )
    extra_model_params = ("encoder_layerdrop", "decoder_layerdrop", "dropout", "attention_dropout")
    for p in extra_model_params:
        args_d1[p] = 0.5
    args = argparse.Namespace(**args_d1)
    model = main(args)
    for p in extra_model_params:
        assert getattr(model.config, p) == 0.5, f"failed to override the model config for param {p}"

    # test models whose config doesn't include the extra_model_args
    model = T5_TINY
    output_dir = tempfile.mkdtemp(prefix="output_2_")
    args_d2 = args_d.copy()
    args_d2.update(
Lysandre's avatar
Lysandre committed
454
455
        model_name_or_path=model,
        output_dir=output_dir,
456
457
458
459
460
461
462
463
464
    )
    unsupported_param = "encoder_layerdrop"
    args_d2[unsupported_param] = 0.5
    args = argparse.Namespace(**args_d2)
    with pytest.raises(Exception) as excinfo:
        model = main(args)
    assert str(excinfo.value) == f"model config doesn't have a `{unsupported_param}` attribute"


465
def test_finetune_lr_schedulers():
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
    args_d: dict = CHEAP_ARGS.copy()

    task = "summarization"
    tmp_dir = make_test_data_dir()

    model = BART_TINY
    output_dir = tempfile.mkdtemp(prefix="output_1_")

    args_d.update(
        data_dir=tmp_dir,
        model_name_or_path=model,
        output_dir=output_dir,
        tokenizer_name=None,
        train_batch_size=2,
        eval_batch_size=2,
        do_predict=False,
        task=task,
        src_lang="en_XX",
        tgt_lang="ro_RO",
        freeze_encoder=True,
        freeze_embeds=True,
    )

    # emulate finetune.py
    parser = argparse.ArgumentParser()
    parser = pl.Trainer.add_argparse_args(parser)
    parser = SummarizationModule.add_model_specific_args(parser, os.getcwd())
    args = {"--help": True}

    # --help test
    with pytest.raises(SystemExit) as excinfo:
497
498
        with CaptureStdout() as cs:
            args = parser.parse_args(args)
499
500
501
        assert False, "--help is expected to sys.exit"
    assert excinfo.type == SystemExit
    expected = lightning_base.arg_to_scheduler_metavar
502
    assert expected in cs.out, "--help is expected to list the supported schedulers"
503
504
505
506
507

    # --lr_scheduler=non_existing_scheduler test
    unsupported_param = "non_existing_scheduler"
    args = {f"--lr_scheduler={unsupported_param}"}
    with pytest.raises(SystemExit) as excinfo:
508
509
        with CaptureStderr() as cs:
            args = parser.parse_args(args)
510
511
512
        assert False, "invalid argument is expected to sys.exit"
    assert excinfo.type == SystemExit
    expected = f"invalid choice: '{unsupported_param}'"
513
    assert expected in cs.err, f"should have bailed on invalid choice of scheduler {unsupported_param}"
514
515
516
517
518
519
520
521
522
523

    # --lr_scheduler=existing_scheduler test
    supported_param = "cosine"
    args_d1 = args_d.copy()
    args_d1["lr_scheduler"] = supported_param
    args = argparse.Namespace(**args_d1)
    model = main(args)
    assert getattr(model.hparams, "lr_scheduler") == supported_param, f"lr_scheduler={supported_param} shouldn't fail"


524
525
def test_pack_dataset():
    tokenizer = AutoTokenizer.from_pretrained("facebook/mbart-large-cc25")
526

527
    tmp_dir = Path(make_test_data_dir())
528
    orig_examples = tmp_dir.joinpath("train.source").open().readlines()
529
530
531
532
    save_dir = Path(tempfile.mkdtemp(prefix="packed_"))
    pack_data_dir(tokenizer, tmp_dir, 128, save_dir)
    orig_paths = {x.name for x in tmp_dir.iterdir()}
    new_paths = {x.name for x in save_dir.iterdir()}
533
534
535
536
537
538
    packed_examples = save_dir.joinpath("train.source").open().readlines()
    # orig: [' Sam ate lunch today.\n', 'Sams lunch ingredients.']
    # desired_packed: [' Sam ate lunch today.\n Sams lunch ingredients.']
    assert len(packed_examples) < len(orig_examples)
    assert len(packed_examples) == 1
    assert len(packed_examples[0]) == sum(len(x) for x in orig_examples)
539
540
541
    assert orig_paths == new_paths


