tokenization_auto.py 32.7 KB
Newer Older
thomwolf's avatar
thomwolf committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# coding=utf-8
# Copyright 2018 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Sylvain Gugger's avatar
Sylvain Gugger committed
15
""" Auto Tokenizer class."""
thomwolf's avatar
thomwolf committed
16

17
import importlib
18
19
import json
import os
20
from collections import OrderedDict
21
from typing import TYPE_CHECKING, Dict, Optional, Tuple, Union
thomwolf's avatar
thomwolf committed
22

Sylvain Gugger's avatar
Sylvain Gugger committed
23
from ...configuration_utils import PretrainedConfig
24
from ...dynamic_module_utils import get_class_from_dynamic_module
25
from ...tokenization_utils import PreTrainedTokenizer
26
from ...tokenization_utils_base import TOKENIZER_CONFIG_FILE
27
from ...tokenization_utils_fast import PreTrainedTokenizerFast
28
from ...utils import get_file_from_repo, is_sentencepiece_available, is_tokenizers_available, logging
29
30
from ..encoder_decoder import EncoderDecoderConfig
from .auto_factory import _LazyAutoMapping
31
from .configuration_auto import (
32
    CONFIG_MAPPING_NAMES,
33
    AutoConfig,
34
    config_class_to_model_type,
35
    model_type_to_module_name,
36
    replace_list_option_in_docstrings,
37
)
Aymeric Augustin's avatar
Aymeric Augustin committed
38

thomwolf's avatar
thomwolf committed
39

Lysandre Debut's avatar
Lysandre Debut committed
40
logger = logging.get_logger(__name__)
thomwolf's avatar
thomwolf committed
41

