"...networks/git@developer.sourcefind.cn:Wenxuan/LightX2V.git" did not exist on "ec79c1453d11515aa89c92303f9b48ea1a65de24"
tokenization_auto.py 36.8 KB
Newer Older
thomwolf's avatar
thomwolf committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# coding=utf-8
# Copyright 2018 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Sylvain Gugger's avatar
Sylvain Gugger committed
15
""" Auto Tokenizer class."""
thomwolf's avatar
thomwolf committed
16

17
import importlib
18
19
import json
import os
20
from collections import OrderedDict
21
from typing import TYPE_CHECKING, Dict, Optional, Tuple, Union
thomwolf's avatar
thomwolf committed
22

Sylvain Gugger's avatar
Sylvain Gugger committed
23
from ...configuration_utils import PretrainedConfig
24
from ...dynamic_module_utils import get_class_from_dynamic_module
25
from ...tokenization_utils import PreTrainedTokenizer
26
from ...tokenization_utils_base import TOKENIZER_CONFIG_FILE
27
from ...tokenization_utils_fast import PreTrainedTokenizerFast
28
from ...utils import cached_file, extract_commit_hash, is_sentencepiece_available, is_tokenizers_available, logging
29
30
from ..encoder_decoder import EncoderDecoderConfig
from .auto_factory import _LazyAutoMapping
31
from .configuration_auto import (
32
    CONFIG_MAPPING_NAMES,
33
    AutoConfig,
34
    config_class_to_model_type,
35
    model_type_to_module_name,
36
    replace_list_option_in_docstrings,
37
)
Aymeric Augustin's avatar
Aymeric Augustin committed
38

thomwolf's avatar
thomwolf committed
39

Lysandre Debut's avatar
Lysandre Debut committed
40
logger = logging.get_logger(__name__)
thomwolf's avatar
thomwolf committed
41

