tokenization_auto.py 30.3 KB
Newer Older
thomwolf's avatar
thomwolf committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# coding=utf-8
# Copyright 2018 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Sylvain Gugger's avatar
Sylvain Gugger committed
15
""" Auto Tokenizer class."""
thomwolf's avatar
thomwolf committed
16

17
import importlib
18
19
import json
import os
20
from collections import OrderedDict
21
from typing import TYPE_CHECKING, Dict, Optional, Tuple, Union
thomwolf's avatar
thomwolf committed
22

Sylvain Gugger's avatar
Sylvain Gugger committed
23
from ...configuration_utils import PretrainedConfig
24
from ...dynamic_module_utils import get_class_from_dynamic_module
25
from ...tokenization_utils import PreTrainedTokenizer
26
from ...tokenization_utils_base import TOKENIZER_CONFIG_FILE
27
from ...tokenization_utils_fast import PreTrainedTokenizerFast
28
from ...utils import get_file_from_repo, is_sentencepiece_available, is_tokenizers_available, logging
29
30
from ..encoder_decoder import EncoderDecoderConfig
from .auto_factory import _LazyAutoMapping
31
from .configuration_auto import (
32
    CONFIG_MAPPING_NAMES,
33
    AutoConfig,
34
    config_class_to_model_type,
35
    model_type_to_module_name,
36
    replace_list_option_in_docstrings,
37
)
Aymeric Augustin's avatar
Aymeric Augustin committed
38

thomwolf's avatar
thomwolf committed
39

Lysandre Debut's avatar
Lysandre Debut committed
40
logger = logging.get_logger(__name__)
thomwolf's avatar
thomwolf committed
41