542
543
544
545
546
547
548
549
550
551
552
@pytest.mark.parametrize(
    ["tok_name"],
    [
        pytest.param(MBART_TINY),
        pytest.param(MARIAN_TINY),
        pytest.param(T5_TINY),
        pytest.param(BART_TINY),
        pytest.param("google/pegasus-xsum"),
    ],
)
def test_seq2seq_dataset_truncation(tok_name):
553
    tokenizer = AutoTokenizer.from_pretrained(tok_name)
554
555
556
    tmp_dir = make_test_data_dir()
    max_len_source = max(len(tokenizer.encode(a)) for a in ARTICLES)
    max_len_target = max(len(tokenizer.encode(a)) for a in SUMMARIES)
557
558
    max_src_len = 4
    max_tgt_len = 8
559
560
561
562
    assert max_len_target > max_src_len  # Will be truncated
    assert max_len_source > max_src_len  # Will be truncated
    src_lang, tgt_lang = "ro_RO", "de_DE"  # ignored for all but mbart, but never causes error.
    train_dataset = Seq2SeqDataset(
563
564
565
        tokenizer,
        data_dir=tmp_dir,
        type_path="train",
566
567
        max_source_length=max_src_len,
        max_target_length=max_tgt_len,  # ignored
568
569
570
571
572
573
574
575
        src_lang=src_lang,
        tgt_lang=tgt_lang,
    )
    dataloader = DataLoader(train_dataset, batch_size=2, collate_fn=train_dataset.collate_fn)
    for batch in dataloader:
        assert isinstance(batch, dict)
        assert batch["attention_mask"].shape == batch["input_ids"].shape
        # show that articles were trimmed.
576
        assert batch["input_ids"].shape[1] == max_src_len
577
        # show that targets are the same len
578
579
        assert batch["labels"].shape[1] == max_tgt_len
        if tok_name != MBART_TINY:
580
            continue
581
        # check language codes in correct place
582
        batch["decoder_input_ids"] = shift_tokens_right(batch["labels"], tokenizer.pad_token_id)
583
584
585
586
587
588
589
590
        assert batch["decoder_input_ids"][0, 0].item() == tokenizer.lang_code_to_id[tgt_lang]
        assert batch["decoder_input_ids"][0, -1].item() == tokenizer.eos_token_id
        assert batch["input_ids"][0, -2].item() == tokenizer.eos_token_id
        assert batch["input_ids"][0, -1].item() == tokenizer.lang_code_to_id[src_lang]

        break  # No need to test every batch


591
592
@pytest.mark.parametrize(["tok"], [pytest.param(BART_TINY), pytest.param("bert-base-cased")])
def test_legacy_dataset_truncation(tok):
593
594
595
596
597
    tokenizer = AutoTokenizer.from_pretrained(tok)
    tmp_dir = make_test_data_dir()
    max_len_source = max(len(tokenizer.encode(a)) for a in ARTICLES)
    max_len_target = max(len(tokenizer.encode(a)) for a in SUMMARIES)
    trunc_target = 4
598
    train_dataset = LegacySeq2SeqDataset(
Lysandre's avatar
Lysandre committed
599
600
601
602
603
        tokenizer,
        data_dir=tmp_dir,
        type_path="train",
        max_source_length=20,
        max_target_length=trunc_target,
604
605
606
607
608
609
610
611
    )
    dataloader = DataLoader(train_dataset, batch_size=2, collate_fn=train_dataset.collate_fn)
    for batch in dataloader:
        assert batch["attention_mask"].shape == batch["input_ids"].shape
        # show that articles were trimmed.
        assert batch["input_ids"].shape[1] == max_len_source
        assert 20 >= batch["input_ids"].shape[1]  # trimmed significantly
        # show that targets were truncated
612
        assert batch["labels"].shape[1] == trunc_target  # Truncated
613
        assert max_len_target > trunc_target  # Truncated
614
        break  # No need to test every batch