42
43
44
45
46
47
48
if TYPE_CHECKING:
    # This significantly improves completion suggestion performance when
    # the transformers package is used with Microsoft's Pylance language server.
    TOKENIZER_MAPPING_NAMES: OrderedDict[str, Tuple[Optional[str], Optional[str]]] = OrderedDict()
else:
    TOKENIZER_MAPPING_NAMES = OrderedDict(
        [
49
            (
50
                "albert",
51
                (
52
53
                    "AlbertTokenizer" if is_sentencepiece_available() else None,
                    "AlbertTokenizerFast" if is_tokenizers_available() else None,
54
                ),
55
            ),
56
            ("bart", ("BartTokenizer", "BartTokenizerFast")),
57
            (
58
                "barthez",
59
                (
60
61
                    "BarthezTokenizer" if is_sentencepiece_available() else None,
                    "BarthezTokenizerFast" if is_tokenizers_available() else None,
62
                ),
63
            ),
64
65
66
67
68
            ("bartpho", ("BartphoTokenizer", None)),
            ("bert", ("BertTokenizer", "BertTokenizerFast" if is_tokenizers_available() else None)),
            ("bert-generation", ("BertGenerationTokenizer" if is_sentencepiece_available() else None, None)),
            ("bert-japanese", ("BertJapaneseTokenizer", None)),
            ("bertweet", ("BertweetTokenizer", None)),
69
            (
70
                "big_bird",
71
                (
72
73
                    "BigBirdTokenizer" if is_sentencepiece_available() else None,
                    "BigBirdTokenizerFast" if is_tokenizers_available() else None,
74
                ),
75
            ),
76
            ("bigbird_pegasus", ("PegasusTokenizer", "PegasusTokenizerFast" if is_tokenizers_available() else None)),
Kamal Raj Kanakarajan's avatar
Kamal Raj Kanakarajan committed
77
            ("biogpt", ("BioGptTokenizer", None)),
78
79
            ("blenderbot", ("BlenderbotTokenizer", "BlenderbotTokenizerFast")),
            ("blenderbot-small", ("BlenderbotSmallTokenizer", None)),
Younes Belkada's avatar
Younes Belkada committed
80
            ("blip", ("BertTokenizer", "BertTokenizerFast" if is_tokenizers_available() else None)),
Younes Belkada's avatar
Younes Belkada committed
81
            ("bloom", (None, "BloomTokenizerFast" if is_tokenizers_available() else None)),
82
            ("bridgetower", ("RobertaTokenizer", "RobertaTokenizerFast" if is_tokenizers_available() else None)),
83
            ("byt5", ("ByT5Tokenizer", None)),
84
            (
85
86
87
88
89
                "camembert",
                (
                    "CamembertTokenizer" if is_sentencepiece_available() else None,
                    "CamembertTokenizerFast" if is_tokenizers_available() else None,
                ),
90
            ),
91
            ("canine", ("CanineTokenizer", None)),
92
            ("chinese_clip", ("BertTokenizer", "BertTokenizerFast" if is_tokenizers_available() else None)),
93
            (
94
                "clip",
95
                (
96
97
                    "CLIPTokenizer",
                    "CLIPTokenizerFast" if is_tokenizers_available() else None,
98
                ),
99
            ),
NielsRogge's avatar
NielsRogge committed
100
101
102
103
104
105
106
            (
                "clipseg",
                (
                    "CLIPTokenizer",
                    "CLIPTokenizerFast" if is_tokenizers_available() else None,
                ),
            ),
rooa's avatar
rooa committed
107
            ("codegen", ("CodeGenTokenizer", "CodeGenTokenizerFast" if is_tokenizers_available() else None)),
108
            ("convbert", ("ConvBertTokenizer", "ConvBertTokenizerFast" if is_tokenizers_available() else None)),
109
            (
110
                "cpm",
111
                (
112
113
                    "CpmTokenizer" if is_sentencepiece_available() else None,
                    "CpmTokenizerFast" if is_tokenizers_available() else None,
114
                ),
115
            ),
116
117
118
            ("ctrl", ("CTRLTokenizer", None)),
            ("data2vec-text", ("RobertaTokenizer", "RobertaTokenizerFast" if is_tokenizers_available() else None)),
            ("deberta", ("DebertaTokenizer", "DebertaTokenizerFast" if is_tokenizers_available() else None)),
119
            (
120
                "deberta-v2",
121
                (
122
123
                    "DebertaV2Tokenizer" if is_sentencepiece_available() else None,
                    "DebertaV2TokenizerFast" if is_tokenizers_available() else None,
124
                ),
125
            ),
126
            ("distilbert", ("DistilBertTokenizer", "DistilBertTokenizerFast" if is_tokenizers_available() else None)),
127
            (
128
                "dpr",
129
                (
130
131
                    "DPRQuestionEncoderTokenizer",
                    "DPRQuestionEncoderTokenizerFast" if is_tokenizers_available() else None,
132
                ),
133
            ),
134
            ("electra", ("ElectraTokenizer", "ElectraTokenizerFast" if is_tokenizers_available() else None)),
135
            ("ernie", ("BertTokenizer", "BertTokenizerFast" if is_tokenizers_available() else None)),
Matt's avatar
Matt committed
136
            ("esm", ("EsmTokenizer", None)),
137
138
139
            ("flaubert", ("FlaubertTokenizer", None)),
            ("fnet", ("FNetTokenizer", "FNetTokenizerFast" if is_tokenizers_available() else None)),
            ("fsmt", ("FSMTTokenizer", None)),
140
            ("funnel", ("FunnelTokenizer", "FunnelTokenizerFast" if is_tokenizers_available() else None)),
141
            ("git", ("BertTokenizer", "BertTokenizerFast" if is_tokenizers_available() else None)),
142
            ("gpt-sw3", ("GPTSw3Tokenizer" if is_sentencepiece_available() else None, None)),
143
144
            ("gpt2", ("GPT2Tokenizer", "GPT2TokenizerFast" if is_tokenizers_available() else None)),
            ("gpt_neo", ("GPT2Tokenizer", "GPT2TokenizerFast" if is_tokenizers_available() else None)),
145
            ("gpt_neox", (None, "GPTNeoXTokenizerFast" if is_tokenizers_available() else None)),
146
            ("gpt_neox_japanese", ("GPTNeoXJapaneseTokenizer", None)),
147
            ("gptj", ("GPT2Tokenizer", "GPT2TokenizerFast" if is_tokenizers_available() else None)),
148
            ("groupvit", ("CLIPTokenizer", "CLIPTokenizerFast" if is_tokenizers_available() else None)),
149
150
151
            ("herbert", ("HerbertTokenizer", "HerbertTokenizerFast" if is_tokenizers_available() else None)),
            ("hubert", ("Wav2Vec2CTCTokenizer", None)),
            ("ibert", ("RobertaTokenizer", "RobertaTokenizerFast" if is_tokenizers_available() else None)),
152
            ("jukebox", ("JukeboxTokenizer", None)),
153
            ("layoutlm", ("LayoutLMTokenizer", "LayoutLMTokenizerFast" if is_tokenizers_available() else None)),
154
            ("layoutlmv2", ("LayoutLMv2Tokenizer", "LayoutLMv2TokenizerFast" if is_tokenizers_available() else None)),
NielsRogge's avatar
NielsRogge committed
155
            ("layoutlmv3", ("LayoutLMv3Tokenizer", "LayoutLMv3TokenizerFast" if is_tokenizers_available() else None)),
156
            ("layoutxlm", ("LayoutXLMTokenizer", "LayoutXLMTokenizerFast" if is_tokenizers_available() else None)),
157
            ("led", ("LEDTokenizer", "LEDTokenizerFast" if is_tokenizers_available() else None)),
NielsRogge's avatar
NielsRogge committed
158
            ("lilt", ("LayoutLMv3Tokenizer", "LayoutLMv3TokenizerFast" if is_tokenizers_available() else None)),
159
            ("longformer", ("LongformerTokenizer", "LongformerTokenizerFast" if is_tokenizers_available() else None)),
Daniel Stancl's avatar
Daniel Stancl committed
160
161
162
163
164
165
166
            (
                "longt5",
                (
                    "T5Tokenizer" if is_sentencepiece_available() else None,
                    "T5TokenizerFast" if is_tokenizers_available() else None,
                ),
            ),
167
168
169
170
            ("luke", ("LukeTokenizer", None)),
            ("lxmert", ("LxmertTokenizer", "LxmertTokenizerFast" if is_tokenizers_available() else None)),
            ("m2m_100", ("M2M100Tokenizer" if is_sentencepiece_available() else None, None)),
            ("marian", ("MarianTokenizer" if is_sentencepiece_available() else None, None)),
171
            (
172
                "mbart",
173
                (
174
