modeling_openai.py 34.3 KB
Newer Older
thomwolf's avatar
thomwolf committed
1
# coding=utf-8
thomwolf's avatar
thomwolf committed
2
# Copyright 2018 The OpenAI Team Authors and HuggingFace Inc. team.
thomwolf's avatar
thomwolf committed
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
# Copyright (c) 2018, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""PyTorch OpenAI GPT model."""

18
19
from __future__ import absolute_import, division, print_function, unicode_literals

20
import collections
thomwolf's avatar
thomwolf committed
21
import json
thomwolf's avatar
thomwolf committed
22
import logging
23
24
import math
import os
thomwolf's avatar
thomwolf committed
25
26
import sys
from io import open
thomwolf's avatar
thomwolf committed
27
28
29

import torch
import torch.nn as nn
thomwolf's avatar
thomwolf committed
30
from torch.nn import CrossEntropyLoss
thomwolf's avatar
thomwolf committed
31
32
from torch.nn.parameter import Parameter

33
from .modeling_utils import (Conv1D, CONFIG_NAME, WEIGHTS_NAME, PretrainedConfig,
thomwolf's avatar
thomwolf committed
34
35
                             PreTrainedModel, prune_conv1d_layer, SequenceSummary,
                             add_start_docstrings)
thomwolf's avatar
thomwolf committed
36
from .modeling_bert import BertLayerNorm as LayerNorm
thomwolf's avatar
thomwolf committed
37

thomwolf's avatar
thomwolf committed
38
39
logger = logging.getLogger(__name__)

40
41
OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_MAP = {"openai-gpt": "https://s3.amazonaws.com/models.huggingface.co/bert/openai-gpt-pytorch_model.bin"}
OPENAI_GPT_PRETRAINED_CONFIG_ARCHIVE_MAP = {"openai-gpt": "https://s3.amazonaws.com/models.huggingface.co/bert/openai-gpt-config.json"}
42

43

44
def load_tf_weights_in_openai_gpt(model, config, openai_checkpoint_folder_path):
45
46
    """ Load tf pre-trained weights in a pytorch model (from NumPy arrays here)
    """
47
48
    import re
    import numpy as np
49
50
51
52
53
54

    if '.ckpt' in openai_checkpoint_folder_path:
        openai_checkpoint_folder_path = os.path.dirname(openai_checkpoint_folder_path)

    logger.info("Loading weights from {}".format(openai_checkpoint_folder_path))

55
56
57
58
59
60
61
    names = json.load(open(openai_checkpoint_folder_path + '/parameters_names.json', "r", encoding='utf-8'))
    shapes = json.load(open(openai_checkpoint_folder_path + '/params_shapes.json', "r", encoding='utf-8'))
    offsets = np.cumsum([np.prod(shape) for shape in shapes])
    init_params = [np.load(openai_checkpoint_folder_path + '/params_{}.npy'.format(n)) for n in range(10)]
    init_params = np.split(np.concatenate(init_params, 0), offsets)[:-1]
    init_params = [param.reshape(shape) for param, shape in zip(init_params, shapes)]

thomwolf's avatar
thomwolf committed
62
    # This was used when we had a single embedding matrix for positions and tokens
63
64
    # init_params[0] = np.concatenate([init_params[1], init_params[0]], 0)
    # del init_params[1]
65
66
67
    init_params = [arr.squeeze() for arr in init_params]

    try:
68
69
        assert model.tokens_embed.weight.shape == init_params[1].shape
        assert model.positions_embed.weight.shape == init_params[0].shape
70
    except AssertionError as e:
71
72
        e.args += (model.tokens_embed.weight.shape, init_params[1].shape)
        e.args += (model.positions_embed.weight.shape, init_params[0].shape)
73
74
        raise

75
76
    model.tokens_embed.weight.data = torch.from_numpy(init_params[1])
    model.positions_embed.weight.data = torch.from_numpy(init_params[0])
77
    names.pop(0)
78
79
    # Pop position and token embedding arrays
    init_params.pop(0)
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
    init_params.pop(0)

    for name, array in zip(names, init_params): # names[1:n_transfer], init_params[1:n_transfer]):
        name = name[6:]  # skip "model/"
        assert name[-2:] == ":0"
        name = name[:-2]
        name = name.split('/')
        pointer = model
        for m_name in name:
            if re.fullmatch(r'[A-Za-z]+\d+', m_name):
                l = re.split(r'(\d+)', m_name)
            else:
                l = [m_name]
            if l[0] == 'g':
                pointer = getattr(pointer, 'weight')
            elif l[0] == 'b':
                pointer = getattr(pointer, 'bias')
            elif l[0] == 'w':
                pointer = getattr(pointer, 'weight')
            else:
                pointer = getattr(pointer, l[0])
            if len(l) >= 2:
                num = int(l[1])
                pointer = pointer[num]
        try:
            assert pointer.shape == array.shape
        except AssertionError as e:
            e.args += (pointer.shape, array.shape)
            raise
        try:
            assert pointer.shape == array.shape
        except AssertionError as e:
            e.args += (pointer.shape, array.shape)
            raise
thomwolf's avatar
thomwolf committed
114
        logger.info("Initialize PyTorch weight {}".format(name))
115
116
117
        pointer.data = torch.from_numpy(array)
    return model