42
43
44
45
46
47
48
if TYPE_CHECKING:
    # This significantly improves completion suggestion performance when
    # the transformers package is used with Microsoft's Pylance language server.
    TOKENIZER_MAPPING_NAMES: OrderedDict[str, Tuple[Optional[str], Optional[str]]] = OrderedDict()
else:
    TOKENIZER_MAPPING_NAMES = OrderedDict(
        [
Gunjan Chhablani's avatar
Gunjan Chhablani committed
49
            ("plbart", ("PLBartTokenizer" if is_sentencepiece_available() else None, None)),
50
            ("realm", ("RealmTokenizer", "RealmTokenizerFast" if is_tokenizers_available() else None)),
Gunjan Chhablani's avatar
Gunjan Chhablani committed
51
            ("fnet", ("FNetTokenizer", "FNetTokenizerFast" if is_tokenizers_available() else None)),
52
53
            ("retribert", ("RetriBertTokenizer", "RetriBertTokenizerFast" if is_tokenizers_available() else None)),
            ("roformer", ("RoFormerTokenizer", "RoFormerTokenizerFast" if is_tokenizers_available() else None)),
54
            (
55
56
57
58
59
                "t5",
                (
                    "T5Tokenizer" if is_sentencepiece_available() else None,
                    "T5TokenizerFast" if is_tokenizers_available() else None,
                ),
60
61
            ),
            (
62
63
64
65
66
                "mt5",
                (
                    "MT5Tokenizer" if is_sentencepiece_available() else None,
                    "MT5TokenizerFast" if is_tokenizers_available() else None,
                ),
67
            ),
68
69
            ("mobilebert", ("MobileBertTokenizer", "MobileBertTokenizerFast" if is_tokenizers_available() else None)),
            ("distilbert", ("DistilBertTokenizer", "DistilBertTokenizerFast" if is_tokenizers_available() else None)),
70
            (
71
72
73
74
75
                "albert",
                (
                    "AlbertTokenizer" if is_sentencepiece_available() else None,
                    "AlbertTokenizerFast" if is_tokenizers_available() else None,
                ),
76
77
            ),
            (
78
79
80
81
82
                "camembert",
                (
                    "CamembertTokenizer" if is_sentencepiece_available() else None,
                    "CamembertTokenizerFast" if is_tokenizers_available() else None,
                ),
83
84
            ),
            (
85
86
87
88
89
                "pegasus",
                (
                    "PegasusTokenizer" if is_sentencepiece_available() else None,
                    "PegasusTokenizerFast" if is_tokenizers_available() else None,
                ),
90
91
            ),
            (
92
93
94
95
96
                "mbart",
                (
                    "MBartTokenizer" if is_sentencepiece_available() else None,
                    "MBartTokenizerFast" if is_tokenizers_available() else None,
                ),
97
98
            ),
            (
99
100
101
102
103
                "xlm-roberta",
                (
                    "XLMRobertaTokenizer" if is_sentencepiece_available() else None,
                    "XLMRobertaTokenizerFast" if is_tokenizers_available() else None,
                ),
104
            ),
105
106
            ("marian", ("MarianTokenizer" if is_sentencepiece_available() else None, None)),
            ("blenderbot-small", ("BlenderbotSmallTokenizer", None)),
107
            ("blenderbot", ("BlenderbotTokenizer", "BlenderbotTokenizerFast")),
NielsRogge's avatar
NielsRogge committed
108
            ("tapex", ("TapexTokenizer", None)),
109
110
111
            ("bart", ("BartTokenizer", "BartTokenizerFast")),
            ("longformer", ("LongformerTokenizer", "LongformerTokenizerFast" if is_tokenizers_available() else None)),
            ("roberta", ("RobertaTokenizer", "RobertaTokenizerFast" if is_tokenizers_available() else None)),
112
            (
113
114
115
116
117
                "reformer",
                (
                    "ReformerTokenizer" if is_sentencepiece_available() else None,
                    "ReformerTokenizerFast" if is_tokenizers_available() else None,
                ),
118
            ),
119
120
121
122
            ("electra", ("ElectraTokenizer", "ElectraTokenizerFast" if is_tokenizers_available() else None)),
            ("funnel", ("FunnelTokenizer", "FunnelTokenizerFast" if is_tokenizers_available() else None)),
            ("lxmert", ("LxmertTokenizer", "LxmertTokenizerFast" if is_tokenizers_available() else None)),
            ("layoutlm", ("LayoutLMTokenizer", "LayoutLMTokenizerFast" if is_tokenizers_available() else None)),
123
            ("layoutlmv2", ("LayoutLMv2Tokenizer", "LayoutLMv2TokenizerFast" if is_tokenizers_available() else None)),
124
            ("layoutxlm", ("LayoutXLMTokenizer", "LayoutXLMTokenizerFast" if is_tokenizers_available() else None)),
125
            (
126
127
128
129
130
                "dpr",
                (
                    "DPRQuestionEncoderTokenizer",
                    "DPRQuestionEncoderTokenizerFast" if is_tokenizers_available() else None,
                ),
131
132
            ),
            (
133
134
                "squeezebert",
                ("SqueezeBertTokenizer", "SqueezeBertTokenizerFast" if is_tokenizers_available() else None),
135
            ),
136
137
138
            ("bert", ("BertTokenizer", "BertTokenizerFast" if is_tokenizers_available() else None)),
            ("openai-gpt", ("OpenAIGPTTokenizer", "OpenAIGPTTokenizerFast" if is_tokenizers_available() else None)),
            ("gpt2", ("GPT2Tokenizer", "GPT2TokenizerFast" if is_tokenizers_available() else None)),
139