42
43
44
45
46
47
48
if TYPE_CHECKING:
    # This significantly improves completion suggestion performance when
    # the transformers package is used with Microsoft's Pylance language server.
    TOKENIZER_MAPPING_NAMES: OrderedDict[str, Tuple[Optional[str], Optional[str]]] = OrderedDict()
else:
    TOKENIZER_MAPPING_NAMES = OrderedDict(
        [
49
            (
50
                "albert",
51
                (
52
53
                    "AlbertTokenizer" if is_sentencepiece_available() else None,
                    "AlbertTokenizerFast" if is_tokenizers_available() else None,
54
                ),
55
            ),
56
            ("bart", ("BartTokenizer", "BartTokenizerFast")),
57
            (
58
                "barthez",
59
                (
60
61
                    "BarthezTokenizer" if is_sentencepiece_available() else None,
                    "BarthezTokenizerFast" if is_tokenizers_available() else None,
62
                ),
63
            ),
64
65
66
67
68
            ("bartpho", ("BartphoTokenizer", None)),
            ("bert", ("BertTokenizer", "BertTokenizerFast" if is_tokenizers_available() else None)),
            ("bert-generation", ("BertGenerationTokenizer" if is_sentencepiece_available() else None, None)),
            ("bert-japanese", ("BertJapaneseTokenizer", None)),
            ("bertweet", ("BertweetTokenizer", None)),
69
            (
70
                "big_bird",
71
                (
72
73
                    "BigBirdTokenizer" if is_sentencepiece_available() else None,
                    "BigBirdTokenizerFast" if is_tokenizers_available() else None,
74
                ),
75
            ),
76
77
78
            ("bigbird_pegasus", ("PegasusTokenizer", "PegasusTokenizerFast" if is_tokenizers_available() else None)),
            ("blenderbot", ("BlenderbotTokenizer", "BlenderbotTokenizerFast")),
            ("blenderbot-small", ("BlenderbotSmallTokenizer", None)),
Younes Belkada's avatar
Younes Belkada committed
79
            ("bloom", (None, "BloomTokenizerFast" if is_tokenizers_available() else None)),
80
            ("byt5", ("ByT5Tokenizer", None)),
81
            (
82
83
84
85
86
                "camembert",
                (
                    "CamembertTokenizer" if is_sentencepiece_available() else None,
                    "CamembertTokenizerFast" if is_tokenizers_available() else None,
                ),
87
            ),
88
            ("canine", ("CanineTokenizer", None)),
89
            (
90
                "clip",
91
                (
92
93
                    "CLIPTokenizer",
                    "CLIPTokenizerFast" if is_tokenizers_available() else None,
94
                ),
95
            ),
96
            ("convbert", ("ConvBertTokenizer", "ConvBertTokenizerFast" if is_tokenizers_available() else None)),
97
            (
98
                "cpm",
99
                (
100
101
                    "CpmTokenizer" if is_sentencepiece_available() else None,
                    "CpmTokenizerFast" if is_tokenizers_available() else None,
102
                ),
103
            ),
104
105
106
            ("ctrl", ("CTRLTokenizer", None)),
            ("data2vec-text", ("RobertaTokenizer", "RobertaTokenizerFast" if is_tokenizers_available() else None)),
            ("deberta", ("DebertaTokenizer", "DebertaTokenizerFast" if is_tokenizers_available() else None)),
107
            (
108
                "deberta-v2",
109
                (
110
111
                    "DebertaV2Tokenizer" if is_sentencepiece_available() else None,
                    "DebertaV2TokenizerFast" if is_tokenizers_available() else None,
112
                ),
113
            ),
114
            ("distilbert", ("DistilBertTokenizer", "DistilBertTokenizerFast" if is_tokenizers_available() else None)),
115
            (
116
                "dpr",
117
                (
118
119
                    "DPRQuestionEncoderTokenizer",
                    "DPRQuestionEncoderTokenizerFast" if is_tokenizers_available() else None,
120
                ),
121
            ),
122
            ("electra", ("ElectraTokenizer", "ElectraTokenizerFast" if is_tokenizers_available() else None)),
123
124
125
            ("flaubert", ("FlaubertTokenizer", None)),
            ("fnet", ("FNetTokenizer", "FNetTokenizerFast" if is_tokenizers_available() else None)),
            ("fsmt", ("FSMTTokenizer", None)),
126
            ("funnel", ("FunnelTokenizer", "FunnelTokenizerFast" if is_tokenizers_available() else None)),
127
128
            ("gpt2", ("GPT2Tokenizer", "GPT2TokenizerFast" if is_tokenizers_available() else None)),
            ("gpt_neo", ("GPT2Tokenizer", "GPT2TokenizerFast" if is_tokenizers_available() else None)),
129
            ("gpt_neox", (None, "GPTNeoXTokenizerFast" if is_tokenizers_available() else None)),
130
131
132
133
            ("gptj", ("GPT2Tokenizer", "GPT2TokenizerFast" if is_tokenizers_available() else None)),
            ("herbert", ("HerbertTokenizer", "HerbertTokenizerFast" if is_tokenizers_available() else None)),
            ("hubert", ("Wav2Vec2CTCTokenizer", None)),
            ("ibert", ("RobertaTokenizer", "RobertaTokenizerFast" if is_tokenizers_available() else None)),
134
            ("layoutlm", ("LayoutLMTokenizer", "LayoutLMTokenizerFast" if is_tokenizers_available() else None)),
135
            ("layoutlmv2", ("LayoutLMv2Tokenizer", "LayoutLMv2TokenizerFast" if is_tokenizers_available() else None)),
NielsRogge's avatar
NielsRogge committed
136
            ("layoutlmv3", ("LayoutLMv3Tokenizer", "LayoutLMv3TokenizerFast" if is_tokenizers_available() else None)),
137
            ("layoutxlm", ("LayoutXLMTokenizer", "LayoutXLMTokenizerFast" if is_tokenizers_available() else None)),
138
139
            ("led", ("LEDTokenizer", "LEDTokenizerFast" if is_tokenizers_available() else None)),
            ("longformer", ("LongformerTokenizer", "LongformerTokenizerFast" if is_tokenizers_available() else None)),
Daniel Stancl's avatar
Daniel Stancl committed
140
141
142
143
144
145
146
            (
                "longt5",
                (
                    "T5Tokenizer" if is_sentencepiece_available() else None,
                    "T5TokenizerFast" if is_tokenizers_available() else None,
                ),
            ),
147
148
149
150
            ("luke", ("LukeTokenizer", None)),
            ("lxmert", ("LxmertTokenizer", "LxmertTokenizerFast" if is_tokenizers_available() else None)),
            ("m2m_100", ("M2M100Tokenizer" if is_sentencepiece_available() else None, None)),