thomwolf's avatar
thomwolf committed
118
119
120
121
122
123
124
125
126

def gelu(x):
    return 0.5 * x * (1 + torch.tanh(math.sqrt(2 / math.pi) * (x + 0.044715 * torch.pow(x, 3))))


def swish(x):
    return x * torch.sigmoid(x)


127
128
ACT_FNS = {"relu": nn.ReLU, "swish": swish, "gelu": gelu}

thomwolf's avatar
thomwolf committed
129

130
class OpenAIGPTConfig(PretrainedConfig):
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
    """
    Configuration class to store the configuration of a `OpenAIGPTModel`.

    Args:
        vocab_size_or_config_json_file: Vocabulary size of `inputs_ids` in `OpenAIGPTModel` or a configuration json file.
        n_special: The number of special tokens to learn during fine-tuning ('[SEP]', '[CLF]', ...)
        n_positions: Number of positional embeddings.
        n_ctx: Size of the causal mask (usually same as n_positions).
        n_embd: Dimensionality of the embeddings and hidden states.
        n_layer: Number of hidden layers in the Transformer encoder.
        n_head: Number of attention heads for each attention layer in
            the Transformer encoder.
        afn: The non-linear activation function (function or string) in the
            encoder and pooler. If string, "gelu", "relu" and "swish" are supported.
        resid_pdrop: The dropout probabilitiy for all fully connected
            layers in the embeddings, encoder, and pooler.
        attn_pdrop: The dropout ratio for the attention
            probabilities.
        embd_pdrop: The dropout ratio for the embeddings.
        layer_norm_epsilon: epsilon to use in the layer norm layers
        initializer_range: The sttdev of the truncated_normal_initializer for
            initializing all weight matrices.
        predict_special_tokens: should we predict special tokens (when the model has a LM head)
thomwolf's avatar
thomwolf committed
154
    """
155
    pretrained_config_archive_map = OPENAI_GPT_PRETRAINED_CONFIG_ARCHIVE_MAP
156
157
158
159

    def __init__(
        self,
        vocab_size_or_config_json_file=40478,
thomwolf's avatar
thomwolf committed
160
        n_positions=512,
161
162
163
164
165
166
167
168
        n_ctx=512,
        n_embd=768,
        n_layer=12,
        n_head=12,
        afn="gelu",
        resid_pdrop=0.1,
        embd_pdrop=0.1,
        attn_pdrop=0.1,
169
        layer_norm_epsilon=1e-5,
170
        initializer_range=0.02,
thomwolf's avatar
thomwolf committed
171
        predict_special_tokens=True,
thomwolf's avatar
thomwolf committed
172
173

        num_labels=1,
thomwolf's avatar
thomwolf committed
174
        summary_type='cls_index',
thomwolf's avatar
thomwolf committed
175
176
        summary_use_proj=True,
        summary_activation=None,
thomwolf's avatar
thomwolf committed
177
        summary_proj_to_labels=True,
178
        summary_first_dropout=0.1,
thomwolf's avatar
thomwolf committed
179
        **kwargs
180
    ):
thomwolf's avatar
thomwolf committed
181
182
        """Constructs OpenAIGPTConfig.
        """
thomwolf's avatar
thomwolf committed
183
184
        super(OpenAIGPTConfig, self).__init__(**kwargs)

thomwolf's avatar
thomwolf committed
185
186
        if isinstance(vocab_size_or_config_json_file, str) or (sys.version_info[0] == 2
                        and isinstance(vocab_size_or_config_json_file, unicode)):
187
            with open(vocab_size_or_config_json_file, "r", encoding="utf-8") as reader:
thomwolf's avatar
thomwolf committed
188
189
190
191
192
193
                json_config = json.loads(reader.read())
            for key, value in json_config.items():
                self.__dict__[key] = value
        elif isinstance(vocab_size_or_config_json_file, int):
            self.vocab_size = vocab_size_or_config_json_file
            self.n_ctx = n_ctx
thomwolf's avatar
thomwolf committed
194
            self.n_positions = n_positions
thomwolf's avatar
thomwolf committed
195
196
197
198
199
200
201
            self.n_embd = n_embd
            self.n_layer = n_layer
            self.n_head = n_head
            self.afn = afn
            self.resid_pdrop = resid_pdrop
            self.embd_pdrop = embd_pdrop
            self.attn_pdrop = attn_pdrop
202
            self.layer_norm_epsilon = layer_norm_epsilon
thomwolf's avatar
thomwolf committed
203
            self.initializer_range = initializer_range
204
            self.predict_special_tokens = predict_special_tokens
thomwolf's avatar
thomwolf committed
205
206