            ("gptj", ("GPT2Tokenizer", "GPT2TokenizerFast" if is_tokenizers_available() else None)),
140
            ("transfo-xl", ("TransfoXLTokenizer", None)),
141
            (
142
143
144
145
146
                "xlnet",
                (
                    "XLNetTokenizer" if is_sentencepiece_available() else None,
                    "XLNetTokenizerFast" if is_tokenizers_available() else None,
                ),
147
            ),
148
149
150
151
152
153
            ("flaubert", ("FlaubertTokenizer", None)),
            ("xlm", ("XLMTokenizer", None)),
            ("ctrl", ("CTRLTokenizer", None)),
            ("fsmt", ("FSMTTokenizer", None)),
            ("bert-generation", ("BertGenerationTokenizer" if is_sentencepiece_available() else None, None)),
            ("deberta", ("DebertaTokenizer", "DebertaTokenizerFast" if is_tokenizers_available() else None)),
154
155
156
157
158
159
160
            (
                "deberta-v2",
                (
                    "DebertaV2Tokenizer" if is_sentencepiece_available() else None,
                    "DebertaV2TokenizerFast" if is_tokenizers_available() else None,
                ),
            ),
161
162
163
            ("rag", ("RagTokenizer", None)),
            ("xlm-prophetnet", ("XLMProphetNetTokenizer" if is_sentencepiece_available() else None, None)),
            ("speech_to_text", ("Speech2TextTokenizer" if is_sentencepiece_available() else None, None)),
164
            ("speech_to_text_2", ("Speech2Text2Tokenizer", None)),
165
166
167
168
169
170
            ("m2m_100", ("M2M100Tokenizer" if is_sentencepiece_available() else None, None)),
            ("prophetnet", ("ProphetNetTokenizer", None)),
            ("mpnet", ("MPNetTokenizer", "MPNetTokenizerFast" if is_tokenizers_available() else None)),
            ("tapas", ("TapasTokenizer", None)),
            ("led", ("LEDTokenizer", "LEDTokenizerFast" if is_tokenizers_available() else None)),
            ("convbert", ("ConvBertTokenizer", "ConvBertTokenizerFast" if is_tokenizers_available() else None)),
171
            (
172
173
174
175
176
                "big_bird",
                (
                    "BigBirdTokenizer" if is_sentencepiece_available() else None,
                    "BigBirdTokenizerFast" if is_tokenizers_available() else None,
                ),
177
            ),
178
            ("ibert", ("RobertaTokenizer", "RobertaTokenizerFast" if is_tokenizers_available() else None)),
179
            ("qdqbert", ("BertTokenizer", "BertTokenizerFast" if is_tokenizers_available() else None)),
180
181
182
183
            ("wav2vec2", ("Wav2Vec2CTCTokenizer", None)),
            ("hubert", ("Wav2Vec2CTCTokenizer", None)),
            ("gpt_neo", ("GPT2Tokenizer", "GPT2TokenizerFast" if is_tokenizers_available() else None)),
            ("luke", ("LukeTokenizer", None)),
Ryokan RI's avatar
Ryokan RI committed
184
            ("mluke", ("MLukeTokenizer" if is_sentencepiece_available() else None, None)),
185
186
187
188
            ("bigbird_pegasus", ("PegasusTokenizer", "PegasusTokenizerFast" if is_tokenizers_available() else None)),
            ("canine", ("CanineTokenizer", None)),
            ("bertweet", ("BertweetTokenizer", None)),
            ("bert-japanese", ("BertJapaneseTokenizer", None)),
Ori Ram's avatar
Ori Ram committed
189
            ("splinter", ("SplinterTokenizer", "SplinterTokenizerFast")),
190
            ("byt5", ("ByT5Tokenizer", None)),
191
            (
192
193
194
195
196
                "cpm",
                (
                    "CpmTokenizer" if is_sentencepiece_available() else None,
                    "CpmTokenizerFast" if is_tokenizers_available() else None,
                ),
197
            ),
198
199
            ("herbert", ("HerbertTokenizer", "HerbertTokenizerFast" if is_tokenizers_available() else None)),
            ("phobert", ("PhobertTokenizer", None)),
200
            ("bartpho", ("BartphoTokenizer", None)),
201
202
203
204
205
206
207
208
209
210
211
212
213
214
            (
                "barthez",
                (
                    "BarthezTokenizer" if is_sentencepiece_available() else None,
                    "BarthezTokenizerFast" if is_tokenizers_available() else None,
                ),
            ),
            (
                "mbart50",
                (
                    "MBart50Tokenizer" if is_sentencepiece_available() else None,
                    "MBart50TokenizerFast" if is_tokenizers_available() else None,
                ),
            ),
215
216
217
218
219
220
221
            (
                "rembert",
                (
                    "RemBertTokenizer" if is_sentencepiece_available() else None,
                    "RemBertTokenizerFast" if is_tokenizers_available() else None,
                ),
            ),
222
223
224
225
226
227
228
            (
                "clip",
                (
                    "CLIPTokenizer",
                    "CLIPTokenizerFast" if is_tokenizers_available() else None,
                ),
            ),
229
            ("wav2vec2_phoneme", ("Wav2Vec2PhonemeCTCTokenizer", None)),
230
231
232
233
234
235
236
            (
                "perceiver",
                (
                    "PerceiverTokenizer",
                    None,
                ),
            ),
237
238
239
240
241
242
243
            (
                "xglm",
                (
                    "XGLMTokenizer" if is_sentencepiece_available() else None,
                    "XGLMTokenizerFast" if is_tokenizers_available() else None,
                ),
            ),
244
245
        ]
    )
246

