run_summarization.py 32.9 KB
Newer Older
1
#!/usr/bin/env python
2
# coding=utf-8
3
# Copyright 2021 The HuggingFace Team. All rights reserved.
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Fine-tuning the library models for sequence to sequence.
"""
# You can also adapt this script on your own sequence to sequence task. Pointers for this are left as comments.

import logging
import os
import sys
24
import warnings
25
26
27
from dataclasses import dataclass, field
from typing import Optional

28
import datasets
29
import evaluate
30
import nltk  # Here to have a nice missing dependency error message early on
31
import numpy as np
32
from datasets import load_dataset
33
from filelock import FileLock
34
35
36
37
38
39
40
41

import transformers
from transformers import (
    AutoConfig,
    AutoModelForSeq2SeqLM,
    AutoTokenizer,
    DataCollatorForSeq2Seq,
    HfArgumentParser,
42
43
44
45
    MBart50Tokenizer,
    MBart50TokenizerFast,
    MBartTokenizer,
    MBartTokenizerFast,
46
47
48
49
    Seq2SeqTrainer,
    Seq2SeqTrainingArguments,
    set_seed,
)
50
from transformers.trainer_utils import get_last_checkpoint
51
from transformers.utils import check_min_version, is_offline_mode, send_example_telemetry
52
from transformers.utils.versions import require_version
53
54


55
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
Lysandre's avatar
Lysandre committed
56
check_min_version("4.36.0.dev0")
Sylvain Gugger's avatar
Sylvain Gugger committed
57

58
require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/summarization/requirements.txt")
59

60
61
logger = logging.getLogger(__name__)

62
63
try:
    nltk.data.find("tokenizers/punkt")
Stas Bekman's avatar
Stas Bekman committed
64
except (LookupError, OSError):
65
66
67
68
69
70
71
    if is_offline_mode():
        raise LookupError(
            "Offline mode: run this script without TRANSFORMERS_OFFLINE first to download nltk data files"
        )
    with FileLock(".lock") as lock:
        nltk.download("punkt", quiet=True)

72
73
74
# A list of all multilingual tokenizer which require lang attribute.
MULTILINGUAL_TOKENIZERS = [MBartTokenizer, MBartTokenizerFast, MBart50Tokenizer, MBart50TokenizerFast]

75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102

@dataclass
class ModelArguments:
    """
    Arguments pertaining to which model/config/tokenizer we are going to fine-tune from.
    """

    model_name_or_path: str = field(
        metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"}
    )
    config_name: Optional[str] = field(
        default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"}
    )
    tokenizer_name: Optional[str] = field(
        default=None, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"}
    )
    cache_dir: Optional[str] = field(
        default=None,
        metadata={"help": "Where to store the pretrained models downloaded from huggingface.co"},
    )
    use_fast_tokenizer: bool = field(
        default=True,
        metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."},
    )
    model_revision: str = field(
        default="main",
        metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."},
    )
103
104
    token: str = field(
        default=None,
105
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
106
            "help": (
107
108
                "The token to use as HTTP bearer authorization for remote files. If not specified, will use the token "
                "generated when running `huggingface-cli login` (stored in `~/.huggingface`)."
Sylvain Gugger's avatar
Sylvain Gugger committed
109
            )
110
111
        },
    )
112
113
114
    use_auth_token: bool = field(
        default=None,
        metadata={
115
            "help": "The `use_auth_token` argument is deprecated and will be removed in v4.34. Please use `token` instead."
116
117
        },
    )
118
119
120
121
122
    trust_remote_code: bool = field(
        default=False,
        metadata={
            "help": (
                "Whether or not to allow for custom models defined on the Hub in their own modeling files. This option"
123
                "should only be set to `True` for repositories you trust and in which you have read the code, as it will "
124
125
126
127
                "execute code present on the Hub on your local machine."
            )
        },
    )
128
129
130
    resize_position_embeddings: Optional[bool] = field(
        default=None,
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
131
132
133
134
            "help": (
                "Whether to automatically resize the position embeddings if `max_source_length` exceeds "
                "the model's position embeddings."
            )
135
136
        },
    )
137
138
139
140
141
142
143
144