            ("marian", ("MarianTokenizer" if is_sentencepiece_available() else None, None)),
151
            (
152
                "mbart",
153
                (
154
155
                    "MBartTokenizer" if is_sentencepiece_available() else None,
                    "MBartTokenizerFast" if is_tokenizers_available() else None,
156
                ),
157
158
            ),
            (
159
                "mbart50",
160
                (
161
162
                    "MBart50Tokenizer" if is_sentencepiece_available() else None,
                    "MBart50TokenizerFast" if is_tokenizers_available() else None,
163
                ),
164
            ),
165
166
167
168
            ("megatron-bert", ("BertTokenizer", "BertTokenizerFast" if is_tokenizers_available() else None)),
            ("mluke", ("MLukeTokenizer" if is_sentencepiece_available() else None, None)),
            ("mobilebert", ("MobileBertTokenizer", "MobileBertTokenizerFast" if is_tokenizers_available() else None)),
            ("mpnet", ("MPNetTokenizer", "MPNetTokenizerFast" if is_tokenizers_available() else None)),
169
            (
170
                "mt5",
171
                (
172
173
                    "MT5Tokenizer" if is_sentencepiece_available() else None,
                    "MT5TokenizerFast" if is_tokenizers_available() else None,
174
175
                ),
            ),
176
            ("nezha", ("BertTokenizer", "BertTokenizerFast" if is_tokenizers_available() else None)),
177
            (
178
                "nystromformer",
179
                (
180
181
                    "AlbertTokenizer" if is_sentencepiece_available() else None,
                    "AlbertTokenizerFast" if is_tokenizers_available() else None,
182
                ),
183
            ),
184
185
            ("openai-gpt", ("OpenAIGPTTokenizer", "OpenAIGPTTokenizerFast" if is_tokenizers_available() else None)),
            ("opt", ("GPT2Tokenizer", None)),
186
            (
187
                "pegasus",
188
                (
189
190
                    "PegasusTokenizer" if is_sentencepiece_available() else None,
                    "PegasusTokenizerFast" if is_tokenizers_available() else None,
191
                ),
192
            ),
193
            (
194
                "perceiver",
195
                (
196
197
                    "PerceiverTokenizer",
                    None,
198
199
                ),
            ),
200
201
202
203
204
205
            ("phobert", ("PhobertTokenizer", None)),
            ("plbart", ("PLBartTokenizer" if is_sentencepiece_available() else None, None)),
            ("prophetnet", ("ProphetNetTokenizer", None)),
            ("qdqbert", ("BertTokenizer", "BertTokenizerFast" if is_tokenizers_available() else None)),
            ("rag", ("RagTokenizer", None)),
            ("realm", ("RealmTokenizer", "RealmTokenizerFast" if is_tokenizers_available() else None)),
206
            (
207
                "reformer",
208
                (
209
210
                    "ReformerTokenizer" if is_sentencepiece_available() else None,
                    "ReformerTokenizerFast" if is_tokenizers_available() else None,
211
212
                ),
            ),
213
214
215
216
217
218
219
            (
                "rembert",
                (
                    "RemBertTokenizer" if is_sentencepiece_available() else None,
                    "RemBertTokenizerFast" if is_tokenizers_available() else None,
                ),
            ),
220
221
222
223
224
225
            ("retribert", ("RetriBertTokenizer", "RetriBertTokenizerFast" if is_tokenizers_available() else None)),
            ("roberta", ("RobertaTokenizer", "RobertaTokenizerFast" if is_tokenizers_available() else None)),
            ("roformer", ("RoFormerTokenizer", "RoFormerTokenizerFast" if is_tokenizers_available() else None)),
            ("speech_to_text", ("Speech2TextTokenizer" if is_sentencepiece_available() else None, None)),
            ("speech_to_text_2", ("Speech2Text2Tokenizer", None)),
            ("splinter", ("SplinterTokenizer", "SplinterTokenizerFast")),
226
            (
227
228
                "squeezebert",
                ("SqueezeBertTokenizer", "SqueezeBertTokenizerFast" if is_tokenizers_available() else None),
229
            ),
230
            (
231
                "t5",
232
                (
233
234
                    "T5Tokenizer" if is_sentencepiece_available() else None,
                    "T5TokenizerFast" if is_tokenizers_available() else None,
235
236
                ),
            ),
237
238
239
            ("tapas", ("TapasTokenizer", None)),
            ("tapex", ("TapexTokenizer", None)),
            ("transfo-xl", ("TransfoXLTokenizer", None)),
240
            ("vilt", ("BertTokenizer", "BertTokenizerFast" if is_tokenizers_available() else None)),
241
242
            ("visual_bert", ("BertTokenizer", "BertTokenizerFast" if is_tokenizers_available() else None)),
            ("wav2vec2", ("Wav2Vec2CTCTokenizer", None)),
243
            ("wav2vec2-conformer", ("Wav2Vec2CTCTokenizer", None)),
244
            ("wav2vec2_phoneme", ("Wav2Vec2PhonemeCTCTokenizer", None)),
245
246
247
248
249
250
251
            (
                "xglm",
                (
                    "XGLMTokenizer" if is_sentencepiece_available() else None,
                    "XGLMTokenizerFast" if is_tokenizers_available() else None,
                ),
            ),
252
253
            ("xlm", ("XLMTokenizer", None)),
            ("xlm-prophetnet", ("XLMProphetNetTokenizer" if is_sentencepiece_available() else None, None)),
254
            (
255
                "xlm-roberta",
256
                (
257
258
                    "XLMRobertaTokenizer" if is_sentencepiece_available() else None,
                    "XLMRobertaTokenizerFast" if is_tokenizers_available() else None,
259
260
261
                ),
            ),
            ("xlm-roberta-xl", ("RobertaTokenizer", "RobertaTokenizerFast" if is_tokenizers_available() else None)),
262
263
264
265
266
267
268
            (
                "xlnet",
                (
                    "XLNetTokenizer" if is_sentencepiece_available() else None,
                    "XLNetTokenizerFast" if is_tokenizers_available() else None,
                ),
            ),
269
270
271
272
273
274
275
            (
                "yoso",
                (
                    "AlbertTokenizer" if is_sentencepiece_available() else None,
                    "AlbertTokenizerFast" if is_tokenizers_available() else None,
                ),
            ),
276
277
        ]
    )
278

