run_summarization.py 32.2 KB
Newer Older
1
#!/usr/bin/env python
2
# coding=utf-8
3
# Copyright 2021 The HuggingFace Team. All rights reserved.
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Fine-tuning the library models for sequence to sequence.
"""
# You can also adapt this script on your own sequence to sequence task. Pointers for this are left as comments.

import logging
import os
import sys
24
import warnings
25
26
27
from dataclasses import dataclass, field
from typing import Optional

28
import datasets
29
import evaluate
30
import nltk  # Here to have a nice missing dependency error message early on
31
import numpy as np
32
from datasets import load_dataset
33
from filelock import FileLock
34
35
36
37
38
39
40
41

import transformers
from transformers import (
    AutoConfig,
    AutoModelForSeq2SeqLM,
    AutoTokenizer,
    DataCollatorForSeq2Seq,
    HfArgumentParser,
42
43
44
45
    MBart50Tokenizer,
    MBart50TokenizerFast,
    MBartTokenizer,
    MBartTokenizerFast,
46
47
48
49
    Seq2SeqTrainer,
    Seq2SeqTrainingArguments,
    set_seed,
)
50
from transformers.trainer_utils import get_last_checkpoint
51
from transformers.utils import check_min_version, is_offline_mode, send_example_telemetry
52
from transformers.utils.versions import require_version
53
54


55
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
Sylvain Gugger's avatar
Sylvain Gugger committed
56
check_min_version("4.32.0.dev0")
Sylvain Gugger's avatar
Sylvain Gugger committed
57

58
require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/summarization/requirements.txt")
59

60
61
logger = logging.getLogger(__name__)

62
63
try:
    nltk.data.find("tokenizers/punkt")
Stas Bekman's avatar
Stas Bekman committed
64
except (LookupError, OSError):
65
66
67
68
69
70
71
    if is_offline_mode():
        raise LookupError(
            "Offline mode: run this script without TRANSFORMERS_OFFLINE first to download nltk data files"
        )
    with FileLock(".lock") as lock:
        nltk.download("punkt", quiet=True)

72
73
74
# A list of all multilingual tokenizer which require lang attribute.
MULTILINGUAL_TOKENIZERS = [MBartTokenizer, MBartTokenizerFast, MBart50Tokenizer, MBart50TokenizerFast]

75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102

@dataclass
class ModelArguments:
    """
    Arguments pertaining to which model/config/tokenizer we are going to fine-tune from.
    """

    model_name_or_path: str = field(
        metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"}
    )
    config_name: Optional[str] = field(
        default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"}
    )
    tokenizer_name: Optional[str] = field(
        default=None, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"}
    )
    cache_dir: Optional[str] = field(
        default=None,
        metadata={"help": "Where to store the pretrained models downloaded from huggingface.co"},
    )
    use_fast_tokenizer: bool = field(
        default=True,
        metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."},
    )
    model_revision: str = field(
        default="main",
        metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."},
    )
103
104
    token: str = field(
        default=None,
105
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
106
            "help": (
107
108
                "The token to use as HTTP bearer authorization for remote files. If not specified, will use the token "
                "generated when running `huggingface-cli login` (stored in `~/.huggingface`)."
Sylvain Gugger's avatar
Sylvain Gugger committed
109
            )
110
111
        },
    )
112
113
114
115
116
117
    use_auth_token: bool = field(
        default=None,
        metadata={
            "help": "The `use_auth_token` argument is deprecated and will be removed in v4.34. Please use `token`."
        },
    )
118
119
120
    resize_position_embeddings: Optional[bool] = field(
        default=None,
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
121
122
123
124
            "help": (
                "Whether to automatically resize the position embeddings if `max_source_length` exceeds "
                "the model's position embeddings."
            )
125
126
        },
    )
127
128
129
130
131
132
133
134


@dataclass
class DataTrainingArguments:
    """
    Arguments pertaining to what data we are going to input our model for training and eval.
    """