            self.num_labels = num_labels
thomwolf's avatar
thomwolf committed
207
208
209
            self.summary_type = summary_type
            self.summary_use_proj = summary_use_proj
            self.summary_activation = summary_activation
210
            self.summary_first_dropout = summary_first_dropout
thomwolf's avatar
thomwolf committed
211
            self.summary_proj_to_labels = summary_proj_to_labels
thomwolf's avatar
thomwolf committed
212
        else:
213
214
215
216
            raise ValueError(
                "First argument must be either a vocabulary size (int)"
                "or the path to a pretrained model config file (str)"
            )
thomwolf's avatar
thomwolf committed
217

218
219
220
221
    @property
    def max_position_embeddings(self):
        return self.n_positions

thomwolf's avatar
thomwolf committed
222
223
224
225
226
227
228
229
230
231
232
233
    @property
    def hidden_size(self):
        return self.n_embd

    @property
    def num_attention_heads(self):
        return self.n_head

    @property
    def num_hidden_layers(self):
        return self.n_layer

thomwolf's avatar
thomwolf committed
234
235

class Attention(nn.Module):
thomwolf's avatar
thomwolf committed
236
    def __init__(self, nx, n_ctx, config, scale=False):
thomwolf's avatar
thomwolf committed
237
238
239
        super(Attention, self).__init__()
        n_state = nx  # in Attention: n_state=768 (nx=n_embd)
        # [switch nx => n_state from Block to Attention to keep identical to TF implem]
240
        assert n_state % config.n_head == 0
thomwolf's avatar
thomwolf committed
241
        self.register_buffer("bias", torch.tril(torch.ones(n_ctx, n_ctx)).view(1, 1, n_ctx, n_ctx))
242
        self.n_head = config.n_head
thomwolf's avatar
thomwolf committed
243
244
        self.split_size = n_state
        self.scale = scale
245

thomwolf's avatar
thomwolf committed
246
        self.output_attentions = config.output_attentions
247

248
249
        self.c_attn = Conv1D(n_state * 3, nx)
        self.c_proj = Conv1D(n_state, nx)
250
251
        self.attn_dropout = nn.Dropout(config.attn_pdrop)
        self.resid_dropout = nn.Dropout(config.resid_pdrop)
252
        self.pruned_heads = set()
thomwolf's avatar
thomwolf committed
253

254
    def prune_heads(self, heads):
thomwolf's avatar
thomwolf committed
255
256
        if len(heads) == 0:
            return
257
        mask = torch.ones(self.n_head, self.split_size // self.n_head)
258
        heads = set(heads) - self.pruned_heads
259
        for head in heads:
260
            head -= sum(1 if h < head else 0 for h in self.pruned_heads)
261
262
263
264
265
266
267
268
269
270
            mask[head] = 0
        mask = mask.view(-1).contiguous().eq(1)
        index = torch.arange(len(mask))[mask].long()
        index_attn = torch.cat([index, index + self.split_size, index + (2*self.split_size)])
        # Prune conv1d layers
        self.c_attn = prune_conv1d_layer(self.c_attn, index_attn, dim=1)
        self.c_proj = prune_conv1d_layer(self.c_proj, index, dim=0)
        # Update hyper params
        self.split_size = (self.split_size // self.n_head) * (self.n_head - len(heads))
        self.n_head = self.n_head - len(heads)
271
        self.pruned_heads = self.pruned_heads.union(heads)
272

273
    def _attn(self, q, k, v, attention_mask=None, head_mask=None):
thomwolf's avatar
thomwolf committed
274
275
276
        w = torch.matmul(q, k)
        if self.scale:
            w = w / math.sqrt(v.size(-1))
thomwolf's avatar
thomwolf committed
277
        # w = w * self.bias + -1e9 * (1 - self.bias)  # TF implem method: mask_attn_weights
thomwolf's avatar
thomwolf committed
278
        # XD: self.b may be larger than w, so we need to crop it
thomwolf's avatar
thomwolf committed
279
        b = self.bias[:, :, : w.size(-2), : w.size(-1)]
thomwolf's avatar
thomwolf committed
280
281
        w = w * b + -1e9 * (1 - b)

282
283
284
285
        if attention_mask is not None:
            # Apply the attention mask
            w = w + attention_mask

thomwolf's avatar
thomwolf committed
286
287
        w = nn.Softmax(dim=-1)(w)
        w = self.attn_dropout(w)
288
289
290
291
292