175
                    "MBartTokenizer" if is_sentencepiece_available() else None,
                    "MBartTokenizerFast" if is_tokenizers_available() else None,
176
                ),
177
178
            ),
            (
179
                "mbart50",
180
                (
181
182
                    "MBart50Tokenizer" if is_sentencepiece_available() else None,
                    "MBart50TokenizerFast" if is_tokenizers_available() else None,
183
                ),
184
            ),
185
186
187
188
            ("megatron-bert", ("BertTokenizer", "BertTokenizerFast" if is_tokenizers_available() else None)),
            ("mluke", ("MLukeTokenizer" if is_sentencepiece_available() else None, None)),
            ("mobilebert", ("MobileBertTokenizer", "MobileBertTokenizerFast" if is_tokenizers_available() else None)),
            ("mpnet", ("MPNetTokenizer", "MPNetTokenizerFast" if is_tokenizers_available() else None)),
189
            (
190
                "mt5",
191
                (
192
193
                    "MT5Tokenizer" if is_sentencepiece_available() else None,
                    "MT5TokenizerFast" if is_tokenizers_available() else None,
194
195
                ),
            ),
StevenTang1998's avatar
StevenTang1998 committed
196
            ("mvp", ("MvpTokenizer", "MvpTokenizerFast" if is_tokenizers_available() else None)),
197
            ("nezha", ("BertTokenizer", "BertTokenizerFast" if is_tokenizers_available() else None)),
198
            (
Lysandre Debut's avatar
Lysandre Debut committed
199
200
201
202
203
204
205
                "nllb",
                (
                    "NllbTokenizer" if is_sentencepiece_available() else None,
                    "NllbTokenizerFast" if is_tokenizers_available() else None,
                ),
            ),
            (
206
                "nystromformer",
207
                (
208
209
                    "AlbertTokenizer" if is_sentencepiece_available() else None,
                    "AlbertTokenizerFast" if is_tokenizers_available() else None,
210
                ),
211
            ),
Jitesh Jain's avatar
Jitesh Jain committed
212
            ("oneformer", ("CLIPTokenizer", "CLIPTokenizerFast" if is_tokenizers_available() else None)),
213
214
            ("openai-gpt", ("OpenAIGPTTokenizer", "OpenAIGPTTokenizerFast" if is_tokenizers_available() else None)),
            ("opt", ("GPT2Tokenizer", None)),
215
            ("owlvit", ("CLIPTokenizer", "CLIPTokenizerFast" if is_tokenizers_available() else None)),
216
            (
217
                "pegasus",
218
                (
219
220
                    "PegasusTokenizer" if is_sentencepiece_available() else None,
                    "PegasusTokenizerFast" if is_tokenizers_available() else None,
221
                ),
222
            ),
223
224
225
226
227
228
229
            (
                "pegasus_x",
                (
                    "PegasusTokenizer" if is_sentencepiece_available() else None,
                    "PegasusTokenizerFast" if is_tokenizers_available() else None,
                ),
            ),
230
            (
231
                "perceiver",
232
                (
233
234
                    "PerceiverTokenizer",
                    None,
235
236
                ),
            ),
237
238
239
240
241
242
            ("phobert", ("PhobertTokenizer", None)),
            ("plbart", ("PLBartTokenizer" if is_sentencepiece_available() else None, None)),
            ("prophetnet", ("ProphetNetTokenizer", None)),
            ("qdqbert", ("BertTokenizer", "BertTokenizerFast" if is_tokenizers_available() else None)),
            ("rag", ("RagTokenizer", None)),
            ("realm", ("RealmTokenizer", "RealmTokenizerFast" if is_tokenizers_available() else None)),
243
            (
244
                "reformer",
245
                (
246
247
                    "ReformerTokenizer" if is_sentencepiece_available() else None,
                    "ReformerTokenizerFast" if is_tokenizers_available() else None,
248
249
                ),
            ),
250
251
252
253
254
255
256
            (
                "rembert",
                (
                    "RemBertTokenizer" if is_sentencepiece_available() else None,
                    "RemBertTokenizerFast" if is_tokenizers_available() else None,
                ),
            ),
257
258
            ("retribert", ("RetriBertTokenizer", "RetriBertTokenizerFast" if is_tokenizers_available() else None)),
            ("roberta", ("RobertaTokenizer", "RobertaTokenizerFast" if is_tokenizers_available() else None)),
259
260
261
262
            (
                "roberta-prelayernorm",
                ("RobertaTokenizer", "RobertaTokenizerFast" if is_tokenizers_available() else None),
            ),
263
            ("roc_bert", ("RoCBertTokenizer", None)),
264
265
266
267
            ("roformer", ("RoFormerTokenizer", "RoFormerTokenizerFast" if is_tokenizers_available() else None)),
            ("speech_to_text", ("Speech2TextTokenizer" if is_sentencepiece_available() else None, None)),
            ("speech_to_text_2", ("Speech2Text2Tokenizer", None)),
            ("splinter", ("SplinterTokenizer", "SplinterTokenizerFast")),
268
            (
269
270
                "squeezebert",
                ("SqueezeBertTokenizer", "SqueezeBertTokenizerFast" if is_tokenizers_available() else None),
271
            ),
272
273
274
275
276
277
278
            (
                "switch_transformers",
                (
                    "T5Tokenizer" if is_sentencepiece_available() else None,
                    "T5TokenizerFast" if is_tokenizers_available() else None,
                ),
            ),
279
            (
280
                "t5",
281
                (
282
283
                    "T5Tokenizer" if is_sentencepiece_available() else None,
                    "T5TokenizerFast" if is_tokenizers_available() else None,
284
285
                ),
            ),
286
287
288
            ("tapas", ("TapasTokenizer", None)),
            ("tapex", ("TapexTokenizer", None)),
            ("transfo-xl", ("TransfoXLTokenizer", None)),
289
            ("vilt", ("BertTokenizer", "BertTokenizerFast" if is_tokenizers_available() else None)),
290
291
            ("visual_bert", ("BertTokenizer", "BertTokenizerFast" if is_tokenizers_available() else None)),
            ("wav2vec2", ("Wav2Vec2CTCTokenizer", None)),
292
            ("wav2vec2-conformer", ("Wav2Vec2CTCTokenizer", None)),
293
            ("wav2vec2_phoneme", ("Wav2Vec2PhonemeCTCTokenizer", None)),
294
            ("whisper", ("WhisperTokenizer" if is_sentencepiece_available() else None, None)),
NielsRogge's avatar
NielsRogge committed
295
            ("xclip", ("CLIPTokenizer", "CLIPTokenizerFast" if is_tokenizers_available() else None)),
296
297
298
299
300
301
302
            (
                "xglm",
                (
                    "XGLMTokenizer" if is_sentencepiece_available() else None,
                    "XGLMTokenizerFast" if is_tokenizers_available() else None,
                ),
            ),
303
304
            ("xlm", ("XLMTokenizer", None)),
            ("xlm-prophetnet", ("XLMProphetNetTokenizer" if is_sentencepiece_available() else None, None)),
305
            (
306
                "xlm-roberta",
307
                (
308
309
                    "XLMRobertaTokenizer" if is_sentencepiece_available() else None,
                    "XLMRobertaTokenizerFast" if is_tokenizers_available() else None,
310
311
                ),
            ),
312
313
314
315
316
317
318
            (
                "xlm-roberta-xl",
                (
                    "XLMRobertaTokenizer" if is_sentencepiece_available() else None,
                    "XLMRobertaTokenizerFast" if is_tokenizers_available() else None,
                ),
            ),
319
320
321
322
323
324
325
            (
                "xlnet",
                (
                    "XLNetTokenizer" if is_sentencepiece_available() else None,
                    "XLNetTokenizerFast" if is_tokenizers_available() else None,
                ),
            ),
326
327
328
329
330
331
332
            (
                "yoso",
                (
                    "AlbertTokenizer" if is_sentencepiece_available() else None,
                    "AlbertTokenizerFast" if is_tokenizers_available() else None,
                ),
            ),
333
334
        ]
    )
335