@dataclass
class DataTrainingArguments:
    """
    Arguments pertaining to what data we are going to input our model for training and eval.
    """

145
    lang: Optional[str] = field(default=None, metadata={"help": "Language id for summarization."})
146

147
148
149
150
151
152
153
154
155
156
157
158
159
160
    dataset_name: Optional[str] = field(
        default=None, metadata={"help": "The name of the dataset to use (via the datasets library)."}
    )
    dataset_config_name: Optional[str] = field(
        default=None, metadata={"help": "The configuration name of the dataset to use (via the datasets library)."}
    )
    text_column: Optional[str] = field(
        default=None,
        metadata={"help": "The name of the column in the datasets containing the full texts (for summarization)."},
    )
    summary_column: Optional[str] = field(
        default=None,
        metadata={"help": "The name of the column in the datasets containing the summaries (for summarization)."},
    )
161
162
163
    train_file: Optional[str] = field(
        default=None, metadata={"help": "The input training data file (a jsonlines or csv file)."}
    )
164
165
    validation_file: Optional[str] = field(
        default=None,
166
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
167
168
169
            "help": (
                "An optional input evaluation data file to evaluate the metrics (rouge) on (a jsonlines or csv file)."
            )
170
171
172
173
174
        },
    )
    test_file: Optional[str] = field(
        default=None,
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
175
            "help": "An optional input test data file to evaluate the metrics (rouge) on (a jsonlines or csv file)."
176
        },
177
178
179
180
181
182
183
184
185
186
187
    )
    overwrite_cache: bool = field(
        default=False, metadata={"help": "Overwrite the cached training and evaluation sets"}
    )
    preprocessing_num_workers: Optional[int] = field(
        default=None,
        metadata={"help": "The number of processes to use for the preprocessing."},
    )
    max_source_length: Optional[int] = field(
        default=1024,
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
188
189
190
191
            "help": (
                "The maximum total input sequence length after tokenization. Sequences longer "
                "than this will be truncated, sequences shorter will be padded."
            )
192
193
194
195
196
        },
    )
    max_target_length: Optional[int] = field(
        default=128,
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
197
198
199
200
            "help": (
                "The maximum total sequence length for target text after tokenization. Sequences longer "
                "than this will be truncated, sequences shorter will be padded."
            )
201
202
203
        },
    )
    val_max_target_length: Optional[int] = field(
204
        default=None,
205
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
206
207
            "help": (
                "The maximum total sequence length for validation target text after tokenization. Sequences longer "
208
                "than this will be truncated, sequences shorter will be padded. Will default to `max_target_length`. "
Sylvain Gugger's avatar
Sylvain Gugger committed
209
210
211
                "This argument is also used to override the ``max_length`` param of ``model.generate``, which is used "
                "during ``evaluate`` and ``predict``."
            )
212
213
214
215
216
        },
    )
    pad_to_max_length: bool = field(
        default=False,
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
217
218
219
220
221
            "help": (
                "Whether to pad all samples to model maximum sentence length. "
                "If False, will pad the samples dynamically when batching to the maximum length in the batch. More "
                "efficient on GPU but very bad for TPU."
            )
222
223
224
225
226
        },
    )
    max_train_samples: Optional[int] = field(
        default=None,
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
227
228
229
230
            "help": (
                "For debugging purposes or quicker training, truncate the number of training examples to this "
                "value if set."
            )
231
232
        },
    )
233
    max_eval_samples: Optional[int] = field(
234
235
        default=None,
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
236
237
238
239
            "help": (
                "For debugging purposes or quicker training, truncate the number of evaluation examples to this "
                "value if set."
            )
240
241
        },
    )
242
    max_predict_samples: Optional[int] = field(
243
244
        default=None,
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
245
246
247
248
            "help": (
                "For debugging purposes or quicker training, truncate the number of prediction examples to this "
                "value if set."
            )
249
250
251
252
253
        },
    )
    num_beams: Optional[int] = field(
        default=None,
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
254
255
256
257
            "help": (
                "Number of beams to use for evaluation. This argument will be passed to ``model.generate``, "
                "which is used during ``evaluate`` and ``predict``."
            )
258
259
        },
    )
260
261
262
263
264
265
    ignore_pad_token_for_loss: bool = field(
        default=True,
        metadata={
            "help": "Whether to ignore the tokens corresponding to padded labels in the loss computation or not."
        },
    )
266
    source_prefix: Optional[str] = field(
267
        default=None, metadata={"help": "A prefix to add before every source text (useful for T5 models)."}
268
269
270
271
272
    )