247
248
249
TOKENIZER_MAPPING = _LazyAutoMapping(CONFIG_MAPPING_NAMES, TOKENIZER_MAPPING_NAMES)

CONFIG_TO_TYPE = {v: k for k, v in CONFIG_MAPPING_NAMES.items()}
250

251

252
def tokenizer_class_from_name(class_name: str):
253
254
255
256
257
    if class_name == "PreTrainedTokenizerFast":
        return PreTrainedTokenizerFast

    for module_name, tokenizers in TOKENIZER_MAPPING_NAMES.items():
        if class_name in tokenizers:
258
            module_name = model_type_to_module_name(module_name)
259

260
261
            module = importlib.import_module(f".{module_name}", "transformers.models")
            return getattr(module, class_name)
262

263
264
265
266
267
    for config, tokenizers in TOKENIZER_MAPPING._extra_content.items():
        for tokenizer in tokenizers:
            if getattr(tokenizer, "__name__", None) == class_name:
                return tokenizer

268
    return None
269
270


271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
def get_tokenizer_config(
    pretrained_model_name_or_path: Union[str, os.PathLike],
    cache_dir: Optional[Union[str, os.PathLike]] = None,
    force_download: bool = False,
    resume_download: bool = False,
    proxies: Optional[Dict[str, str]] = None,
    use_auth_token: Optional[Union[bool, str]] = None,
    revision: Optional[str] = None,
    local_files_only: bool = False,
    **kwargs,
):
    """
    Loads the tokenizer configuration from a pretrained model tokenizer configuration.

    Args:
286
        pretrained_model_name_or_path (`str` or `os.PathLike`):
287
288
            This can be either:

289
            - a string, the *model id* of a pretrained model configuration hosted inside a model repo on
Sylvain Gugger's avatar
Sylvain Gugger committed
290
291
              huggingface.co. Valid model ids can be located at the root-level, like `bert-base-uncased`, or namespaced
              under a user or organization name, like `dbmdz/bert-base-german-cased`.
292
293
            - a path to a *directory* containing a configuration file saved using the
              [`~PreTrainedTokenizer.save_pretrained`] method, e.g., `./my_model_directory/`.
294

295
        cache_dir (`str` or `os.PathLike`, *optional*):
296
297
            Path to a directory in which a downloaded pretrained model configuration should be cached if the standard
            cache should not be used.
298
        force_download (`bool`, *optional*, defaults to `False`):
299
300
            Whether or not to force to (re-)download the configuration files and override the cached versions if they
            exist.
301
        resume_download (`bool`, *optional*, defaults to `False`):
302
            Whether or not to delete incompletely received file. Attempts to resume the download if such a file exists.
303
        proxies (`Dict[str, str]`, *optional*):
Sylvain Gugger's avatar
Sylvain Gugger committed
304
305
            A dictionary of proxy servers to use by protocol or endpoint, e.g., `{'http': 'foo.bar:3128',
            'http://hostname': 'foo.bar:4012'}.` The proxies are used on each request.
306
        use_auth_token (`str` or *bool*, *optional*):
Sylvain Gugger's avatar
Sylvain Gugger committed
307
308
            The token to use as HTTP bearer authorization for remote files. If `True`, will use the token generated
            when running `transformers-cli login` (stored in `~/.huggingface`).
309
        revision (`str`, *optional*, defaults to `"main"`):
310
            The specific model version to use. It can be a branch name, a tag name, or a commit id, since we use a
311
            git-based system for storing models and other artifacts on huggingface.co, so `revision` can be any
312
            identifier allowed by git.
313
314
        local_files_only (`bool`, *optional*, defaults to `False`):
            If `True`, will only try to load the tokenizer configuration from local files.
315