336
337
338
TOKENIZER_MAPPING = _LazyAutoMapping(CONFIG_MAPPING_NAMES, TOKENIZER_MAPPING_NAMES)

CONFIG_TO_TYPE = {v: k for k, v in CONFIG_MAPPING_NAMES.items()}
339

340

341
def tokenizer_class_from_name(class_name: str):
342
343
344
345
346
    if class_name == "PreTrainedTokenizerFast":
        return PreTrainedTokenizerFast

    for module_name, tokenizers in TOKENIZER_MAPPING_NAMES.items():
        if class_name in tokenizers:
347
            module_name = model_type_to_module_name(module_name)
348

349
            module = importlib.import_module(f".{module_name}", "transformers.models")
350
351
352
353
            try:
                return getattr(module, class_name)
            except AttributeError:
                continue
354

355
356
357
358
359
    for config, tokenizers in TOKENIZER_MAPPING._extra_content.items():
        for tokenizer in tokenizers:
            if getattr(tokenizer, "__name__", None) == class_name:
                return tokenizer

360
361
362
363
364
365
    # We did not fine the class, but maybe it's because a dep is missing. In that case, the class will be in the main
    # init and we return the proper dummy to get an appropriate error message.
    main_module = importlib.import_module("transformers")
    if hasattr(main_module, class_name):
        return getattr(main_module, class_name)

366
    return None
367
368


369
370
371
372
373
374
375
376
377
def get_tokenizer_config(
    pretrained_model_name_or_path: Union[str, os.PathLike],
    cache_dir: Optional[Union[str, os.PathLike]] = None,
    force_download: bool = False,
    resume_download: bool = False,
    proxies: Optional[Dict[str, str]] = None,
    use_auth_token: Optional[Union[bool, str]] = None,
    revision: Optional[str] = None,
    local_files_only: bool = False,
378
    subfolder: str = "",
379
380
381
382
383
384
    **kwargs,
):
    """
    Loads the tokenizer configuration from a pretrained model tokenizer configuration.