    forced_bos_token: Optional[str] = field(
        default=None,
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
273
            "help": (
274
                "The token to force as the first generated token after the decoder_start_token_id. "
Sylvain Gugger's avatar
Sylvain Gugger committed
275
276
277
                "Useful for multilingual models like mBART where the first generated token"
                "needs to be the target language token (Usually it is the target language token)"
            )
278
        },
279
    )
280
281

    def __post_init__(self):
282
283
284
285
286
287
288
        if (
            self.dataset_name is None
            and self.train_file is None
            and self.validation_file is None
            and self.test_file is None
        ):
            raise ValueError("Need either a dataset name or a training, validation, or test file.")
289
290
291
292
293
294
295
        else:
            if self.train_file is not None:
                extension = self.train_file.split(".")[-1]
                assert extension in ["csv", "json"], "`train_file` should be a csv or a json file."
            if self.validation_file is not None:
                extension = self.validation_file.split(".")[-1]
                assert extension in ["csv", "json"], "`validation_file` should be a csv or a json file."
296
297
298
            if self.test_file is not None:
                extension = self.test_file.split(".")[-1]
                assert extension in ["csv", "json"], "`test_file` should be a csv or a json file."
299
300
        if self.val_max_target_length is None:
            self.val_max_target_length = self.max_target_length
301
302
303


summarization_name_mapping = {
304
305
    "amazon_reviews_multi": ("review_body", "review_title"),
    "big_patent": ("description", "abstract"),
306
    "cnn_dailymail": ("article", "highlights"),
307
308
309
310
311
312
    "orange_sum": ("text", "summary"),
    "pn_summary": ("article", "summary"),
    "psc": ("extract_text", "summary_text"),
    "samsum": ("dialogue", "summary"),
    "thaisum": ("body", "summary"),
    "xglue": ("news_body", "news_title"),
313
    "xsum": ("document", "summary"),
314
    "wiki_summary": ("article", "highlights"),
315
    "multi_news": ("document", "summary"),
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
}


def main():
    # See all possible arguments in src/transformers/training_args.py
    # or by passing the --help flag to this script.
    # We now keep distinct sets of args, for a cleaner separation of concerns.

    parser = HfArgumentParser((ModelArguments, DataTrainingArguments, Seq2SeqTrainingArguments))
    if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
        # If we pass only one argument to the script and it's the path to a json file,
        # let's parse it to get our arguments.
        model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1]))
    else:
        model_args, data_args, training_args = parser.parse_args_into_dataclasses()

332
    if model_args.use_auth_token is not None:
333
334
335
336
        warnings.warn(
            "The `use_auth_token` argument is deprecated and will be removed in v4.34. Please use `token` instead.",
            FutureWarning,
        )
337
338
339
340
        if model_args.token is not None:
            raise ValueError("`token` and `use_auth_token` are both specified. Please set only the argument `token`.")
        model_args.token = model_args.use_auth_token

341
342
343
344
    # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The
    # information sent is the one passed as arguments along with your Python/PyTorch versions.
    send_example_telemetry("run_summarization", model_args, data_args)

345
346
    # Setup logging
    logging.basicConfig(
347
        format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
348
349
350
        datefmt="%m/%d/%Y %H:%M:%S",
        handlers=[logging.StreamHandler(sys.stdout)],
    )
351
352
353
354
355

    if training_args.should_log:
        # The default of training_args.log_level is passive, so we set log level at info here to have that default.
        transformers.utils.logging.set_verbosity_info()