279
280
281
TOKENIZER_MAPPING = _LazyAutoMapping(CONFIG_MAPPING_NAMES, TOKENIZER_MAPPING_NAMES)

CONFIG_TO_TYPE = {v: k for k, v in CONFIG_MAPPING_NAMES.items()}
282

283

284
def tokenizer_class_from_name(class_name: str):
285
286
287
288
289
    if class_name == "PreTrainedTokenizerFast":
        return PreTrainedTokenizerFast

    for module_name, tokenizers in TOKENIZER_MAPPING_NAMES.items():
        if class_name in tokenizers:
290
            module_name = model_type_to_module_name(module_name)
291

292
            module = importlib.import_module(f".{module_name}", "transformers.models")
293
294
295
296
            try:
                return getattr(module, class_name)
            except AttributeError:
                continue
297

298
299
300
301
302
    for config, tokenizers in TOKENIZER_MAPPING._extra_content.items():
        for tokenizer in tokenizers:
            if getattr(tokenizer, "__name__", None) == class_name:
                return tokenizer

303
304
305
306
307
308
    # We did not fine the class, but maybe it's because a dep is missing. In that case, the class will be in the main
    # init and we return the proper dummy to get an appropriate error message.
    main_module = importlib.import_module("transformers")
    if hasattr(main_module, class_name):
        return getattr(main_module, class_name)

309
    return None
310
311


312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
def get_tokenizer_config(
    pretrained_model_name_or_path: Union[str, os.PathLike],
    cache_dir: Optional[Union[str, os.PathLike]] = None,
    force_download: bool = False,
    resume_download: bool = False,
    proxies: Optional[Dict[str, str]] = None,
    use_auth_token: Optional[Union[bool, str]] = None,
    revision: Optional[str] = None,
    local_files_only: bool = False,
    **kwargs,
):
    """
    Loads the tokenizer configuration from a pretrained model tokenizer configuration.

    Args:
327
        pretrained_model_name_or_path (`str` or `os.PathLike`):
328
329
            This can be either:

330
            - a string, the *model id* of a pretrained model configuration hosted inside a model repo on
Sylvain Gugger's avatar
Sylvain Gugger committed
331
332
              huggingface.co. Valid model ids can be located at the root-level, like `bert-base-uncased`, or namespaced
              under a user or organization name, like `dbmdz/bert-base-german-cased`.
333
334
            - a path to a *directory* containing a configuration file saved using the
              [`~PreTrainedTokenizer.save_pretrained`] method, e.g., `./my_model_directory/`.
335