    Args:
385
        pretrained_model_name_or_path (`str` or `os.PathLike`):
386
387
            This can be either:

388
            - a string, the *model id* of a pretrained model configuration hosted inside a model repo on
Sylvain Gugger's avatar
Sylvain Gugger committed
389
390
              huggingface.co. Valid model ids can be located at the root-level, like `bert-base-uncased`, or namespaced
              under a user or organization name, like `dbmdz/bert-base-german-cased`.
391
392
            - a path to a *directory* containing a configuration file saved using the
              [`~PreTrainedTokenizer.save_pretrained`] method, e.g., `./my_model_directory/`.
393

394
        cache_dir (`str` or `os.PathLike`, *optional*):
395
396
            Path to a directory in which a downloaded pretrained model configuration should be cached if the standard
            cache should not be used.
397
        force_download (`bool`, *optional*, defaults to `False`):
398
399
            Whether or not to force to (re-)download the configuration files and override the cached versions if they
            exist.
400
        resume_download (`bool`, *optional*, defaults to `False`):
401
            Whether or not to delete incompletely received file. Attempts to resume the download if such a file exists.
402
        proxies (`Dict[str, str]`, *optional*):
Sylvain Gugger's avatar
Sylvain Gugger committed
403
404
            A dictionary of proxy servers to use by protocol or endpoint, e.g., `{'http': 'foo.bar:3128',
            'http://hostname': 'foo.bar:4012'}.` The proxies are used on each request.
405
        use_auth_token (`str` or *bool*, *optional*):
Sylvain Gugger's avatar
Sylvain Gugger committed
406
            The token to use as HTTP bearer authorization for remote files. If `True`, will use the token generated
407
            when running `huggingface-cli login` (stored in `~/.huggingface`).
408
        revision (`str`, *optional*, defaults to `"main"`):
409
            The specific model version to use. It can be a branch name, a tag name, or a commit id, since we use a
410
            git-based system for storing models and other artifacts on huggingface.co, so `revision` can be any
411
            identifier allowed by git.
412
413
        local_files_only (`bool`, *optional*, defaults to `False`):
            If `True`, will only try to load the tokenizer configuration from local files.
414
415
416
        subfolder (`str`, *optional*, defaults to `""`):
            In case the tokenizer config is located inside a subfolder of the model repo on huggingface.co, you can
            specify the folder name here.
417

418
    <Tip>
419

420
    Passing `use_auth_token=True` is required when you want to use a private model.
421

422
    </Tip>
423
424

    Returns:
425
        `Dict`: The configuration of the tokenizer.
426

427
    Examples:
428

429
430
431
432
433
    ```python
    # Download configuration from huggingface.co and cache.
    tokenizer_config = get_tokenizer_config("bert-base-uncased")
    # This model does not have a tokenizer config so the result will be an empty dict.
    tokenizer_config = get_tokenizer_config("xlm-roberta-base")
434

435
436
    # Save a pretrained tokenizer locally and you can reload its config
    from transformers import AutoTokenizer
437

438
439
440
441
    tokenizer = AutoTokenizer.from_pretrained("bert-base-cased")
    tokenizer.save_pretrained("tokenizer-test")
    tokenizer_config = get_tokenizer_config("tokenizer-test")
    ```"""
442
443
    commit_hash = kwargs.get("_commit_hash", None)
    resolved_config_file = cached_file(
444
445
446
447
448
449
450
451
452
        pretrained_model_name_or_path,
        TOKENIZER_CONFIG_FILE,
        cache_dir=cache_dir,
        force_download=force_download,
        resume_download=resume_download,
        proxies=proxies,
        use_auth_token=use_auth_token,
        revision=revision,
        local_files_only=local_files_only,
453
        subfolder=subfolder,
454
455
456
        _raise_exceptions_for_missing_entries=False,
        _raise_exceptions_for_connection_errors=False,
        _commit_hash=commit_hash,
457
458
    )
    if resolved_config_file is None:
459
460
        logger.info("Could not locate the tokenizer configuration file, will try to use the model config instead.")
        return {}
461
    commit_hash = extract_commit_hash(resolved_config_file, commit_hash)
462
463

    with open(resolved_config_file, encoding="utf-8") as reader:
464
465
466
        result = json.load(reader)
    result["_commit_hash"] = commit_hash
    return result
467
468


Julien Chaumond's avatar
Julien Chaumond committed
469
class AutoTokenizer:
470
    r"""
Sylvain Gugger's avatar
Sylvain Gugger committed
471
    This is a generic tokenizer class that will be instantiated as one of the tokenizer classes of the library when
472
    created with the [`AutoTokenizer.from_pretrained`] class method.
thomwolf's avatar
thomwolf committed
473