135
    lang: Optional[str] = field(default=None, metadata={"help": "Language id for summarization."})
136

137
138
139
140
141
142
143
144
145
146
147
148
149
150
    dataset_name: Optional[str] = field(
        default=None, metadata={"help": "The name of the dataset to use (via the datasets library)."}
    )
    dataset_config_name: Optional[str] = field(
        default=None, metadata={"help": "The configuration name of the dataset to use (via the datasets library)."}
    )
    text_column: Optional[str] = field(
        default=None,
        metadata={"help": "The name of the column in the datasets containing the full texts (for summarization)."},
    )
    summary_column: Optional[str] = field(
        default=None,
        metadata={"help": "The name of the column in the datasets containing the summaries (for summarization)."},
    )
151
152
153
    train_file: Optional[str] = field(
        default=None, metadata={"help": "The input training data file (a jsonlines or csv file)."}
    )
154
155
    validation_file: Optional[str] = field(
        default=None,
156
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
157
158
159
            "help": (
                "An optional input evaluation data file to evaluate the metrics (rouge) on (a jsonlines or csv file)."
            )
160
161
162
163
164
        },
    )
    test_file: Optional[str] = field(
        default=None,
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
165
            "help": "An optional input test data file to evaluate the metrics (rouge) on (a jsonlines or csv file)."
166
        },
167
168
169
170
171
172
173
174
175
176
177
    )
    overwrite_cache: bool = field(
        default=False, metadata={"help": "Overwrite the cached training and evaluation sets"}
    )
    preprocessing_num_workers: Optional[int] = field(
        default=None,
        metadata={"help": "The number of processes to use for the preprocessing."},
    )
    max_source_length: Optional[int] = field(
        default=1024,
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
178
179
180
181
            "help": (
                "The maximum total input sequence length after tokenization. Sequences longer "
                "than this will be truncated, sequences shorter will be padded."
            )
182
183
184
185
186
        },
    )
    max_target_length: Optional[int] = field(
        default=128,
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
187
188
189
190
            "help": (
                "The maximum total sequence length for target text after tokenization. Sequences longer "
                "than this will be truncated, sequences shorter will be padded."
            )
191
192
193
        },
    )
    val_max_target_length: Optional[int] = field(
194
        default=None,
195
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
196
197
198
199
200
201
            "help": (
                "The maximum total sequence length for validation target text after tokenization. Sequences longer "
                "than this will be truncated, sequences shorter will be padded. Will default to `max_target_length`."
                "This argument is also used to override the ``max_length`` param of ``model.generate``, which is used "
                "during ``evaluate`` and ``predict``."
            )
202
203
204
205
206
        },
    )
    pad_to_max_length: bool = field(
        default=False,
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
207
208
209
210
211
            "help": (
                "Whether to pad all samples to model maximum sentence length. "
                "If False, will pad the samples dynamically when batching to the maximum length in the batch. More "
                "efficient on GPU but very bad for TPU."
            )
212
213
214
215
216
        },
    )
    max_train_samples: Optional[int] = field(
        default=None,
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
217
218
219
220
            "help": (
                "For debugging purposes or quicker training, truncate the number of training examples to this "
                "value if set."
            )
221
222
        },
    )
223
    max_eval_samples: Optional[int] = field(
224
225
        default=None,
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
226
227
228
229
            "help": (
                "For debugging purposes or quicker training, truncate the number of evaluation examples to this "
                "value if set."
            )
230
231
        },
    )
232
    max_predict_samples: Optional[int] = field(
233
234
        default=None,
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
235
236
237
238
            "help": (
                "For debugging purposes or quicker training, truncate the number of prediction examples to this "
                "value if set."
            )
239
240
241
242
243
        },
    )
    num_beams: Optional[int] = field(
        default=None,
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
244
245
246
247
            "help": (
                "Number of beams to use for evaluation. This argument will be passed to ``model.generate``, "
                "which is used during ``evaluate`` and ``predict``."
            )
248
249
        },
    )
250
251
252
253
254
255
    ignore_pad_token_for_loss: bool = field(
        default=True,
        metadata={
            "help": "Whether to ignore the tokens corresponding to padded labels in the loss computation or not."
        },
    )
256
    source_prefix: Optional[str] = field(
257
258
259
260
261
262
        default="", metadata={"help": "A prefix to add before every source text (useful for T5 models)."}
    )