316
    <Tip>
317

318
    Passing `use_auth_token=True` is required when you want to use a private model.
319

320
    </Tip>
321
322

    Returns:
323
        `Dict`: The configuration of the tokenizer.
324

325
    Examples:
326

327
328
329
330
331
    ```python
    # Download configuration from huggingface.co and cache.
    tokenizer_config = get_tokenizer_config("bert-base-uncased")
    # This model does not have a tokenizer config so the result will be an empty dict.
    tokenizer_config = get_tokenizer_config("xlm-roberta-base")
332

333
334
    # Save a pretrained tokenizer locally and you can reload its config
    from transformers import AutoTokenizer
335

336
337
338
339
    tokenizer = AutoTokenizer.from_pretrained("bert-base-cased")
    tokenizer.save_pretrained("tokenizer-test")
    tokenizer_config = get_tokenizer_config("tokenizer-test")
    ```"""
340
341
342
343
344
345
346
347
348
349
350
351
    resolved_config_file = get_file_from_repo(
        pretrained_model_name_or_path,
        TOKENIZER_CONFIG_FILE,
        cache_dir=cache_dir,
        force_download=force_download,
        resume_download=resume_download,
        proxies=proxies,
        use_auth_token=use_auth_token,
        revision=revision,
        local_files_only=local_files_only,
    )
    if resolved_config_file is None:
352
353
354
355
356
357
358
        logger.info("Could not locate the tokenizer configuration file, will try to use the model config instead.")
        return {}

    with open(resolved_config_file, encoding="utf-8") as reader:
        return json.load(reader)


Julien Chaumond's avatar
Julien Chaumond committed
359
class AutoTokenizer:
360
    r"""
Sylvain Gugger's avatar
Sylvain Gugger committed
361
    This is a generic tokenizer class that will be instantiated as one of the tokenizer classes of the library when
362
    created with the [`AutoTokenizer.from_pretrained`] class method.
thomwolf's avatar
thomwolf committed
363

364
    This class cannot be instantiated directly using `__init__()` (throws an error).
thomwolf's avatar
thomwolf committed
365
    """
366

thomwolf's avatar
thomwolf committed
367
    def __init__(self):
368
369
370
371
        raise EnvironmentError(
            "AutoTokenizer is designed to be instantiated "
            "using the `AutoTokenizer.from_pretrained(pretrained_model_name_or_path)` method."
        )
thomwolf's avatar
thomwolf committed
372
373

    @classmethod
374
    @replace_list_option_in_docstrings(TOKENIZER_MAPPING_NAMES)
thomwolf's avatar
thomwolf committed
375
    def from_pretrained(cls, pretrained_model_name_or_path, *inputs, **kwargs):
376
377
        r"""
        Instantiate one of the tokenizer classes of the library from a pretrained model vocabulary.
thomwolf's avatar
thomwolf committed
378

Sylvain Gugger's avatar
Sylvain Gugger committed
379
380
381
        The tokenizer class to instantiate is selected based on the `model_type` property of the config object (either
        passed as an argument or loaded from `pretrained_model_name_or_path` if possible), or when it's missing, by
        falling back to using pattern matching on `pretrained_model_name_or_path`:
382

383
        List options
thomwolf's avatar
thomwolf committed
384
385

        Params:
386
            pretrained_model_name_or_path (`str` or `os.PathLike`):
387
388
                Can be either:

389
                    - A string, the *model id* of a predefined tokenizer hosted inside a model repo on huggingface.co.
Sylvain Gugger's avatar
Sylvain Gugger committed
390
391
                      Valid model ids can be located at the root-level, like `bert-base-uncased`, or namespaced under a
                      user or organization name, like `dbmdz/bert-base-german-cased`.
392
                    - A path to a *directory* containing vocabulary files required by the tokenizer, for instance saved
Sylvain Gugger's avatar
Sylvain Gugger committed
393
                      using the [`~PreTrainedTokenizer.save_pretrained`] method, e.g., `./my_model_directory/`.
394
                    - A path or url to a single saved vocabulary file if and only if the tokenizer only requires a
395
                      single vocabulary file (like Bert or XLNet), e.g.: `./my_model_directory/vocab.txt`. (Not
Sylvain Gugger's avatar
Sylvain Gugger committed
396
                      applicable to all derived classes)
397
398
399
            inputs (additional positional arguments, *optional*):
                Will be passed along to the Tokenizer `__init__()` method.
            config ([`PretrainedConfig`], *optional*)
400
                The configuration object used to dertermine the tokenizer class to instantiate.
401
            cache_dir (`str` or `os.PathLike`, *optional*):
402
403
                Path to a directory in which a downloaded pretrained model configuration should be cached if the
                standard cache should not be used.
404
            force_download (`bool`, *optional*, defaults to `False`):
405
406
                Whether or not to force the (re-)download the model weights and configuration files and override the
                cached versions if they exist.
407
            resume_download (`bool`, *optional*, defaults to `False`):
408
409
                Whether or not to delete incompletely received files. Will attempt to resume the download if such a
                file exists.
410
            proxies (`Dict[str, str]`, *optional*):
Sylvain Gugger's avatar
Sylvain Gugger committed
411
412
                A dictionary of proxy servers to use by protocol or endpoint, e.g., `{'http': 'foo.bar:3128',
                'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request.
413
            revision (`str`, *optional*, defaults to `"main"`):
Julien Chaumond's avatar
Julien Chaumond committed
414
                The specific model version to use. It can be a branch name, a tag name, or a commit id, since we use a
415
                git-based system for storing models and other artifacts on huggingface.co, so `revision` can be any
Julien Chaumond's avatar
Julien Chaumond committed
416
                identifier allowed by git.
417
            subfolder (`str`, *optional*):
418
419
                In case the relevant files are located inside a subfolder of the model repo on huggingface.co (e.g. for
                facebook/rag-token-base), specify it here.
420
            use_fast (`bool`, *optional*, defaults to `True`):
421
                Whether or not to try to load the fast version of the tokenizer.
422
            tokenizer_type (`str`, *optional*):
423
                Tokenizer type to be loaded.
424
            trust_remote_code (`bool`, *optional*, defaults to `False`):
425
                Whether or not to allow for custom models defined on the Hub in their own modeling files. This option
Sylvain Gugger's avatar
Sylvain Gugger committed
426
427
                should only be set to `True` for repositories you trust and in which you have read the code, as it will
                execute code present on the Hub on your local machine.
428
429
            kwargs (additional keyword arguments, *optional*):
                Will be passed to the Tokenizer `__init__()` method. Can be used to set special tokens like
Sylvain Gugger's avatar
Sylvain Gugger committed
430
431
                `bos_token`, `eos_token`, `unk_token`, `sep_token`, `pad_token`, `cls_token`, `mask_token`,
                `additional_special_tokens`. See parameters in the `__init__()` for more details.
thomwolf's avatar
thomwolf committed
432

433
        Examples:
434

435
436
        ```python
        >>> from transformers import AutoTokenizer
437

438
        >>> # Download vocabulary from huggingface.co and cache.
Sylvain Gugger's avatar
Sylvain Gugger committed
439
        >>> tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased")
440

441
        >>> # Download vocabulary from huggingface.co (user-uploaded) and cache.
Sylvain Gugger's avatar
Sylvain Gugger committed
442
        >>> tokenizer = AutoTokenizer.from_pretrained("dbmdz/bert-base-german-cased")
thomwolf's avatar
thomwolf committed
443

444
        >>> # If vocabulary files are in a directory (e.g. tokenizer was saved using *save_pretrained('./test/saved_model/')*)
Sylvain Gugger's avatar
Sylvain Gugger committed
445
        >>> tokenizer = AutoTokenizer.from_pretrained("./test/bert_saved_model/")
446
        ```"""
447
        config = kwargs.pop("config", None)
448
        kwargs["_from_auto"] = True
449

450
        use_fast = kwargs.pop("use_fast", True)
451
        tokenizer_type = kwargs.pop("tokenizer_type", None)
452
        trust_remote_code = kwargs.pop("trust_remote_code", False)
453