        # Mask heads if we want to
        if head_mask is not None:
            w = w * head_mask

thomwolf's avatar
thomwolf committed
293
        outputs = [torch.matmul(w, v)]
thomwolf's avatar
thomwolf committed
294
        if self.output_attentions:
thomwolf's avatar
thomwolf committed
295
296
            outputs.append(w)
        return outputs
thomwolf's avatar
thomwolf committed
297
298
299
300
301
302
303
304
305
306
307
308
309
310

    def merge_heads(self, x):
        x = x.permute(0, 2, 1, 3).contiguous()
        new_x_shape = x.size()[:-2] + (x.size(-2) * x.size(-1),)
        return x.view(*new_x_shape)  # in Tensorflow implem: fct merge_states

    def split_heads(self, x, k=False):
        new_x_shape = x.size()[:-1] + (self.n_head, x.size(-1) // self.n_head)
        x = x.view(*new_x_shape)  # in Tensorflow implem: fct split_states
        if k:
            return x.permute(0, 2, 3, 1)
        else:
            return x.permute(0, 2, 1, 3)

311
    def forward(self, x, attention_mask=None, head_mask=None):
thomwolf's avatar
thomwolf committed
312
313
314
315
316
        x = self.c_attn(x)
        query, key, value = x.split(self.split_size, dim=2)
        query = self.split_heads(query)
        key = self.split_heads(key, k=True)
        value = self.split_heads(value)
317

318
        attn_outputs = self._attn(query, key, value, attention_mask, head_mask)
thomwolf's avatar
thomwolf committed
319
        a = attn_outputs[0]
320

thomwolf's avatar
thomwolf committed
321
322
323
        a = self.merge_heads(a)
        a = self.c_proj(a)
        a = self.resid_dropout(a)
thomwolf's avatar
thomwolf committed
324
325
326

        outputs = [a] + attn_outputs[1:]
        return outputs  # a, (attentions)
thomwolf's avatar
thomwolf committed
327
328
329


class MLP(nn.Module):
330
    def __init__(self, n_state, config):  # in MLP: n_state=3072 (4 * n_embd)
thomwolf's avatar
thomwolf committed
331
        super(MLP, self).__init__()
332
        nx = config.n_embd
333
334
        self.c_fc = Conv1D(n_state, nx)
        self.c_proj = Conv1D(nx, n_state)
335
336
        self.act = ACT_FNS[config.afn]
        self.dropout = nn.Dropout(config.resid_pdrop)
thomwolf's avatar
thomwolf committed
337
338
339
340
341
342
343
344

    def forward(self, x):
        h = self.act(self.c_fc(x))
        h2 = self.c_proj(h)
        return self.dropout(h2)


class Block(nn.Module):
thomwolf's avatar
thomwolf committed
345
    def __init__(self, n_ctx, config, scale=False):
thomwolf's avatar
thomwolf committed
346
        super(Block, self).__init__()
347
        nx = config.n_embd
thomwolf's avatar
thomwolf committed
348
        self.attn = Attention(nx, n_ctx, config, scale)
349
        self.ln_1 = LayerNorm(nx, eps=config.layer_norm_epsilon)
350
        self.mlp = MLP(4 * nx, config)
351
        self.ln_2 = LayerNorm(nx, eps=config.layer_norm_epsilon)
thomwolf's avatar
thomwolf committed
352

353
354
    def forward(self, x, attention_mask=None, head_mask=None):
        attn_outputs = self.attn(x, attention_mask=attention_mask, head_mask=head_mask)
thomwolf's avatar
thomwolf committed
355
356
        a = attn_outputs[0]

thomwolf's avatar
thomwolf committed
357
358
359
        n = self.ln_1(x + a)
        m = self.mlp(n)
        h = self.ln_2(n + m)
thomwolf's avatar
thomwolf committed
360
361
362

        outputs = [h] + attn_outputs[1:]
        return outputs
thomwolf's avatar
thomwolf committed
363
364


365
class OpenAIGPTPreTrainedModel(PreTrainedModel):
thomwolf's avatar
thomwolf committed
366
367
368
    """ An abstract class to handle weights initialization and
        a simple interface for dowloading and loading pretrained models.
    """
369
    config_class = OpenAIGPTConfig
370
    pretrained_model_archive_map = OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_MAP
371
372
    load_tf_weights = load_tf_weights_in_openai_gpt
    base_model_prefix = "transformer"
373

374
    def _init_weights(self, module):
thomwolf's avatar
thomwolf committed
375
376
        """ Initialize the weights.
        """
377
        if isinstance(module, (nn.Linear, nn.Embedding, Conv1D)):
thomwolf's avatar
thomwolf committed
378
379
380
            # Slightly different from the TF version which uses truncated_normal for initialization
            # cf https://github.com/pytorch/pytorch/pull/5617
            module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
381
382
            if isinstance(module, (nn.Linear, Conv1D)) and module.bias is not None:
                module.bias.data.zero_()
thomwolf's avatar
thomwolf committed
383
384
385
        elif isinstance(module, LayerNorm):
            module.bias.data.zero_()
            module.weight.data.fill_(1.0)
thomwolf's avatar
thomwolf committed
386
387


thomwolf's avatar
thomwolf committed
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
OPENAI_GPT_START_DOCSTRING = r"""    OpenAI GPT model was proposed in
    `Improving Language Understanding by Generative Pre-Training`_
    by Alec Radford, Karthik Narasimhan, Tim Salimans and Ilya Sutskever.
    It's a causal (unidirectional) transformer pre-trained using language modeling on a large
    corpus will long range dependencies, the Toronto Book Corpus.