356
357
358
359
360
361
    log_level = training_args.get_process_log_level()
    logger.setLevel(log_level)
    datasets.utils.logging.set_verbosity(log_level)
    transformers.utils.logging.set_verbosity(log_level)
    transformers.utils.logging.enable_default_handler()
    transformers.utils.logging.enable_explicit_format()
362
363
364

    # Log on each process the small summary:
    logger.warning(
365
        f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}, "
366
        + f"distributed training: {training_args.parallel_mode.value == 'distributed'}, 16-bits training: {training_args.fp16}"
367
368
369
    )
    logger.info(f"Training/evaluation parameters {training_args}")

370
371
372
373
374
375
376
377
378
379
380
381
    if data_args.source_prefix is None and model_args.model_name_or_path in [
        "t5-small",
        "t5-base",
        "t5-large",
        "t5-3b",
        "t5-11b",
    ]:
        logger.warning(
            "You're running a t5 model but didn't provide a source prefix, which is the expected, e.g. with "
            "`--source_prefix 'summarize: ' `"
        )

382
383
384
385
386
387
388
389
390
    # Detecting last checkpoint.
    last_checkpoint = None
    if os.path.isdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir:
        last_checkpoint = get_last_checkpoint(training_args.output_dir)
        if last_checkpoint is None and len(os.listdir(training_args.output_dir)) > 0:
            raise ValueError(
                f"Output directory ({training_args.output_dir}) already exists and is not empty. "
                "Use --overwrite_output_dir to overcome."
            )
391
        elif last_checkpoint is not None and training_args.resume_from_checkpoint is None:
392
393
394
395
            logger.info(
                f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change "
                "the `--output_dir` or add `--overwrite_output_dir` to train from scratch."
            )
396
397
398
399
400
401
402
403

    # Set seed before initializing model.
    set_seed(training_args.seed)

    # Get the datasets: you can either provide your own CSV/JSON training and evaluation files (see below)
    # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/
    # (the dataset will be downloaded automatically from the datasets Hub).
    #
404
405
    # For CSV/JSON files this script will use the first column for the full texts and the second column for the
    # summaries (unless you specify column names for this with the `text_column` and `summary_column` arguments).
406
407
408
409
410
    #
    # In distributed training, the load_dataset function guarantee that only one local process can concurrently
    # download the dataset.
    if data_args.dataset_name is not None:
        # Downloading and loading a dataset from the hub.
411
        raw_datasets = load_dataset(
412
413
414
            data_args.dataset_name,
            data_args.dataset_config_name,
            cache_dir=model_args.cache_dir,
415
            token=model_args.token,
416
        )
417
418
419
420
421
422
423
424
    else:
        data_files = {}
        if data_args.train_file is not None:
            data_files["train"] = data_args.train_file
            extension = data_args.train_file.split(".")[-1]
        if data_args.validation_file is not None:
            data_files["validation"] = data_args.validation_file
            extension = data_args.validation_file.split(".")[-1]
425
426
427
        if data_args.test_file is not None:
            data_files["test"] = data_args.test_file
            extension = data_args.test_file.split(".")[-1]
428
429
430
431
        raw_datasets = load_dataset(
            extension,
            data_files=data_files,
            cache_dir=model_args.cache_dir,
432
            token=model_args.token,
433
        )
434
435
436
437
438
439
440
441
442
443
444
445
    # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at
    # https://huggingface.co/docs/datasets/loading_datasets.html.