454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
        # First, let's see whether the tokenizer_type is passed so that we can leverage it
        if tokenizer_type is not None:
            tokenizer_class = None
            tokenizer_class_tuple = TOKENIZER_MAPPING_NAMES.get(tokenizer_type, None)

            if tokenizer_class_tuple is None:
                raise ValueError(
                    f"Passed `tokenizer_type` {tokenizer_type} does not exist. `tokenizer_type` should be one of "
                    f"{', '.join(c for c in TOKENIZER_MAPPING_NAMES.keys())}."
                )

            tokenizer_class_name, tokenizer_fast_class_name = tokenizer_class_tuple

            if use_fast and tokenizer_fast_class_name is not None:
                tokenizer_class = tokenizer_class_from_name(tokenizer_fast_class_name)

            if tokenizer_class is None:
                tokenizer_class = tokenizer_class_from_name(tokenizer_class_name)

            if tokenizer_class is None:
                raise ValueError(f"Tokenizer class {tokenizer_class_name} is not currently imported.")

            return tokenizer_class.from_pretrained(pretrained_model_name_or_path, *inputs, **kwargs)

        # Next, let's try to use the tokenizer_config file to get the tokenizer class.
479
480
        tokenizer_config = get_tokenizer_config(pretrained_model_name_or_path, **kwargs)
        config_tokenizer_class = tokenizer_config.get("tokenizer_class")
481
482
483
484
485
486
487
        tokenizer_auto_map = None
        if "auto_map" in tokenizer_config:
            if isinstance(tokenizer_config["auto_map"], (tuple, list)):
                # Legacy format for dynamic tokenizers
                tokenizer_auto_map = tokenizer_config["auto_map"]
            else:
                tokenizer_auto_map = tokenizer_config["auto_map"].get("AutoTokenizer", None)
488
489
490
491

        # If that did not work, let's try to use the config.
        if config_tokenizer_class is None:
            if not isinstance(config, PretrainedConfig):
492
493
494
                config = AutoConfig.from_pretrained(
                    pretrained_model_name_or_path, trust_remote_code=trust_remote_code, **kwargs
                )
495
            config_tokenizer_class = config.tokenizer_class
496
497
            if hasattr(config, "auto_map") and "AutoTokenizer" in config.auto_map:
                tokenizer_auto_map = config.auto_map["AutoTokenizer"]
498
499
500

        # If we have the tokenizer class from the tokenizer config or the model config we're good!
        if config_tokenizer_class is not None:
501
            tokenizer_class = None
502
503
504
505
506
507
508
509
            if tokenizer_auto_map is not None:
                if not trust_remote_code:
                    raise ValueError(
                        f"Loading {pretrained_model_name_or_path} requires you to execute the tokenizer file in that repo "
                        "on your local machine. Make sure you have read the code there to avoid malicious use, then set "
                        "the option `trust_remote_code=True` to remove this error."
                    )
                if kwargs.get("revision", None) is None:
510
                    logger.warning(
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
                        "Explicitly passing a `revision` is encouraged when loading a model with custom code to ensure "
                        "no malicious code has been contributed in a newer revision."
                    )

                if use_fast and tokenizer_auto_map[1] is not None:
                    class_ref = tokenizer_auto_map[1]
                else:
                    class_ref = tokenizer_auto_map[0]

                module_file, class_name = class_ref.split(".")
                tokenizer_class = get_class_from_dynamic_module(
                    pretrained_model_name_or_path, module_file + ".py", class_name, **kwargs
                )

            elif use_fast and not config_tokenizer_class.endswith("Fast"):
526
                tokenizer_class_candidate = f"{config_tokenizer_class}Fast"
527
528
                tokenizer_class = tokenizer_class_from_name(tokenizer_class_candidate)
            if tokenizer_class is None:
529
                tokenizer_class_candidate = config_tokenizer_class
530
531
                tokenizer_class = tokenizer_class_from_name(tokenizer_class_candidate)