474
    This class cannot be instantiated directly using `__init__()` (throws an error).
thomwolf's avatar
thomwolf committed
475
    """
476

thomwolf's avatar
thomwolf committed
477
    def __init__(self):
478
479
480
481
        raise EnvironmentError(
            "AutoTokenizer is designed to be instantiated "
            "using the `AutoTokenizer.from_pretrained(pretrained_model_name_or_path)` method."
        )
thomwolf's avatar
thomwolf committed
482
483

    @classmethod
484
    @replace_list_option_in_docstrings(TOKENIZER_MAPPING_NAMES)
thomwolf's avatar
thomwolf committed
485
    def from_pretrained(cls, pretrained_model_name_or_path, *inputs, **kwargs):
486
487
        r"""
        Instantiate one of the tokenizer classes of the library from a pretrained model vocabulary.
thomwolf's avatar
thomwolf committed
488

Sylvain Gugger's avatar
Sylvain Gugger committed
489
490
491
        The tokenizer class to instantiate is selected based on the `model_type` property of the config object (either
        passed as an argument or loaded from `pretrained_model_name_or_path` if possible), or when it's missing, by
        falling back to using pattern matching on `pretrained_model_name_or_path`:
492

493
        List options
thomwolf's avatar
thomwolf committed
494
495

        Params:
496
            pretrained_model_name_or_path (`str` or `os.PathLike`):
497
498
                Can be either:

499
                    - A string, the *model id* of a predefined tokenizer hosted inside a model repo on huggingface.co.
Sylvain Gugger's avatar
Sylvain Gugger committed
500
501
                      Valid model ids can be located at the root-level, like `bert-base-uncased`, or namespaced under a
                      user or organization name, like `dbmdz/bert-base-german-cased`.
502
                    - A path to a *directory* containing vocabulary files required by the tokenizer, for instance saved
Sylvain Gugger's avatar
Sylvain Gugger committed
503
                      using the [`~PreTrainedTokenizer.save_pretrained`] method, e.g., `./my_model_directory/`.
504
                    - A path or url to a single saved vocabulary file if and only if the tokenizer only requires a
505
                      single vocabulary file (like Bert or XLNet), e.g.: `./my_model_directory/vocab.txt`. (Not
Sylvain Gugger's avatar
Sylvain Gugger committed
506
                      applicable to all derived classes)
507
508
509
            inputs (additional positional arguments, *optional*):
                Will be passed along to the Tokenizer `__init__()` method.
            config ([`PretrainedConfig`], *optional*)
510
                The configuration object used to dertermine the tokenizer class to instantiate.
511
            cache_dir (`str` or `os.PathLike`, *optional*):
512
513
                Path to a directory in which a downloaded pretrained model configuration should be cached if the
                standard cache should not be used.
514
            force_download (`bool`, *optional*, defaults to `False`):
515
516
                Whether or not to force the (re-)download the model weights and configuration files and override the
                cached versions if they exist.
517
            resume_download (`bool`, *optional*, defaults to `False`):
518
519
                Whether or not to delete incompletely received files. Will attempt to resume the download if such a
                file exists.
520
            proxies (`Dict[str, str]`, *optional*):
Sylvain Gugger's avatar
Sylvain Gugger committed
521
522
                A dictionary of proxy servers to use by protocol or endpoint, e.g., `{'http': 'foo.bar:3128',
                'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request.
523
            revision (`str`, *optional*, defaults to `"main"`):
Julien Chaumond's avatar
Julien Chaumond committed
524
                The specific model version to use. It can be a branch name, a tag name, or a commit id, since we use a
525
                git-based system for storing models and other artifacts on huggingface.co, so `revision` can be any
Julien Chaumond's avatar
Julien Chaumond committed
526
                identifier allowed by git.
527
            subfolder (`str`, *optional*):
528
529
                In case the relevant files are located inside a subfolder of the model repo on huggingface.co (e.g. for
                facebook/rag-token-base), specify it here.
530
            use_fast (`bool`, *optional*, defaults to `True`):
531
532
533
                Use a [fast Rust-based tokenizer](https://huggingface.co/docs/tokenizers/index) if it is supported for
                a given model. If a fast tokenizer is not available for a given model, a normal Python-based tokenizer
                is returned instead.
534
            tokenizer_type (`str`, *optional*):
535
                Tokenizer type to be loaded.
536
            trust_remote_code (`bool`, *optional*, defaults to `False`):
537
                Whether or not to allow for custom models defined on the Hub in their own modeling files. This option
Sylvain Gugger's avatar
Sylvain Gugger committed
538
539
                should only be set to `True` for repositories you trust and in which you have read the code, as it will
                execute code present on the Hub on your local machine.
540
541
            kwargs (additional keyword arguments, *optional*):
                Will be passed to the Tokenizer `__init__()` method. Can be used to set special tokens like
Sylvain Gugger's avatar
Sylvain Gugger committed
542
543
                `bos_token`, `eos_token`, `unk_token`, `sep_token`, `pad_token`, `cls_token`, `mask_token`,
                `additional_special_tokens`. See parameters in the `__init__()` for more details.
thomwolf's avatar
thomwolf committed
544