    # Load pretrained model and tokenizer
    #
    # Distributed training:
    # The .from_pretrained methods guarantee that only one local process can concurrently
    # download model & vocab.
    config = AutoConfig.from_pretrained(
        model_args.config_name if model_args.config_name else model_args.model_name_or_path,
        cache_dir=model_args.cache_dir,
        revision=model_args.model_revision,
446
        token=model_args.token,
447
        trust_remote_code=model_args.trust_remote_code,
448
449
450
451
452
453
    )
    tokenizer = AutoTokenizer.from_pretrained(
        model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path,
        cache_dir=model_args.cache_dir,
        use_fast=model_args.use_fast_tokenizer,
        revision=model_args.model_revision,
454
        token=model_args.token,
455
        trust_remote_code=model_args.trust_remote_code,
456
457
458
459
460
461
462
    )
    model = AutoModelForSeq2SeqLM.from_pretrained(
        model_args.model_name_or_path,
        from_tf=bool(".ckpt" in model_args.model_name_or_path),
        config=config,
        cache_dir=model_args.cache_dir,
        revision=model_args.model_revision,
463
        token=model_args.token,
464
        trust_remote_code=model_args.trust_remote_code,
465
466
    )

467
468
469
470
471
    # We resize the embeddings only when necessary to avoid index errors. If you are creating a model from scratch
    # on a small vocab and want a smaller embedding size, remove this test.
    embedding_size = model.get_input_embeddings().weight.shape[0]
    if len(tokenizer) > embedding_size:
        model.resize_token_embeddings(len(tokenizer))
Suraj Patil's avatar
Suraj Patil committed
472

473
474
475
476
477
478
    if model.config.decoder_start_token_id is None and isinstance(tokenizer, (MBartTokenizer, MBartTokenizerFast)):
        if isinstance(tokenizer, MBartTokenizer):
            model.config.decoder_start_token_id = tokenizer.lang_code_to_id[data_args.lang]
        else:
            model.config.decoder_start_token_id = tokenizer.convert_tokens_to_ids(data_args.lang)

479
480
481
    if model.config.decoder_start_token_id is None:
        raise ValueError("Make sure that `config.decoder_start_token_id` is correctly defined")

482
483
484
485
486
487
    if (
        hasattr(model.config, "max_position_embeddings")
        and model.config.max_position_embeddings < data_args.max_source_length
    ):
        if model_args.resize_position_embeddings is None:
            logger.warning(
Sylvain Gugger's avatar
Sylvain Gugger committed
488
489
                "Increasing the model's number of position embedding vectors from"
                f" {model.config.max_position_embeddings} to {data_args.max_source_length}."
490
491
492
493
494
495
            )
            model.resize_position_embeddings(data_args.max_source_length)
        elif model_args.resize_position_embeddings:
            model.resize_position_embeddings(data_args.max_source_length)
        else:
            raise ValueError(
Sylvain Gugger's avatar
Sylvain Gugger committed
496
497
498
499
                f"`--max_source_length` is set to {data_args.max_source_length}, but the model only has"
                f" {model.config.max_position_embeddings} position encodings. Consider either reducing"
                f" `--max_source_length` to {model.config.max_position_embeddings} or to automatically resize the"
                " model's position encodings by passing `--resize_position_embeddings`."
500
501
            )

502
    prefix = data_args.source_prefix if data_args.source_prefix is not None else ""
503

504
505
506
    # Preprocessing the datasets.
    # We need to tokenize inputs and targets.
    if training_args.do_train:
507
508
        if "train" not in raw_datasets:
            raise ValueError("--do_train requires a train dataset")
509
        column_names = raw_datasets["train"].column_names
510
    elif training_args.do_eval:
511
512
        if "validation" not in raw_datasets:
            raise ValueError("--do_eval requires a validation dataset")
513
        column_names = raw_datasets["validation"].column_names
514
    elif training_args.do_predict:
515
516
        if "test" not in raw_datasets:
            raise ValueError("--do_predict requires a test dataset")
517
        column_names = raw_datasets["test"].column_names
518
519
520
    else:
        logger.info("There is nothing to do. Please pass `do_train`, `do_eval` and/or `do_predict`.")
        return
521