532
            if tokenizer_class is None:
533
                raise ValueError(
534
                    f"Tokenizer class {tokenizer_class_candidate} does not exist or is not currently imported."
535
                )
536
537
            return tokenizer_class.from_pretrained(pretrained_model_name_or_path, *inputs, **kwargs)

538
        # Otherwise we have to be creative.
539
540
541
        # if model is an encoder decoder, the encoder tokenizer class is used by default
        if isinstance(config, EncoderDecoderConfig):
            if type(config.decoder) is not type(config.encoder):  # noqa: E721
542
                logger.warning(
543
                    f"The encoder model config class: {config.encoder.__class__} is different from the decoder model "
544
                    f"config class: {config.decoder.__class__}. It is not recommended to use the "
545
546
                    "`AutoTokenizer.from_pretrained()` method in this case. Please use the encoder and decoder "
                    "specific tokenizer classes."
547
548
549
                )
            config = config.encoder

550
551
        model_type = config_class_to_model_type(type(config).__name__)
        if model_type is not None:
552
            tokenizer_class_py, tokenizer_class_fast = TOKENIZER_MAPPING[type(config)]
553
            if tokenizer_class_fast and (use_fast or tokenizer_class_py is None):
554
555
                return tokenizer_class_fast.from_pretrained(pretrained_model_name_or_path, *inputs, **kwargs)
            else:
556
557
558
559
560
561
562
                if tokenizer_class_py is not None:
                    return tokenizer_class_py.from_pretrained(pretrained_model_name_or_path, *inputs, **kwargs)
                else:
                    raise ValueError(
                        "This tokenizer cannot be instantiated. Please make sure you have `sentencepiece` installed "
                        "in order to use this tokenizer."
                    )
563

564
        raise ValueError(
565
566
            f"Unrecognized configuration class {config.__class__} to build an AutoTokenizer.\n"
            f"Model type should be one of {', '.join(c.__name__ for c in TOKENIZER_MAPPING.keys())}."
567
        )
568
569
570
571
572
573
574

    def register(config_class, slow_tokenizer_class=None, fast_tokenizer_class=None):
        """
        Register a new tokenizer in this mapping.


        Args:
575
            config_class ([`PretrainedConfig`]):
576
                The configuration corresponding to the model to register.
577
            slow_tokenizer_class ([`PretrainedTokenizer`], *optional*):
578
                The slow tokenizer to register.
579
            slow_tokenizer_class ([`PretrainedTokenizerFast`], *optional*):
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
                The fast tokenizer to register.
        """
        if slow_tokenizer_class is None and fast_tokenizer_class is None:
            raise ValueError("You need to pass either a `slow_tokenizer_class` or a `fast_tokenizer_class")
        if slow_tokenizer_class is not None and issubclass(slow_tokenizer_class, PreTrainedTokenizerFast):
            raise ValueError("You passed a fast tokenizer in the `slow_tokenizer_class`.")
        if fast_tokenizer_class is not None and issubclass(fast_tokenizer_class, PreTrainedTokenizer):
            raise ValueError("You passed a slow tokenizer in the `fast_tokenizer_class`.")

        if (
            slow_tokenizer_class is not None
            and fast_tokenizer_class is not None
            and issubclass(fast_tokenizer_class, PreTrainedTokenizerFast)
            and fast_tokenizer_class.slow_tokenizer_class != slow_tokenizer_class
        ):
            raise ValueError(
                "The fast tokenizer class you are passing has a `slow_tokenizer_class` attribute that is not "
                "consistent with the slow tokenizer class you passed (fast tokenizer has "
                f"{fast_tokenizer_class.slow_tokenizer_class} and you passed {slow_tokenizer_class}. Fix one of those "
                "so they match!"
            )

        # Avoid resetting a set slow/fast tokenizer if we are passing just the other ones.
        if config_class in TOKENIZER_MAPPING._extra_content:
            existing_slow, existing_fast = TOKENIZER_MAPPING[config_class]
            if slow_tokenizer_class is None:
                slow_tokenizer_class = existing_slow
            if fast_tokenizer_class is None:
                fast_tokenizer_class = existing_fast

        TOKENIZER_MAPPING.register(config_class, (slow_tokenizer_class, fast_tokenizer_class))