    This model is a PyTorch `torch.nn.Module`_ sub-class. Use it as a regular PyTorch Module and
    refer to the PyTorch documentation for all matter related to general usage and behavior.

    .. _`Improving Language Understanding by Generative Pre-Training`:
        https://openai.com/blog/language-unsupervised/

    .. _`torch.nn.Module`:
        https://pytorch.org/docs/stable/nn.html#module

    Parameters:
thomwolf's avatar
thomwolf committed
404
        config (:class:`~pytorch_transformers.OpenAIGPTConfig`): Model configuration class with all the parameters of the model.
405
406
            Initializing with a config file does not load the weights associated with the model, only the configuration.
            Check out the :meth:`~pytorch_transformers.PreTrainedModel.from_pretrained` method to load the model weights.
thomwolf's avatar
thomwolf committed
407
408
"""

thomwolf's avatar
thomwolf committed
409
OPENAI_GPT_INPUTS_DOCSTRING = r"""    Inputs:
thomwolf's avatar
thomwolf committed
410
411
        **input_ids**: ``torch.LongTensor`` of shape ``(batch_size, sequence_length)``:
            Indices of input sequence tokens in the vocabulary.
thomwolf's avatar
thomwolf committed
412
413
            GPT is a model with absolute position embeddings so it's usually advised to pad the inputs on
            the right rather than the left.
thomwolf's avatar
thomwolf committed
414
415
416
            Indices can be obtained using :class:`pytorch_transformers.BPT2Tokenizer`.
            See :func:`pytorch_transformers.PreTrainedTokenizer.encode` and
            :func:`pytorch_transformers.PreTrainedTokenizer.convert_tokens_to_ids` for details.
417
418
419
420
        **attention_mask**: (`optional`) ``torch.FloatTensor`` of shape ``(batch_size, sequence_length)``:
            Mask to avoid performing attention on padding token indices.
            Mask values selected in ``[0, 1]``:
            ``1`` for tokens that are NOT MASKED, ``0`` for MASKED tokens.
thomwolf's avatar
thomwolf committed
421
422
423
        **token_type_ids**: (`optional`) ``torch.LongTensor`` of shape ``(batch_size, sequence_length)``:
            A parallel sequence of tokens (can be used to indicate various portions of the inputs).
            The embeddings from these tokens will be summed with the respective token embeddings.
424
            Indices are selected in the vocabulary (unlike BERT which has a specific vocabulary for segment indices)
425
426
427
        **position_ids**: (`optional`) ``torch.LongTensor`` of shape ``(batch_size, sequence_length)``:
            Indices of positions of each input sequence tokens in the position embeddings.
            Selected in the range ``[0, config.max_position_embeddings - 1]``.
thomwolf's avatar
thomwolf committed
428
        **head_mask**: (`optional`) ``torch.FloatTensor`` of shape ``(num_heads,)`` or ``(num_layers, num_heads)``:
thomwolf's avatar
thomwolf committed
429
            Mask to nullify selected heads of the self-attention modules.
thomwolf's avatar
thomwolf committed
430
            Mask values selected in ``[0, 1]``:
thomwolf's avatar
thomwolf committed
431
432
433
434
            ``1`` indicates the head is **not masked**, ``0`` indicates the head is **masked**.
"""

@add_start_docstrings("The bare OpenAI GPT transformer model outputing raw hidden-states without any specific head on top.",
thomwolf's avatar
thomwolf committed
435
                      OPENAI_GPT_START_DOCSTRING, OPENAI_GPT_INPUTS_DOCSTRING)
thomwolf's avatar
thomwolf committed
436
class OpenAIGPTModel(OpenAIGPTPreTrainedModel):
thomwolf's avatar
thomwolf committed
437
438
439
440
441
442
443
444
    r"""
    Outputs: `Tuple` comprising various elements depending on the configuration (config) and inputs:
        **last_hidden_state**: ``torch.FloatTensor`` of shape ``(batch_size, sequence_length, hidden_size)``
            Sequence of hidden-states at the last layer of the model.
        **hidden_states**: (`optional`, returned when ``config.output_hidden_states=True``)
            list of ``torch.FloatTensor`` (one for the output of each layer + the output of the embeddings)
            of shape ``(batch_size, sequence_length, hidden_size)``:
            Hidden-states of the model at the output of each layer plus the initial embedding outputs.
thomwolf's avatar
thomwolf committed
445
446
447
        **attentions**: (`optional`, returned when ``config.output_attentions=True``)
            list of ``torch.FloatTensor`` (one for each layer) of shape ``(batch_size, num_heads, sequence_length, sequence_length)``:
            Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
thomwolf's avatar
thomwolf committed
448
449
450