336
        cache_dir (`str` or `os.PathLike`, *optional*):
337
338
            Path to a directory in which a downloaded pretrained model configuration should be cached if the standard
            cache should not be used.
339
        force_download (`bool`, *optional*, defaults to `False`):
340
341
            Whether or not to force to (re-)download the configuration files and override the cached versions if they
            exist.
342
        resume_download (`bool`, *optional*, defaults to `False`):
343
            Whether or not to delete incompletely received file. Attempts to resume the download if such a file exists.
344
        proxies (`Dict[str, str]`, *optional*):
Sylvain Gugger's avatar
Sylvain Gugger committed
345
346
            A dictionary of proxy servers to use by protocol or endpoint, e.g., `{'http': 'foo.bar:3128',
            'http://hostname': 'foo.bar:4012'}.` The proxies are used on each request.
347
        use_auth_token (`str` or *bool*, *optional*):
Sylvain Gugger's avatar
Sylvain Gugger committed
348
349
            The token to use as HTTP bearer authorization for remote files. If `True`, will use the token generated
            when running `transformers-cli login` (stored in `~/.huggingface`).
350
        revision (`str`, *optional*, defaults to `"main"`):
351
            The specific model version to use. It can be a branch name, a tag name, or a commit id, since we use a
352
            git-based system for storing models and other artifacts on huggingface.co, so `revision` can be any
353
            identifier allowed by git.
354
355
        local_files_only (`bool`, *optional*, defaults to `False`):
            If `True`, will only try to load the tokenizer configuration from local files.
356

357
    <Tip>
358

359
    Passing `use_auth_token=True` is required when you want to use a private model.
360

361
    </Tip>
362
363

    Returns:
364
        `Dict`: The configuration of the tokenizer.
365

366
    Examples:
367

368
369
370
371
372
    ```python
    # Download configuration from huggingface.co and cache.
    tokenizer_config = get_tokenizer_config("bert-base-uncased")
    # This model does not have a tokenizer config so the result will be an empty dict.
    tokenizer_config = get_tokenizer_config("xlm-roberta-base")
373

374
375
    # Save a pretrained tokenizer locally and you can reload its config
    from transformers import AutoTokenizer
376

377
378
379
380
    tokenizer = AutoTokenizer.from_pretrained("bert-base-cased")
    tokenizer.save_pretrained("tokenizer-test")
    tokenizer_config = get_tokenizer_config("tokenizer-test")
    ```"""
381
382
383
384
385
386
387
388
389
390
391
392
    resolved_config_file = get_file_from_repo(
        pretrained_model_name_or_path,
        TOKENIZER_CONFIG_FILE,
        cache_dir=cache_dir,
        force_download=force_download,
        resume_download=resume_download,
        proxies=proxies,
        use_auth_token=use_auth_token,
        revision=revision,
        local_files_only=local_files_only,
    )
    if resolved_config_file is None:
393
394
395
396
397
398
399
        logger.info("Could not locate the tokenizer configuration file, will try to use the model config instead.")
        return {}

    with open(resolved_config_file, encoding="utf-8") as reader:
        return json.load(reader)


Julien Chaumond's avatar
Julien Chaumond committed
400
class AutoTokenizer:
401
    r"""
Sylvain Gugger's avatar
Sylvain Gugger committed
402
    This is a generic tokenizer class that will be instantiated as one of the tokenizer classes of the library when
403
    created with the [`AutoTokenizer.from_pretrained`] class method.
thomwolf's avatar
thomwolf committed
404

405
    This class cannot be instantiated directly using `__init__()` (throws an error).
thomwolf's avatar
thomwolf committed
406
    """
407

thomwolf's avatar
thomwolf committed
408
    def __init__(self):
409
410
411
412
        raise EnvironmentError(
            "AutoTokenizer is designed to be instantiated "
            "using the `AutoTokenizer.from_pretrained(pretrained_model_name_or_path)` method."
        )
thomwolf's avatar
thomwolf committed
413
414

    @classmethod
415
    @replace_list_option_in_docstrings(TOKENIZER_MAPPING_NAMES)
thomwolf's avatar
thomwolf committed
416
    def from_pretrained(cls, pretrained_model_name_or_path, *inputs, **kwargs):
417
418
        r"""
        Instantiate one of the tokenizer classes of the library from a pretrained model vocabulary.
thomwolf's avatar
thomwolf committed
419

Sylvain Gugger's avatar
Sylvain Gugger committed
420
421
422
        The tokenizer class to instantiate is selected based on the `model_type` property of the config object (either
        passed as an argument or loaded from `pretrained_model_name_or_path` if possible), or when it's missing, by
        falling back to using pattern matching on `pretrained_model_name_or_path`:
423

424
        List options
thomwolf's avatar
thomwolf committed
425
426

        Params:
427
            pretrained_model_name_or_path (`str` or `os.PathLike`):
428
429
                Can be either:

430
                    - A string, the *model id* of a predefined tokenizer hosted inside a model repo on huggingface.co.
Sylvain Gugger's avatar
Sylvain Gugger committed
431
432
                      Valid model ids can be located at the root-level, like `bert-base-uncased`, or namespaced under a
                      user or organization name, like `dbmdz/bert-base-german-cased`.
433
                    - A path to a *directory* containing vocabulary files required by the tokenizer, for instance saved
Sylvain Gugger's avatar
Sylvain Gugger committed
434
                      using the [`~PreTrainedTokenizer.save_pretrained`] method, e.g., `./my_model_directory/`.
435
                    - A path or url to a single saved vocabulary file if and only if the tokenizer only requires a
436
                      single vocabulary file (like Bert or XLNet), e.g.: `./my_model_directory/vocab.txt`. (Not
Sylvain Gugger's avatar
Sylvain Gugger committed
437
                      applicable to all derived classes)
438
439
440
            inputs (additional positional arguments, *optional*):
                Will be passed along to the Tokenizer `__init__()` method.
            config ([`PretrainedConfig`], *optional*)
441
                The configuration object used to dertermine the tokenizer class to instantiate.
442
            cache_dir (`str` or `os.PathLike`, *optional*):
443
444
                Path to a directory in which a downloaded pretrained model configuration should be cached if the
                standard cache should not be used.
445
            force_download (`bool`, *optional*, defaults to `False`):
446
447
                Whether or not to force the (re-)download the model weights and configuration files and override the
                cached versions if they exist.
448
            resume_download (`bool`, *optional*, defaults to `False`):
449
450
                Whether or not to delete incompletely received files. Will attempt to resume the download if such a
                file exists.
451
            proxies (`Dict[str, str]`, *optional*):
Sylvain Gugger's avatar
Sylvain Gugger committed
452
453
                A dictionary of proxy servers to use by protocol or endpoint, e.g., `{'http': 'foo.bar:3128',
                'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request.
454
            revision (`str`, *optional*, defaults to `"main"`):
Julien Chaumond's avatar
Julien Chaumond committed
455
                The specific model version to use. It can be a branch name, a tag name, or a commit id, since we use a
456
                git-based system for storing models and other artifacts on huggingface.co, so `revision` can be any
Julien Chaumond's avatar
Julien Chaumond committed
457
                identifier allowed by git.
458
            subfolder (`str`, *optional*):
459
460
                In case the relevant files are located inside a subfolder of the model repo on huggingface.co (e.g. for
                facebook/rag-token-base), specify it here.
461
            use_fast (`bool`, *optional*, defaults to `True`):
462
                Whether or not to try to load the fast version of the tokenizer.
463
            tokenizer_type (`str`, *optional*):
464
                Tokenizer type to be loaded.
465
            trust_remote_code (`bool`, *optional*, defaults to `False`):
466
                Whether or not to allow for custom models defined on the Hub in their own modeling files. This option
Sylvain Gugger's avatar
Sylvain Gugger committed
467
468
                should only be set to `True` for repositories you trust and in which you have read the code, as it will
                execute code present on the Hub on your local machine.
469
470
            kwargs (additional keyword arguments, *optional*):
                Will be passed to the Tokenizer `__init__()` method. Can be used to set special tokens like
Sylvain Gugger's avatar
Sylvain Gugger committed
471
472
                `bos_token`, `eos_token`, `unk_token`, `sep_token`, `pad_token`, `cls_token`, `mask_token`,
                `additional_special_tokens`. See parameters in the `__init__()` for more details.
thomwolf's avatar
thomwolf committed
473

474
        Examples:
475

476
477
        ```python
        >>> from transformers import AutoTokenizer
478

479
        >>> # Download vocabulary from huggingface.co and cache.
Sylvain Gugger's avatar
Sylvain Gugger committed
480
        >>> tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased")
481

482
        >>> # Download vocabulary from huggingface.co (user-uploaded) and cache.
Sylvain Gugger's avatar
Sylvain Gugger committed
483
        >>> tokenizer = AutoTokenizer.from_pretrained("dbmdz/bert-base-german-cased")
thomwolf's avatar
thomwolf committed
484

485
        >>> # If vocabulary files are in a directory (e.g. tokenizer was saved using *save_pretrained('./test/saved_model/')*)
Sylvain Gugger's avatar
Sylvain Gugger committed
486
        >>> tokenizer = AutoTokenizer.from_pretrained("./test/bert_saved_model/")
487
488
489