    forced_bos_token: Optional[str] = field(
        default=None,
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
263
264
265
266
267
            "help": (
                "The token to force as the first generated token after the decoder_start_token_id."
                "Useful for multilingual models like mBART where the first generated token"
                "needs to be the target language token (Usually it is the target language token)"
            )
268
        },
269
    )
270
271

    def __post_init__(self):
272
273
274
275
276
277
278
        if (
            self.dataset_name is None
            and self.train_file is None
            and self.validation_file is None
            and self.test_file is None
        ):
            raise ValueError("Need either a dataset name or a training, validation, or test file.")
279
280
281
282
283
284
285
        else:
            if self.train_file is not None:
                extension = self.train_file.split(".")[-1]
                assert extension in ["csv", "json"], "`train_file` should be a csv or a json file."
            if self.validation_file is not None:
                extension = self.validation_file.split(".")[-1]
                assert extension in ["csv", "json"], "`validation_file` should be a csv or a json file."
286
287
288
            if self.test_file is not None:
                extension = self.test_file.split(".")[-1]
                assert extension in ["csv", "json"], "`test_file` should be a csv or a json file."
289
290
        if self.val_max_target_length is None:
            self.val_max_target_length = self.max_target_length
291
292
293


summarization_name_mapping = {
294
295
    "amazon_reviews_multi": ("review_body", "review_title"),
    "big_patent": ("description", "abstract"),
296
    "cnn_dailymail": ("article", "highlights"),
297
298
299
300
301
302
    "orange_sum": ("text", "summary"),
    "pn_summary": ("article", "summary"),
    "psc": ("extract_text", "summary_text"),
    "samsum": ("dialogue", "summary"),
    "thaisum": ("body", "summary"),
    "xglue": ("news_body", "news_title"),
303
    "xsum": ("document", "summary"),
304
    "wiki_summary": ("article", "highlights"),
305
    "multi_news": ("document", "summary"),
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
}


def main():
    # See all possible arguments in src/transformers/training_args.py
    # or by passing the --help flag to this script.
    # We now keep distinct sets of args, for a cleaner separation of concerns.

    parser = HfArgumentParser((ModelArguments, DataTrainingArguments, Seq2SeqTrainingArguments))
    if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
        # If we pass only one argument to the script and it's the path to a json file,
        # let's parse it to get our arguments.
        model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1]))
    else:
        model_args, data_args, training_args = parser.parse_args_into_dataclasses()

322
323
324
325
326
327
    if model_args.use_auth_token is not None:
        warnings.warn("The `use_auth_token` argument is deprecated and will be removed in v4.34.", FutureWarning)
        if model_args.token is not None:
            raise ValueError("`token` and `use_auth_token` are both specified. Please set only the argument `token`.")
        model_args.token = model_args.use_auth_token

328
329
330
331
    # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The
    # information sent is the one passed as arguments along with your Python/PyTorch versions.
    send_example_telemetry("run_summarization", model_args, data_args)

332
333
    # Setup logging
    logging.basicConfig(
334
        format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
335
336
337
        datefmt="%m/%d/%Y %H:%M:%S",
        handlers=[logging.StreamHandler(sys.stdout)],
    )
338
339
340
341
342

    if training_args.should_log:
        # The default of training_args.log_level is passive, so we set log level at info here to have that default.
        transformers.utils.logging.set_verbosity_info()