522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
    if isinstance(tokenizer, tuple(MULTILINGUAL_TOKENIZERS)):
        assert (
            data_args.lang is not None
        ), f"{tokenizer.__class__.__name__} is a multilingual tokenizer which requires --lang argument"

        tokenizer.src_lang = data_args.lang
        tokenizer.tgt_lang = data_args.lang

        # For multilingual translation models like mBART-50 and M2M100 we need to force the target language token
        # as the first generated token. We ask the user to explicitly provide this as --forced_bos_token argument.
        forced_bos_token_id = (
            tokenizer.lang_code_to_id[data_args.forced_bos_token] if data_args.forced_bos_token is not None else None
        )
        model.config.forced_bos_token_id = forced_bos_token_id

537
538
539
540
    # Get the column names for input/target.
    dataset_columns = summarization_name_mapping.get(data_args.dataset_name, None)
    if data_args.text_column is None:
        text_column = dataset_columns[0] if dataset_columns is not None else column_names[0]
541
    else:
542
543
544
545
546
547
548
549
550
551
552
553
554
        text_column = data_args.text_column
        if text_column not in column_names:
            raise ValueError(
                f"--text_column' value '{data_args.text_column}' needs to be one of: {', '.join(column_names)}"
            )
    if data_args.summary_column is None:
        summary_column = dataset_columns[1] if dataset_columns is not None else column_names[1]
    else:
        summary_column = data_args.summary_column
        if summary_column not in column_names:
            raise ValueError(
                f"--summary_column' value '{data_args.summary_column}' needs to be one of: {', '.join(column_names)}"
            )
555
556
557
558
559

    # Temporarily set max_target_length for training.
    max_target_length = data_args.max_target_length
    padding = "max_length" if data_args.pad_to_max_length else False

560
    if training_args.label_smoothing_factor > 0 and not hasattr(model, "prepare_decoder_input_ids_from_labels"):
561
        logger.warning(
562
            "label_smoothing is enabled but the `prepare_decoder_input_ids_from_labels` method is not defined for "
563
564
565
            f"`{model.__class__.__name__}`. This will lead to loss being calculated twice and will take up more memory"
        )

566
    def preprocess_function(examples):
567
        # remove pairs where at least one record is None
568

569
570
        inputs, targets = [], []
        for i in range(len(examples[text_column])):
571
            if examples[text_column][i] and examples[summary_column][i]:
572
573
574
                inputs.append(examples[text_column][i])
                targets.append(examples[summary_column][i])

575
        inputs = [prefix + inp for inp in inputs]
576
577
        model_inputs = tokenizer(inputs, max_length=data_args.max_source_length, padding=padding, truncation=True)

578
579
        # Tokenize targets with the `text_target` keyword argument
        labels = tokenizer(text_target=targets, max_length=max_target_length, padding=padding, truncation=True)
580
581
582
583
584
585
586
587
588
589
590
591

        # If we are padding here, replace all tokenizer.pad_token_id in the labels by -100 when we want to ignore
        # padding in the loss.
        if padding == "max_length" and data_args.ignore_pad_token_for_loss:
            labels["input_ids"] = [
                [(l if l != tokenizer.pad_token_id else -100) for l in label] for label in labels["input_ids"]
            ]

        model_inputs["labels"] = labels["input_ids"]
        return model_inputs

    if training_args.do_train:
592
        train_dataset = raw_datasets["train"]
593
        if data_args.max_train_samples is not None:
594
595
            max_train_samples = min(len(train_dataset), data_args.max_train_samples)
            train_dataset = train_dataset.select(range(max_train_samples))
596
597
598
599
600
601
602
603
604
        with training_args.main_process_first(desc="train dataset map pre-processing"):
            train_dataset = train_dataset.map(
                preprocess_function,
                batched=True,
                num_proc=data_args.preprocessing_num_workers,
                remove_columns=column_names,
                load_from_cache_file=not data_args.overwrite_cache,
                desc="Running tokenizer on train dataset",
            )
605
606
607

    if training_args.do_eval:
        max_target_length = data_args.val_max_target_length
608
        eval_dataset = raw_datasets["validation"]
609
        if data_args.max_eval_samples is not None:
610
611
            max_eval_samples = min(len(eval_dataset), data_args.max_eval_samples)
            eval_dataset = eval_dataset.select(range(max_eval_samples))
612
613
614
615
616
617
618
619
620
        with training_args.main_process_first(desc="validation dataset map pre-processing"):
            eval_dataset = eval_dataset.map(
                preprocess_function,
                batched=True,
                num_proc=data_args.preprocessing_num_workers,
                remove_columns=column_names,
                load_from_cache_file=not data_args.overwrite_cache,
                desc="Running tokenizer on validation dataset",
            )
621