545
        Examples:
546

547
548
        ```python
        >>> from transformers import AutoTokenizer
549

550
        >>> # Download vocabulary from huggingface.co and cache.
Sylvain Gugger's avatar
Sylvain Gugger committed
551
        >>> tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased")
552

553
        >>> # Download vocabulary from huggingface.co (user-uploaded) and cache.
Sylvain Gugger's avatar
Sylvain Gugger committed
554
        >>> tokenizer = AutoTokenizer.from_pretrained("dbmdz/bert-base-german-cased")
thomwolf's avatar
thomwolf committed
555

556
        >>> # If vocabulary files are in a directory (e.g. tokenizer was saved using *save_pretrained('./test/saved_model/')*)
Sylvain Gugger's avatar
Sylvain Gugger committed
557
        >>> tokenizer = AutoTokenizer.from_pretrained("./test/bert_saved_model/")
558
559
560

        >>> # Download vocabulary from huggingface.co and define model-specific arguments
        >>> tokenizer = AutoTokenizer.from_pretrained("roberta-base", add_prefix_space=True)
561
        ```"""
562
        config = kwargs.pop("config", None)
563
        kwargs["_from_auto"] = True
564

565
        use_fast = kwargs.pop("use_fast", True)
566
        tokenizer_type = kwargs.pop("tokenizer_type", None)
567
        trust_remote_code = kwargs.pop("trust_remote_code", False)
568

569
570
571
572
573
574
575
576
577
578
579
580
581
        # First, let's see whether the tokenizer_type is passed so that we can leverage it
        if tokenizer_type is not None:
            tokenizer_class = None
            tokenizer_class_tuple = TOKENIZER_MAPPING_NAMES.get(tokenizer_type, None)

            if tokenizer_class_tuple is None:
                raise ValueError(
                    f"Passed `tokenizer_type` {tokenizer_type} does not exist. `tokenizer_type` should be one of "
                    f"{', '.join(c for c in TOKENIZER_MAPPING_NAMES.keys())}."
                )

            tokenizer_class_name, tokenizer_fast_class_name = tokenizer_class_tuple

Arthur's avatar
Arthur committed
582
583
584
585
586
587
588
589
            if use_fast:
                if tokenizer_fast_class_name is not None:
                    tokenizer_class = tokenizer_class_from_name(tokenizer_fast_class_name)
                else:
                    logger.warning(
                        "`use_fast` is set to `True` but the tokenizer class does not have a fast version. "
                        " Falling back to the slow version."
                    )
590
591
592
593
594
595
596
597
598
            if tokenizer_class is None:
                tokenizer_class = tokenizer_class_from_name(tokenizer_class_name)

            if tokenizer_class is None:
                raise ValueError(f"Tokenizer class {tokenizer_class_name} is not currently imported.")

            return tokenizer_class.from_pretrained(pretrained_model_name_or_path, *inputs, **kwargs)

        # Next, let's try to use the tokenizer_config file to get the tokenizer class.
599
        tokenizer_config = get_tokenizer_config(pretrained_model_name_or_path, **kwargs)
600
601
        if "_commit_hash" in tokenizer_config:
            kwargs["_commit_hash"] = tokenizer_config["_commit_hash"]
602
        config_tokenizer_class = tokenizer_config.get("tokenizer_class")
603
604
605
606
607
608
609
        tokenizer_auto_map = None
        if "auto_map" in tokenizer_config:
            if isinstance(tokenizer_config["auto_map"], (tuple, list)):
                # Legacy format for dynamic tokenizers
                tokenizer_auto_map = tokenizer_config["auto_map"]
            else:
                tokenizer_auto_map = tokenizer_config["auto_map"].get("AutoTokenizer", None)
610
611
612
613

        # If that did not work, let's try to use the config.
        if config_tokenizer_class is None:
            if not isinstance(config, PretrainedConfig):
614
615
616
                config = AutoConfig.from_pretrained(
                    pretrained_model_name_or_path, trust_remote_code=trust_remote_code, **kwargs
                )
617
            config_tokenizer_class = config.tokenizer_class
618
619
            if hasattr(config, "auto_map") and "AutoTokenizer" in config.auto_map:
                tokenizer_auto_map = config.auto_map["AutoTokenizer"]
620
621
622

        # If we have the tokenizer class from the tokenizer config or the model config we're good!
        if config_tokenizer_class is not None:
623
            tokenizer_class = None
624
625
626
            if tokenizer_auto_map is not None:
                if not trust_remote_code:
                    raise ValueError(
Sylvain Gugger's avatar
Sylvain Gugger committed
627
628
629
                        f"Loading {pretrained_model_name_or_path} requires you to execute the tokenizer file in that"
                        " repo on your local machine. Make sure you have read the code there to avoid malicious use,"
                        " then set the option `trust_remote_code=True` to remove this error."
630
631
                    )
                if kwargs.get("revision", None) is None:
632
                    logger.warning(
Sylvain Gugger's avatar
Sylvain Gugger committed
633
634
                        "Explicitly passing a `revision` is encouraged when loading a model with custom code to ensure"
                        " no malicious code has been contributed in a newer revision."
635
636
637
638
639
640
641
642
643
644
645
                    )