343
344
345
346
347
348
    log_level = training_args.get_process_log_level()
    logger.setLevel(log_level)
    datasets.utils.logging.set_verbosity(log_level)
    transformers.utils.logging.set_verbosity(log_level)
    transformers.utils.logging.enable_default_handler()
    transformers.utils.logging.enable_explicit_format()
349
350
351
352

    # Log on each process the small summary:
    logger.warning(
        f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}"
353
        + f"distributed training: {training_args.parallel_mode.value == 'distributed'}, 16-bits training: {training_args.fp16}"
354
355
356
    )
    logger.info(f"Training/evaluation parameters {training_args}")

357
358
359
360
361
362
363
364
365
366
367
368
    if data_args.source_prefix is None and model_args.model_name_or_path in [
        "t5-small",
        "t5-base",
        "t5-large",
        "t5-3b",
        "t5-11b",
    ]:
        logger.warning(
            "You're running a t5 model but didn't provide a source prefix, which is the expected, e.g. with "
            "`--source_prefix 'summarize: ' `"
        )

369
370
371
372
373
374
375
376
377
    # Detecting last checkpoint.
    last_checkpoint = None
    if os.path.isdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir:
        last_checkpoint = get_last_checkpoint(training_args.output_dir)
        if last_checkpoint is None and len(os.listdir(training_args.output_dir)) > 0:
            raise ValueError(
                f"Output directory ({training_args.output_dir}) already exists and is not empty. "
                "Use --overwrite_output_dir to overcome."
            )
378
        elif last_checkpoint is not None and training_args.resume_from_checkpoint is None:
379
380
381
382
            logger.info(
                f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change "
                "the `--output_dir` or add `--overwrite_output_dir` to train from scratch."
            )
383
384
385
386
387
388
389
390

    # Set seed before initializing model.
    set_seed(training_args.seed)

    # Get the datasets: you can either provide your own CSV/JSON training and evaluation files (see below)
    # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/
    # (the dataset will be downloaded automatically from the datasets Hub).
    #
391
392
    # For CSV/JSON files this script will use the first column for the full texts and the second column for the
    # summaries (unless you specify column names for this with the `text_column` and `summary_column` arguments).
393
394
395
396
397
    #
    # In distributed training, the load_dataset function guarantee that only one local process can concurrently
    # download the dataset.
    if data_args.dataset_name is not None:
        # Downloading and loading a dataset from the hub.
398
        raw_datasets = load_dataset(
399
400
401
            data_args.dataset_name,
            data_args.dataset_config_name,
            cache_dir=model_args.cache_dir,
402
            token=model_args.token,
403
        )
404
405
406
407
408
409
410
411
    else:
        data_files = {}
        if data_args.train_file is not None:
            data_files["train"] = data_args.train_file
            extension = data_args.train_file.split(".")[-1]
        if data_args.validation_file is not None:
            data_files["validation"] = data_args.validation_file
            extension = data_args.validation_file.split(".")[-1]
412
413
414
        if data_args.test_file is not None:
            data_files["test"] = data_args.test_file
            extension = data_args.test_file.split(".")[-1]
415
416
417
418
        raw_datasets = load_dataset(
            extension,
            data_files=data_files,
            cache_dir=model_args.cache_dir,
419
            token=model_args.token,
420
        )
421
422
423
424
425
426
427
428
429
430
431
432
    # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at
    # https://huggingface.co/docs/datasets/loading_datasets.html.

    # Load pretrained model and tokenizer
    #
    # Distributed training:
    # The .from_pretrained methods guarantee that only one local process can concurrently
    # download model & vocab.
    config = AutoConfig.from_pretrained(
        model_args.config_name if model_args.config_name else model_args.model_name_or_path,
        cache_dir=model_args.cache_dir,
        revision=model_args.model_revision,
433
        token=model_args.token,
434
435
436
437
438
439
    )
    tokenizer = AutoTokenizer.from_pretrained(
        model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path,
        cache_dir=model_args.cache_dir,
        use_fast=model_args.use_fast_tokenizer,
        revision=model_args.model_revision,
440
        token=model_args.token,
441
442
443
444
445
446
447
    )
    model = AutoModelForSeq2SeqLM.from_pretrained(
        model_args.model_name_or_path,
        from_tf=bool(".ckpt" in model_args.model_name_or_path),
        config=config,
        cache_dir=model_args.cache_dir,
        revision=model_args.model_revision,
448
        token=model_args.token,
449
450
    )