        >>> # Download vocabulary from huggingface.co and define model-specific arguments
        >>> tokenizer = AutoTokenizer.from_pretrained("roberta-base", add_prefix_space=True)
490
        ```"""
491
        config = kwargs.pop("config", None)
492
        kwargs["_from_auto"] = True
493

494
        use_fast = kwargs.pop("use_fast", True)
495
        tokenizer_type = kwargs.pop("tokenizer_type", None)
496
        trust_remote_code = kwargs.pop("trust_remote_code", False)
497

498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
        # First, let's see whether the tokenizer_type is passed so that we can leverage it
        if tokenizer_type is not None:
            tokenizer_class = None
            tokenizer_class_tuple = TOKENIZER_MAPPING_NAMES.get(tokenizer_type, None)

            if tokenizer_class_tuple is None:
                raise ValueError(
                    f"Passed `tokenizer_type` {tokenizer_type} does not exist. `tokenizer_type` should be one of "
                    f"{', '.join(c for c in TOKENIZER_MAPPING_NAMES.keys())}."
                )

            tokenizer_class_name, tokenizer_fast_class_name = tokenizer_class_tuple

            if use_fast and tokenizer_fast_class_name is not None:
                tokenizer_class = tokenizer_class_from_name(tokenizer_fast_class_name)

            if tokenizer_class is None:
                tokenizer_class = tokenizer_class_from_name(tokenizer_class_name)

            if tokenizer_class is None:
                raise ValueError(f"Tokenizer class {tokenizer_class_name} is not currently imported.")

            return tokenizer_class.from_pretrained(pretrained_model_name_or_path, *inputs, **kwargs)

        # Next, let's try to use the tokenizer_config file to get the tokenizer class.
523
524
        tokenizer_config = get_tokenizer_config(pretrained_model_name_or_path, **kwargs)
        config_tokenizer_class = tokenizer_config.get("tokenizer_class")
525
526
527
528
529
530
531
        tokenizer_auto_map = None
        if "auto_map" in tokenizer_config:
            if isinstance(tokenizer_config["auto_map"], (tuple, list)):
                # Legacy format for dynamic tokenizers
                tokenizer_auto_map = tokenizer_config["auto_map"]
            else:
                tokenizer_auto_map = tokenizer_config["auto_map"].get("AutoTokenizer", None)
532
533
534
535

        # If that did not work, let's try to use the config.
        if config_tokenizer_class is None:
            if not isinstance(config, PretrainedConfig):
536
537
538
                config = AutoConfig.from_pretrained(
                    pretrained_model_name_or_path, trust_remote_code=trust_remote_code, **kwargs
                )
539
            config_tokenizer_class = config.tokenizer_class
540
541
            if hasattr(config, "auto_map") and "AutoTokenizer" in config.auto_map:
                tokenizer_auto_map = config.auto_map["AutoTokenizer"]
542
543
544

        # If we have the tokenizer class from the tokenizer config or the model config we're good!
        if config_tokenizer_class is not None:
545
            tokenizer_class = None
546
547
548
            if tokenizer_auto_map is not None:
                if not trust_remote_code:
                    raise ValueError(
Sylvain Gugger's avatar
Sylvain Gugger committed
549
550
551
                        f"Loading {pretrained_model_name_or_path} requires you to execute the tokenizer file in that"
                        " repo on your local machine. Make sure you have read the code there to avoid malicious use,"
                        " then set the option `trust_remote_code=True` to remove this error."
552
553
                    )
                if kwargs.get("revision", None) is None:
554
                    logger.warning(
Sylvain Gugger's avatar
Sylvain Gugger committed
555
556
                        "Explicitly passing a `revision` is encouraged when loading a model with custom code to ensure"
                        " no malicious code has been contributed in a newer revision."
557
558
559
560
561
562
563
564
565
566
567
568
569
                    )

                if use_fast and tokenizer_auto_map[1] is not None:
                    class_ref = tokenizer_auto_map[1]
                else:
                    class_ref = tokenizer_auto_map[0]

                module_file, class_name = class_ref.split(".")
                tokenizer_class = get_class_from_dynamic_module(
                    pretrained_model_name_or_path, module_file + ".py", class_name, **kwargs
                )

            elif use_fast and not config_tokenizer_class.endswith("Fast"):
570
                tokenizer_class_candidate = f"{config_tokenizer_class}Fast"
571
572
                tokenizer_class = tokenizer_class_from_name(tokenizer_class_candidate)
            if tokenizer_class is None:
573
                tokenizer_class_candidate = config_tokenizer_class
574
575
                tokenizer_class = tokenizer_class_from_name(tokenizer_class_candidate)