    Examples::

wangfei's avatar
wangfei committed
451
452
453
454
455
        tokenizer = OpenAIGPTTokenizer.from_pretrained('openai-gpt')
        model = OpenAIGPTModel.from_pretrained('openai-gpt')
        input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0)  # Batch size 1
        outputs = model(input_ids)
        last_hidden_states = outputs[0]  # The last hidden-state is the first element of the output tuple
456
457

    """
thomwolf's avatar
thomwolf committed
458
    def __init__(self, config):
459
        super(OpenAIGPTModel, self).__init__(config)
thomwolf's avatar
thomwolf committed
460
461
462
        self.output_attentions = config.output_attentions
        self.output_hidden_states = config.output_hidden_states

thomwolf's avatar
thomwolf committed
463
        self.tokens_embed = nn.Embedding(config.vocab_size, config.n_embd)
464
        self.positions_embed = nn.Embedding(config.n_positions, config.n_embd)
465
        self.drop = nn.Dropout(config.embd_pdrop)
466
        self.h = nn.ModuleList([Block(config.n_ctx, config, scale=True) for _ in range(config.n_layer)])
thomwolf's avatar
thomwolf committed
467

468
        self.init_weights()
thomwolf's avatar
thomwolf committed
469

thomwolf's avatar
thomwolf committed
470
471
    def _resize_token_embeddings(self, new_num_tokens):
        self.tokens_embed = self._get_resized_embeddings(self.tokens_embed, new_num_tokens)
thomwolf's avatar
thomwolf committed
472
        return self.tokens_embed
thomwolf's avatar
thomwolf committed
473

thomwolf's avatar
thomwolf committed
474
    def _prune_heads(self, heads_to_prune):
475
476
477
478
479
480
        """ Prunes heads of the model.
            heads_to_prune: dict of {layer_num: list of heads to prune in this layer}
        """
        for layer, heads in heads_to_prune.items():
            self.h[layer].attn.prune_heads(heads)

481
    def forward(self, input_ids, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None):
thomwolf's avatar
thomwolf committed
482
        if position_ids is None:
483
484
485
486
487
            # This was used when we had a single embedding matrice from position and token embeddings
            # start = self.config.vocab_size + self.config.n_special
            # end = start + input_ids.size(-1)
            # position_ids = torch.arange(start, end, dtype=torch.long, device=input_ids.device)
            position_ids = torch.arange(input_ids.size(-1), dtype=torch.long, device=input_ids.device)
thomwolf's avatar
thomwolf committed
488
489
            position_ids = position_ids.unsqueeze(0).expand_as(input_ids)

490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
        # Attention mask.
        if attention_mask is not None:
            # We create a 3D attention mask from a 2D tensor mask.
            # Sizes are [batch_size, 1, 1, to_seq_length]
            # So we can broadcast to [batch_size, num_heads, from_seq_length, to_seq_length]
            # this attention mask is more simple than the triangular masking of causal attention
            # used in OpenAI GPT, we just need to prepare the broadcast dimension here.
            attention_mask = attention_mask.unsqueeze(1).unsqueeze(2)

            # Since attention_mask is 1.0 for positions we want to attend and 0.0 for
            # masked positions, this operation will create a tensor which is 0.0 for
            # positions we want to attend and -10000.0 for masked positions.
            # Since we are adding it to the raw scores before the softmax, this is
            # effectively the same as removing these entirely.
            attention_mask = attention_mask.to(dtype=next(self.parameters()).dtype) # fp16 compatibility
            attention_mask = (1.0 - attention_mask) * -10000.0

507
        # Prepare head mask if needed
thomwolf's avatar
thomwolf committed
508
        # 1.0 in head_mask indicate we keep the head
509
        # attention_probs has shape bsz x n_heads x N x N
510
        # head_mask has shape n_layer x batch x n_heads x N x N
511
512
        if head_mask is not None:
            if head_mask.dim() == 1:
513
                head_mask = head_mask.unsqueeze(0).unsqueeze(0).unsqueeze(-1).unsqueeze(-1)
thomwolf's avatar
thomwolf committed
514
                head_mask = head_mask.expand(self.config.n_layer, -1, -1, -1, -1)
515
            elif head_mask.dim() == 2:
516
                head_mask = head_mask.unsqueeze(1).unsqueeze(-1).unsqueeze(-1)  # We can specify head_mask for each layer
517
            head_mask = head_mask.to(dtype=next(self.parameters()).dtype) # switch to fload if need + fp16 compatibility
518
519
        else:
            head_mask = [None] * self.config.n_layer
520

thomwolf's avatar
thomwolf committed
521
522
523
524
        input_shape = input_ids.size()
        input_ids = input_ids.view(-1, input_ids.size(-1))
        position_ids = position_ids.view(-1, position_ids.size(-1))