451
452
453
454
455
    # We resize the embeddings only when necessary to avoid index errors. If you are creating a model from scratch
    # on a small vocab and want a smaller embedding size, remove this test.
    embedding_size = model.get_input_embeddings().weight.shape[0]
    if len(tokenizer) > embedding_size:
        model.resize_token_embeddings(len(tokenizer))
Suraj Patil's avatar
Suraj Patil committed
456

457
458
459
460
461
462
    if model.config.decoder_start_token_id is None and isinstance(tokenizer, (MBartTokenizer, MBartTokenizerFast)):
        if isinstance(tokenizer, MBartTokenizer):
            model.config.decoder_start_token_id = tokenizer.lang_code_to_id[data_args.lang]
        else:
            model.config.decoder_start_token_id = tokenizer.convert_tokens_to_ids(data_args.lang)

463
464
465
    if model.config.decoder_start_token_id is None:
        raise ValueError("Make sure that `config.decoder_start_token_id` is correctly defined")

466
467
468
469
470
471
    if (
        hasattr(model.config, "max_position_embeddings")
        and model.config.max_position_embeddings < data_args.max_source_length
    ):
        if model_args.resize_position_embeddings is None:
            logger.warning(
Sylvain Gugger's avatar
Sylvain Gugger committed
472
473
                "Increasing the model's number of position embedding vectors from"
                f" {model.config.max_position_embeddings} to {data_args.max_source_length}."
474
475
476
477
478
479
            )
            model.resize_position_embeddings(data_args.max_source_length)
        elif model_args.resize_position_embeddings:
            model.resize_position_embeddings(data_args.max_source_length)
        else:
            raise ValueError(
Sylvain Gugger's avatar
Sylvain Gugger committed
480
481
482
483
                f"`--max_source_length` is set to {data_args.max_source_length}, but the model only has"
                f" {model.config.max_position_embeddings} position encodings. Consider either reducing"
                f" `--max_source_length` to {model.config.max_position_embeddings} or to automatically resize the"
                " model's position encodings by passing `--resize_position_embeddings`."
484
485
            )

486
    prefix = data_args.source_prefix if data_args.source_prefix is not None else ""
487

488
489
490
    # Preprocessing the datasets.
    # We need to tokenize inputs and targets.
    if training_args.do_train:
491
492
        if "train" not in raw_datasets:
            raise ValueError("--do_train requires a train dataset")
493
        column_names = raw_datasets["train"].column_names
494
    elif training_args.do_eval:
495
496
        if "validation" not in raw_datasets:
            raise ValueError("--do_eval requires a validation dataset")
497
        column_names = raw_datasets["validation"].column_names
498
    elif training_args.do_predict:
499
500
        if "test" not in raw_datasets:
            raise ValueError("--do_predict requires a test dataset")
501
        column_names = raw_datasets["test"].column_names
502
503
504
    else:
        logger.info("There is nothing to do. Please pass `do_train`, `do_eval` and/or `do_predict`.")
        return
505

506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
    if isinstance(tokenizer, tuple(MULTILINGUAL_TOKENIZERS)):
        assert (
            data_args.lang is not None
        ), f"{tokenizer.__class__.__name__} is a multilingual tokenizer which requires --lang argument"

        tokenizer.src_lang = data_args.lang
        tokenizer.tgt_lang = data_args.lang

        # For multilingual translation models like mBART-50 and M2M100 we need to force the target language token
        # as the first generated token. We ask the user to explicitly provide this as --forced_bos_token argument.
        forced_bos_token_id = (
            tokenizer.lang_code_to_id[data_args.forced_bos_token] if data_args.forced_bos_token is not None else None
        )
        model.config.forced_bos_token_id = forced_bos_token_id