576
            if tokenizer_class is None:
577
                raise ValueError(
578
                    f"Tokenizer class {tokenizer_class_candidate} does not exist or is not currently imported."
579
                )
580
581
            return tokenizer_class.from_pretrained(pretrained_model_name_or_path, *inputs, **kwargs)

582
        # Otherwise we have to be creative.
583
584
585
        # if model is an encoder decoder, the encoder tokenizer class is used by default
        if isinstance(config, EncoderDecoderConfig):
            if type(config.decoder) is not type(config.encoder):  # noqa: E721
586
                logger.warning(
587
                    f"The encoder model config class: {config.encoder.__class__} is different from the decoder model "
588
                    f"config class: {config.decoder.__class__}. It is not recommended to use the "
589
590
                    "`AutoTokenizer.from_pretrained()` method in this case. Please use the encoder and decoder "
                    "specific tokenizer classes."
591
592
593
                )
            config = config.encoder

594
595
        model_type = config_class_to_model_type(type(config).__name__)
        if model_type is not None:
596
            tokenizer_class_py, tokenizer_class_fast = TOKENIZER_MAPPING[type(config)]
597
            if tokenizer_class_fast and (use_fast or tokenizer_class_py is None):
598
599
                return tokenizer_class_fast.from_pretrained(pretrained_model_name_or_path, *inputs, **kwargs)
            else:
600
601
602
603
604
605
606
                if tokenizer_class_py is not None:
                    return tokenizer_class_py.from_pretrained(pretrained_model_name_or_path, *inputs, **kwargs)
                else:
                    raise ValueError(
                        "This tokenizer cannot be instantiated. Please make sure you have `sentencepiece` installed "
                        "in order to use this tokenizer."
                    )
607

608
        raise ValueError(
609
610
            f"Unrecognized configuration class {config.__class__} to build an AutoTokenizer.\n"
            f"Model type should be one of {', '.join(c.__name__ for c in TOKENIZER_MAPPING.keys())}."
611
        )
612
613
614
615
616
617
618

    def register(config_class, slow_tokenizer_class=None, fast_tokenizer_class=None):
        """
        Register a new tokenizer in this mapping.


        Args:
619
            config_class ([`PretrainedConfig`]):
620
                The configuration corresponding to the model to register.
621
            slow_tokenizer_class ([`PretrainedTokenizer`], *optional*):
622
                The slow tokenizer to register.
623
            slow_tokenizer_class ([`PretrainedTokenizerFast`], *optional*):
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
                The fast tokenizer to register.
        """
        if slow_tokenizer_class is None and fast_tokenizer_class is None:
            raise ValueError("You need to pass either a `slow_tokenizer_class` or a `fast_tokenizer_class")
        if slow_tokenizer_class is not None and issubclass(slow_tokenizer_class, PreTrainedTokenizerFast):
            raise ValueError("You passed a fast tokenizer in the `slow_tokenizer_class`.")
        if fast_tokenizer_class is not None and issubclass(fast_tokenizer_class, PreTrainedTokenizer):
            raise ValueError("You passed a slow tokenizer in the `fast_tokenizer_class`.")

        if (
            slow_tokenizer_class is not None
            and fast_tokenizer_class is not None
            and issubclass(fast_tokenizer_class, PreTrainedTokenizerFast)
            and fast_tokenizer_class.slow_tokenizer_class != slow_tokenizer_class
        ):
            raise ValueError(
                "The fast tokenizer class you are passing has a `slow_tokenizer_class` attribute that is not "
                "consistent with the slow tokenizer class you passed (fast tokenizer has "
                f"{fast_tokenizer_class.slow_tokenizer_class} and you passed {slow_tokenizer_class}. Fix one of those "
                "so they match!"
            )

        # Avoid resetting a set slow/fast tokenizer if we are passing just the other ones.
        if config_class in TOKENIZER_MAPPING._extra_content:
            existing_slow, existing_fast = TOKENIZER_MAPPING[config_class]
            if slow_tokenizer_class is None:
                slow_tokenizer_class = existing_slow
            if fast_tokenizer_class is None:
                fast_tokenizer_class = existing_fast

        TOKENIZER_MAPPING.register(config_class, (slow_tokenizer_class, fast_tokenizer_class))