525
526
        inputs_embeds = self.tokens_embed(input_ids)
        position_embeds = self.positions_embed(position_ids)
thomwolf's avatar
thomwolf committed
527
528
        if token_type_ids is not None:
            token_type_ids = token_type_ids.view(-1, token_type_ids.size(-1))
529
            token_type_embeds = self.tokens_embed(token_type_ids)
thomwolf's avatar
thomwolf committed
530
531
532
        else:
            token_type_embeds = 0
        hidden_states = inputs_embeds + position_embeds + token_type_embeds
533
534
        hidden_states = self.drop(hidden_states)

535
536
        output_shape = input_shape + (hidden_states.size(-1),)

537
538
        all_attentions = ()
        all_hidden_states = ()
539
        for i, block in enumerate(self.h):
thomwolf's avatar
thomwolf committed
540
            if self.output_hidden_states:
541
                all_hidden_states = all_hidden_states + (hidden_states.view(*output_shape),)
thomwolf's avatar
thomwolf committed
542

543
            outputs = block(hidden_states, attention_mask, head_mask[i])
thomwolf's avatar
thomwolf committed
544
            hidden_states = outputs[0]
thomwolf's avatar
thomwolf committed
545
            if self.output_attentions:
546
                all_attentions = all_attentions + (outputs[1],)
thomwolf's avatar
thomwolf committed
547
548
549

        # Add last layer
        if self.output_hidden_states:
550
            all_hidden_states = all_hidden_states + (hidden_states.view(*output_shape),)
551

552
        outputs = (hidden_states.view(*output_shape),)
thomwolf's avatar
thomwolf committed
553
        if self.output_hidden_states:
554
            outputs = outputs + (all_hidden_states,)
thomwolf's avatar
thomwolf committed
555
        if self.output_attentions:
556
            outputs = outputs + (all_attentions,)
thomwolf's avatar
thomwolf committed
557
        return outputs  # last hidden state, (all hidden states), (all attentions)
thomwolf's avatar
thomwolf committed
558

559

thomwolf's avatar
thomwolf committed
560
@add_start_docstrings("""OpenAI GPT Model transformer with a language modeling head on top
thomwolf's avatar
thomwolf committed
561
(linear layer with weights tied to the input embeddings). """, OPENAI_GPT_START_DOCSTRING, OPENAI_GPT_INPUTS_DOCSTRING)
thomwolf's avatar
thomwolf committed
562
class OpenAIGPTLMHeadModel(OpenAIGPTPreTrainedModel):
thomwolf's avatar
thomwolf committed
563
    r"""
thomwolf's avatar
thomwolf committed
564
        **labels**: (`optional`) ``torch.LongTensor`` of shape ``(batch_size, sequence_length)``:
thomwolf's avatar
thomwolf committed
565
            Labels for language modeling.
566
            Note that the labels **are shifted** inside the model, i.e. you can set ``labels = input_ids``
thomwolf's avatar
thomwolf committed
567
568
569
570
571
            Indices are selected in ``[-1, 0, ..., config.vocab_size]``
            All labels set to ``-1`` are ignored (masked), the loss is only
            computed for labels in ``[0, ..., config.vocab_size]``

    Outputs: `Tuple` comprising various elements depending on the configuration (config) and inputs:
thomwolf's avatar
thomwolf committed
572
        **loss**: (`optional`, returned when ``labels`` is provided) ``torch.FloatTensor`` of shape ``(1,)``:
thomwolf's avatar
thomwolf committed
573
574
575
576
577
578
579
            Language modeling loss.
        **prediction_scores**: ``torch.FloatTensor`` of shape ``(batch_size, sequence_length, config.vocab_size)``
            Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
        **hidden_states**: (`optional`, returned when ``config.output_hidden_states=True``)
            list of ``torch.FloatTensor`` (one for the output of each layer + the output of the embeddings)
            of shape ``(batch_size, sequence_length, hidden_size)``:
            Hidden-states of the model at the output of each layer plus the initial embedding outputs.
thomwolf's avatar
thomwolf committed
580
581
582
        **attentions**: (`optional`, returned when ``config.output_attentions=True``)
            list of ``torch.FloatTensor`` (one for each layer) of shape ``(batch_size, num_heads, sequence_length, sequence_length)``:
            Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
thomwolf's avatar
thomwolf committed
583
584
585