521
522
523
524
    # Get the column names for input/target.
    dataset_columns = summarization_name_mapping.get(data_args.dataset_name, None)
    if data_args.text_column is None:
        text_column = dataset_columns[0] if dataset_columns is not None else column_names[0]
525
    else:
526
527
528
529
530
531
532
533
534
535
536
537
538
        text_column = data_args.text_column
        if text_column not in column_names:
            raise ValueError(
                f"--text_column' value '{data_args.text_column}' needs to be one of: {', '.join(column_names)}"
            )
    if data_args.summary_column is None:
        summary_column = dataset_columns[1] if dataset_columns is not None else column_names[1]
    else:
        summary_column = data_args.summary_column
        if summary_column not in column_names:
            raise ValueError(
                f"--summary_column' value '{data_args.summary_column}' needs to be one of: {', '.join(column_names)}"
            )
539
540
541
542
543

    # Temporarily set max_target_length for training.
    max_target_length = data_args.max_target_length
    padding = "max_length" if data_args.pad_to_max_length else False

544
    if training_args.label_smoothing_factor > 0 and not hasattr(model, "prepare_decoder_input_ids_from_labels"):
545
        logger.warning(
546
547
548
549
            "label_smoothing is enabled but the `prepare_decoder_input_ids_from_labels` method is not defined for"
            f"`{model.__class__.__name__}`. This will lead to loss being calculated twice and will take up more memory"
        )

550
    def preprocess_function(examples):
551
        # remove pairs where at least one record is None
552

553
554
        inputs, targets = [], []
        for i in range(len(examples[text_column])):
555
            if examples[text_column][i] and examples[summary_column][i]:
556
557
558
                inputs.append(examples[text_column][i])
                targets.append(examples[summary_column][i])

559
        inputs = [prefix + inp for inp in inputs]
560
561
        model_inputs = tokenizer(inputs, max_length=data_args.max_source_length, padding=padding, truncation=True)

562
563
        # Tokenize targets with the `text_target` keyword argument
        labels = tokenizer(text_target=targets, max_length=max_target_length, padding=padding, truncation=True)
564
565
566
567
568
569
570
571
572
573
574
575

        # If we are padding here, replace all tokenizer.pad_token_id in the labels by -100 when we want to ignore
        # padding in the loss.
        if padding == "max_length" and data_args.ignore_pad_token_for_loss:
            labels["input_ids"] = [
                [(l if l != tokenizer.pad_token_id else -100) for l in label] for label in labels["input_ids"]
            ]

        model_inputs["labels"] = labels["input_ids"]
        return model_inputs

    if training_args.do_train:
576
        train_dataset = raw_datasets["train"]
577
        if data_args.max_train_samples is not None:
578
579
            max_train_samples = min(len(train_dataset), data_args.max_train_samples)
            train_dataset = train_dataset.select(range(max_train_samples))
580
581
582
583
584
585
586
587
588
        with training_args.main_process_first(desc="train dataset map pre-processing"):
            train_dataset = train_dataset.map(
                preprocess_function,
                batched=True,
                num_proc=data_args.preprocessing_num_workers,
                remove_columns=column_names,
                load_from_cache_file=not data_args.overwrite_cache,
                desc="Running tokenizer on train dataset",
            )
589
590
591

    if training_args.do_eval:
        max_target_length = data_args.val_max_target_length
592
        eval_dataset = raw_datasets["validation"]
593
        if data_args.max_eval_samples is not None:
594
595
            max_eval_samples = min(len(eval_dataset), data_args.max_eval_samples)
            eval_dataset = eval_dataset.select(range(max_eval_samples))
596
597
598
599
600
601
602
603
604
        with training_args.main_process_first(desc="validation dataset map pre-processing"):
            eval_dataset = eval_dataset.map(
                preprocess_function,
                batched=True,
                num_proc=data_args.preprocessing_num_workers,
                remove_columns=column_names,
                load_from_cache_file=not data_args.overwrite_cache,
                desc="Running tokenizer on validation dataset",
            )
605