622
623
    if training_args.do_predict:
        max_target_length = data_args.val_max_target_length
624
        predict_dataset = raw_datasets["test"]
625
        if data_args.max_predict_samples is not None:
626
627
            max_predict_samples = min(len(predict_dataset), data_args.max_predict_samples)
            predict_dataset = predict_dataset.select(range(max_predict_samples))
628
629
630
631
632
633
634
635
636
        with training_args.main_process_first(desc="prediction dataset map pre-processing"):
            predict_dataset = predict_dataset.map(
                preprocess_function,
                batched=True,
                num_proc=data_args.preprocessing_num_workers,
                remove_columns=column_names,
                load_from_cache_file=not data_args.overwrite_cache,
                desc="Running tokenizer on prediction dataset",
            )
637

638
639
    # Data collator
    label_pad_token_id = -100 if data_args.ignore_pad_token_for_loss else tokenizer.pad_token_id
640
641
642
643
644
645
    data_collator = DataCollatorForSeq2Seq(
        tokenizer,
        model=model,
        label_pad_token_id=label_pad_token_id,
        pad_to_multiple_of=8 if training_args.fp16 else None,
    )
646
647

    # Metric
648
    metric = evaluate.load("rouge")
649

650
651
652
653
654
    def postprocess_text(preds, labels):
        preds = [pred.strip() for pred in preds]
        labels = [label.strip() for label in labels]

        # rougeLSum expects newline after each sentence
655
656
        preds = ["\n".join(nltk.sent_tokenize(pred)) for pred in preds]
        labels = ["\n".join(nltk.sent_tokenize(label)) for label in labels]
657
658
659

        return preds, labels

660
661
662
663
    def compute_metrics(eval_preds):
        preds, labels = eval_preds
        if isinstance(preds, tuple):
            preds = preds[0]
664
665
        # Replace -100s used for padding as we can't decode them
        preds = np.where(preds != -100, preds, tokenizer.pad_token_id)
666
        decoded_preds = tokenizer.batch_decode(preds, skip_special_tokens=True)
667
        labels = np.where(labels != -100, labels, tokenizer.pad_token_id)
668
669
670
        decoded_labels = tokenizer.batch_decode(labels, skip_special_tokens=True)

        # Some simple post-processing
671
        decoded_preds, decoded_labels = postprocess_text(decoded_preds, decoded_labels)
672

673
        result = metric.compute(predictions=decoded_preds, references=decoded_labels, use_stemmer=True)
674
        result = {k: round(v * 100, 4) for k, v in result.items()}
675
676
677
678
        prediction_lens = [np.count_nonzero(pred != tokenizer.pad_token_id) for pred in preds]
        result["gen_len"] = np.mean(prediction_lens)
        return result

679
    # Override the decoding parameters of Seq2SeqTrainer
680
681
682
683
684
685
686
687
    training_args.generation_max_length = (
        training_args.generation_max_length
        if training_args.generation_max_length is not None
        else data_args.val_max_target_length
    )
    training_args.generation_num_beams = (
        data_args.num_beams if data_args.num_beams is not None else training_args.generation_num_beams
    )
688

689
690
691
692
693
694
695
696
697
698
699
700
701
    # Initialize our Trainer
    trainer = Seq2SeqTrainer(
        model=model,
        args=training_args,
        train_dataset=train_dataset if training_args.do_train else None,
        eval_dataset=eval_dataset if training_args.do_eval else None,
        tokenizer=tokenizer,
        data_collator=data_collator,
        compute_metrics=compute_metrics if training_args.predict_with_generate else None,
    )