                if use_fast and tokenizer_auto_map[1] is not None:
                    class_ref = tokenizer_auto_map[1]
                else:
                    class_ref = tokenizer_auto_map[0]

                module_file, class_name = class_ref.split(".")
                tokenizer_class = get_class_from_dynamic_module(
                    pretrained_model_name_or_path, module_file + ".py", class_name, **kwargs
                )
646
                tokenizer_class.register_for_auto_class()
647
648

            elif use_fast and not config_tokenizer_class.endswith("Fast"):
649
                tokenizer_class_candidate = f"{config_tokenizer_class}Fast"
650
651
                tokenizer_class = tokenizer_class_from_name(tokenizer_class_candidate)
            if tokenizer_class is None:
652
                tokenizer_class_candidate = config_tokenizer_class
653
654
                tokenizer_class = tokenizer_class_from_name(tokenizer_class_candidate)

655
            if tokenizer_class is None:
656
                raise ValueError(
657
                    f"Tokenizer class {tokenizer_class_candidate} does not exist or is not currently imported."
658
                )
659
660
            return tokenizer_class.from_pretrained(pretrained_model_name_or_path, *inputs, **kwargs)

661
        # Otherwise we have to be creative.
662
663
664
        # if model is an encoder decoder, the encoder tokenizer class is used by default
        if isinstance(config, EncoderDecoderConfig):
            if type(config.decoder) is not type(config.encoder):  # noqa: E721
665
                logger.warning(
666
                    f"The encoder model config class: {config.encoder.__class__} is different from the decoder model "
667
                    f"config class: {config.decoder.__class__}. It is not recommended to use the "
668
669
                    "`AutoTokenizer.from_pretrained()` method in this case. Please use the encoder and decoder "
                    "specific tokenizer classes."
670
671
672
                )
            config = config.encoder

673
674
        model_type = config_class_to_model_type(type(config).__name__)
        if model_type is not None:
675
            tokenizer_class_py, tokenizer_class_fast = TOKENIZER_MAPPING[type(config)]
676
            if tokenizer_class_fast and (use_fast or tokenizer_class_py is None):
677
678
                return tokenizer_class_fast.from_pretrained(pretrained_model_name_or_path, *inputs, **kwargs)
            else:
679
680
681
682
683
684
685
                if tokenizer_class_py is not None:
                    return tokenizer_class_py.from_pretrained(pretrained_model_name_or_path, *inputs, **kwargs)
                else:
                    raise ValueError(
                        "This tokenizer cannot be instantiated. Please make sure you have `sentencepiece` installed "
                        "in order to use this tokenizer."
                    )
686

687
        raise ValueError(
688
689
            f"Unrecognized configuration class {config.__class__} to build an AutoTokenizer.\n"
            f"Model type should be one of {', '.join(c.__name__ for c in TOKENIZER_MAPPING.keys())}."
690
        )
691
692
693
694
695
696
697

    def register(config_class, slow_tokenizer_class=None, fast_tokenizer_class=None):
        """
        Register a new tokenizer in this mapping.


        Args:
698
            config_class ([`PretrainedConfig`]):
699
                The configuration corresponding to the model to register.
700
            slow_tokenizer_class ([`PretrainedTokenizer`], *optional*):
701
                The slow tokenizer to register.
702
            slow_tokenizer_class ([`PretrainedTokenizerFast`], *optional*):
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
                The fast tokenizer to register.
        """
        if slow_tokenizer_class is None and fast_tokenizer_class is None:
            raise ValueError("You need to pass either a `slow_tokenizer_class` or a `fast_tokenizer_class")
        if slow_tokenizer_class is not None and issubclass(slow_tokenizer_class, PreTrainedTokenizerFast):
            raise ValueError("You passed a fast tokenizer in the `slow_tokenizer_class`.")
        if fast_tokenizer_class is not None and issubclass(fast_tokenizer_class, PreTrainedTokenizer):
            raise ValueError("You passed a slow tokenizer in the `fast_tokenizer_class`.")

        if (
            slow_tokenizer_class is not None
            and fast_tokenizer_class is not None
            and issubclass(fast_tokenizer_class, PreTrainedTokenizerFast)
            and fast_tokenizer_class.slow_tokenizer_class != slow_tokenizer_class
        ):
            raise ValueError(
                "The fast tokenizer class you are passing has a `slow_tokenizer_class` attribute that is not "
                "consistent with the slow tokenizer class you passed (fast tokenizer has "
                f"{fast_tokenizer_class.slow_tokenizer_class} and you passed {slow_tokenizer_class}. Fix one of those "
                "so they match!"
            )

        # Avoid resetting a set slow/fast tokenizer if we are passing just the other ones.
        if config_class in TOKENIZER_MAPPING._extra_content:
            existing_slow, existing_fast = TOKENIZER_MAPPING[config_class]
            if slow_tokenizer_class is None:
                slow_tokenizer_class = existing_slow
            if fast_tokenizer_class is None:
                fast_tokenizer_class = existing_fast

        TOKENIZER_MAPPING.register(config_class, (slow_tokenizer_class, fast_tokenizer_class))