606
607
    if training_args.do_predict:
        max_target_length = data_args.val_max_target_length
608
        predict_dataset = raw_datasets["test"]
609
        if data_args.max_predict_samples is not None:
610
611
            max_predict_samples = min(len(predict_dataset), data_args.max_predict_samples)
            predict_dataset = predict_dataset.select(range(max_predict_samples))
612
613
614
615
616
617
618
619
620
        with training_args.main_process_first(desc="prediction dataset map pre-processing"):
            predict_dataset = predict_dataset.map(
                preprocess_function,
                batched=True,
                num_proc=data_args.preprocessing_num_workers,
                remove_columns=column_names,
                load_from_cache_file=not data_args.overwrite_cache,
                desc="Running tokenizer on prediction dataset",
            )
621

622
623
    # Data collator
    label_pad_token_id = -100 if data_args.ignore_pad_token_for_loss else tokenizer.pad_token_id
624
625
626
627
628
629
    data_collator = DataCollatorForSeq2Seq(
        tokenizer,
        model=model,
        label_pad_token_id=label_pad_token_id,
        pad_to_multiple_of=8 if training_args.fp16 else None,
    )
630
631

    # Metric
632
    metric = evaluate.load("rouge")
633

634
635
636
637
638
    def postprocess_text(preds, labels):
        preds = [pred.strip() for pred in preds]
        labels = [label.strip() for label in labels]

        # rougeLSum expects newline after each sentence
639
640
        preds = ["\n".join(nltk.sent_tokenize(pred)) for pred in preds]
        labels = ["\n".join(nltk.sent_tokenize(label)) for label in labels]
641
642
643

        return preds, labels

644
645
646
647
    def compute_metrics(eval_preds):
        preds, labels = eval_preds
        if isinstance(preds, tuple):
            preds = preds[0]
648
649
        # Replace -100s used for padding as we can't decode them
        preds = np.where(preds != -100, preds, tokenizer.pad_token_id)
650
        decoded_preds = tokenizer.batch_decode(preds, skip_special_tokens=True)
651
        labels = np.where(labels != -100, labels, tokenizer.pad_token_id)
652
653
654
        decoded_labels = tokenizer.batch_decode(labels, skip_special_tokens=True)

        # Some simple post-processing
655
        decoded_preds, decoded_labels = postprocess_text(decoded_preds, decoded_labels)
656

657
        result = metric.compute(predictions=decoded_preds, references=decoded_labels, use_stemmer=True)
658
        result = {k: round(v * 100, 4) for k, v in result.items()}
659
660
661
662
        prediction_lens = [np.count_nonzero(pred != tokenizer.pad_token_id) for pred in preds]
        result["gen_len"] = np.mean(prediction_lens)
        return result

663
664
665
666
667
668
669
670
671
672
    # Override the decoding parameters of Seq2SeqTrainer
    training_args.generation_max_length = (
        training_args.generation_max_length
        if training_args.generation_max_length is not None
        else data_args.val_max_target_length
    )
    training_args.generation_num_beams = (
        data_args.num_beams if data_args.num_beams is not None else training_args.generation_num_beams
    )

673
674
675
676
677
678
679
680
681
682
683
684
685
    # Initialize our Trainer
    trainer = Seq2SeqTrainer(
        model=model,
        args=training_args,
        train_dataset=train_dataset if training_args.do_train else None,
        eval_dataset=eval_dataset if training_args.do_eval else None,
        tokenizer=tokenizer,
        data_collator=data_collator,
        compute_metrics=compute_metrics if training_args.predict_with_generate else None,
    )