    # Training
    if training_args.do_train:
702
703
704
705
        checkpoint = None
        if training_args.resume_from_checkpoint is not None:
            checkpoint = training_args.resume_from_checkpoint
        elif last_checkpoint is not None:
706
707
            checkpoint = last_checkpoint
        train_result = trainer.train(resume_from_checkpoint=checkpoint)
708
709
        trainer.save_model()  # Saves the tokenizer too for easy upload

710
711
712
713
714
        metrics = train_result.metrics
        max_train_samples = (
            data_args.max_train_samples if data_args.max_train_samples is not None else len(train_dataset)
        )
        metrics["train_samples"] = min(max_train_samples, len(train_dataset))
715

716
717
718
        trainer.log_metrics("train", metrics)
        trainer.save_metrics("train", metrics)
        trainer.save_state()
719
720

    # Evaluation
721
    results = {}
722
723
    if training_args.do_eval:
        logger.info("*** Evaluate ***")
724
725
726
727
728
729
730
        if isinstance(eval_dataset, dict):
            metrics = {}
            for eval_ds_name, eval_ds in eval_dataset.items():
                dataset_metrics = trainer.evaluate(eval_dataset=eval_ds, metric_key_prefix=f"eval_{eval_ds_name}")
                metrics.update(dataset_metrics)
        else:
            metrics = trainer.evaluate(metric_key_prefix="eval")
731
732
        max_eval_samples = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(eval_dataset)
        metrics["eval_samples"] = min(max_eval_samples, len(eval_dataset))
733

734
735
        trainer.log_metrics("eval", metrics)
        trainer.save_metrics("eval", metrics)
736

737
    if training_args.do_predict:
738
        logger.info("*** Predict ***")
739

740
        predict_results = trainer.predict(predict_dataset, metric_key_prefix="predict")
741
742
743
744
745
        metrics = predict_results.metrics
        max_predict_samples = (
            data_args.max_predict_samples if data_args.max_predict_samples is not None else len(predict_dataset)
        )
        metrics["predict_samples"] = min(max_predict_samples, len(predict_dataset))
746

747
748
        trainer.log_metrics("predict", metrics)
        trainer.save_metrics("predict", metrics)
749

750
        if trainer.is_world_process_zero():
751
            if training_args.predict_with_generate:
752
753
                predictions = predict_results.predictions
                predictions = np.where(predictions != -100, predictions, tokenizer.pad_token_id)
754
                predictions = tokenizer.batch_decode(
755
                    predictions, skip_special_tokens=True, clean_up_tokenization_spaces=True
756
                )
757
758
759
760
                predictions = [pred.strip() for pred in predictions]
                output_prediction_file = os.path.join(training_args.output_dir, "generated_predictions.txt")
                with open(output_prediction_file, "w") as writer:
                    writer.write("\n".join(predictions))
761

762
763
764
765
766
767
768
769
    kwargs = {"finetuned_from": model_args.model_name_or_path, "tasks": "summarization"}
    if data_args.dataset_name is not None:
        kwargs["dataset_tags"] = data_args.dataset_name
        if data_args.dataset_config_name is not None:
            kwargs["dataset_args"] = data_args.dataset_config_name
            kwargs["dataset"] = f"{data_args.dataset_name} {data_args.dataset_config_name}"
        else:
            kwargs["dataset"] = data_args.dataset_name
Sylvain Gugger's avatar
Sylvain Gugger committed
770

771
772
773
    if data_args.lang is not None:
        kwargs["language"] = data_args.lang

774
    if training_args.push_to_hub:
Sylvain Gugger's avatar
Sylvain Gugger committed
775
        trainer.push_to_hub(**kwargs)
776
777
    else:
        trainer.create_model_card(**kwargs)
Sylvain Gugger's avatar
Sylvain Gugger committed
778

779
780
    return results

781
782
783
784
785
786
787
788

def _mp_fn(index):
    # For xla_spawn (TPUs)
    main()


if __name__ == "__main__":
    main()