    # Training
    if training_args.do_train:
686
687
688
689
        checkpoint = None
        if training_args.resume_from_checkpoint is not None:
            checkpoint = training_args.resume_from_checkpoint
        elif last_checkpoint is not None:
690
691
            checkpoint = last_checkpoint
        train_result = trainer.train(resume_from_checkpoint=checkpoint)
692
693
        trainer.save_model()  # Saves the tokenizer too for easy upload

694
695
696
697
698
        metrics = train_result.metrics
        max_train_samples = (
            data_args.max_train_samples if data_args.max_train_samples is not None else len(train_dataset)
        )
        metrics["train_samples"] = min(max_train_samples, len(train_dataset))
699

700
701
702
        trainer.log_metrics("train", metrics)
        trainer.save_metrics("train", metrics)
        trainer.save_state()
703
704

    # Evaluation
705
    results = {}
706
707
    if training_args.do_eval:
        logger.info("*** Evaluate ***")
708
709
710
711
712
713
714
        if isinstance(eval_dataset, dict):
            metrics = {}
            for eval_ds_name, eval_ds in eval_dataset.items():
                dataset_metrics = trainer.evaluate(eval_dataset=eval_ds, metric_key_prefix=f"eval_{eval_ds_name}")
                metrics.update(dataset_metrics)
        else:
            metrics = trainer.evaluate(metric_key_prefix="eval")
715
716
        max_eval_samples = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(eval_dataset)
        metrics["eval_samples"] = min(max_eval_samples, len(eval_dataset))
717

718
719
        trainer.log_metrics("eval", metrics)
        trainer.save_metrics("eval", metrics)
720

721
    if training_args.do_predict:
722
        logger.info("*** Predict ***")
723

724
        predict_results = trainer.predict(predict_dataset, metric_key_prefix="predict")
725
726
727
728
729
        metrics = predict_results.metrics
        max_predict_samples = (
            data_args.max_predict_samples if data_args.max_predict_samples is not None else len(predict_dataset)
        )
        metrics["predict_samples"] = min(max_predict_samples, len(predict_dataset))
730

731
732
        trainer.log_metrics("predict", metrics)
        trainer.save_metrics("predict", metrics)
733

734
        if trainer.is_world_process_zero():
735
            if training_args.predict_with_generate:
736
737
                predictions = predict_results.predictions
                predictions = np.where(predictions != -100, predictions, tokenizer.pad_token_id)
738
                predictions = tokenizer.batch_decode(
739
                    predictions, skip_special_tokens=True, clean_up_tokenization_spaces=True
740
                )
741
742
743
744
                predictions = [pred.strip() for pred in predictions]
                output_prediction_file = os.path.join(training_args.output_dir, "generated_predictions.txt")
                with open(output_prediction_file, "w") as writer:
                    writer.write("\n".join(predictions))
745

746
747
748
749
750
751
752
753
    kwargs = {"finetuned_from": model_args.model_name_or_path, "tasks": "summarization"}
    if data_args.dataset_name is not None:
        kwargs["dataset_tags"] = data_args.dataset_name
        if data_args.dataset_config_name is not None:
            kwargs["dataset_args"] = data_args.dataset_config_name
            kwargs["dataset"] = f"{data_args.dataset_name} {data_args.dataset_config_name}"
        else:
            kwargs["dataset"] = data_args.dataset_name
Sylvain Gugger's avatar
Sylvain Gugger committed
754

755
756
757
    if data_args.lang is not None:
        kwargs["language"] = data_args.lang

758
    if training_args.push_to_hub:
Sylvain Gugger's avatar
Sylvain Gugger committed
759
        trainer.push_to_hub(**kwargs)
760
761
    else:
        trainer.create_model_card(**kwargs)
Sylvain Gugger's avatar
Sylvain Gugger committed
762

763
764
    return results

765
766
767
768
769
770
771
772

def _mp_fn(index):
    # For xla_spawn (TPUs)
    main()


if __name__ == "__main__":
    main()