    Examples::

wangfei's avatar
wangfei committed
586
587
588
589
590
        tokenizer = OpenAIGPTTokenizer.from_pretrained('openai-gpt')
        model = OpenAIGPTLMHeadModel.from_pretrained('openai-gpt')
        input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0)  # Batch size 1
        outputs = model(input_ids, labels=input_ids)
        loss, logits = outputs[:2]
591
592

    """
thomwolf's avatar
thomwolf committed
593
    def __init__(self, config):
594
        super(OpenAIGPTLMHeadModel, self).__init__(config)
thomwolf's avatar
thomwolf committed
595
        self.transformer = OpenAIGPTModel(config)
thomwolf's avatar
thomwolf committed
596
        self.lm_head = nn.Linear(config.n_embd, config.vocab_size, bias=False)
597

598
        self.init_weights()
thomwolf's avatar
thomwolf committed
599
        self.tie_weights()
600

thomwolf's avatar
thomwolf committed
601
602
603
    def tie_weights(self):
        """ Make sure we are sharing the input and output embeddings.
            Export to TorchScript can't handle parameter sharing so we are cloning them instead.
604
        """
thomwolf's avatar
thomwolf committed
605
606
        self._tie_or_clone_weights(self.lm_head,
                                   self.transformer.tokens_embed)
thomwolf's avatar
thomwolf committed
607

608
609
610
611
612
613
    def forward(self, input_ids, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None,
                labels=None):
        transformer_outputs = self.transformer(input_ids,
                                               attention_mask=attention_mask,
                                               token_type_ids=token_type_ids,
                                               position_ids=position_ids,
thomwolf's avatar
thomwolf committed
614
                                               head_mask=head_mask)
thomwolf's avatar
thomwolf committed
615
        hidden_states = transformer_outputs[0]
thomwolf's avatar
thomwolf committed
616
        lm_logits = self.lm_head(hidden_states)
thomwolf's avatar
thomwolf committed
617

618
        outputs = (lm_logits,) + transformer_outputs[1:]
thomwolf's avatar
thomwolf committed
619
        if labels is not None:
620
            # Shift so that tokens < n predict n
thomwolf's avatar
thomwolf committed
621
            shift_logits = lm_logits[..., :-1, :].contiguous()
thomwolf's avatar
thomwolf committed
622
            shift_labels = labels[..., 1:].contiguous()
Catalin Voss's avatar
Catalin Voss committed
623
            # Flatten the tokens
thomwolf's avatar
thomwolf committed
624
            loss_fct = CrossEntropyLoss(ignore_index=-1)
625
            loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)),
626
                            shift_labels.view(-1))
627
            outputs = (loss,) + outputs
thomwolf's avatar
thomwolf committed
628
629

        return outputs  # (loss), lm_logits, (all hidden states), (all attentions)
thomwolf's avatar
thomwolf committed
630

631

thomwolf's avatar
thomwolf committed
632
633
634
@add_start_docstrings("""OpenAI GPT Model transformer with a language modeling and a multiple-choice classification
head on top e.g. for RocStories/SWAG tasks. The two heads are two linear layers.
The language modeling head has its weights tied to the input embeddings,
Julien Chaumond's avatar
Julien Chaumond committed
635
the classification head takes as input the input of a specified classification token index in the input sequence).
636
""", OPENAI_GPT_START_DOCSTRING, OPENAI_GPT_INPUTS_DOCSTRING)
thomwolf's avatar
thomwolf committed
637
class OpenAIGPTDoubleHeadsModel(OpenAIGPTPreTrainedModel):
638
    r"""
thomwolf's avatar
thomwolf committed
639
640
641
642
643
644
645
646
647
        **mc_token_ids**: ``torch.LongTensor`` of shape ``(batch_size, num_choices)``:
            Index of the classification token in each input sequence.
            Selected in the range ``[0, input_ids.size(-1) - 1[``.
        **lm_labels**: (`optional`) ``torch.LongTensor`` of shape ``(batch_size, sequence_length)``:
            Labels for language modeling.
            Note that the labels **are shifted** inside the model, i.e. you can set ``lm_labels = input_ids``
            Indices are selected in ``[-1, 0, ..., config.vocab_size]``
            All labels set to ``-1`` are ignored (masked), the loss is only
            computed for labels in ``[0, ..., config.vocab_size]``
648
        **mc_labels**: (`optional`) ``torch.LongTensor`` of shape ``(batch_size)``:
thomwolf's avatar
thomwolf committed
649
650
651
            Labels for computing the multiple choice classification loss.
            Indices should be in ``[0, ..., num_choices]`` where `num_choices` is the size of the second dimension
            of the input tensors. (see `input_ids` above)
652

thomwolf's avatar
thomwolf committed
653
654
            `multiple_choice_labels`: optional multiple choice labels: ``torch.LongTensor`` of shape [batch_size]
                with indices selected in [0, ..., num_choices].
655

thomwolf's avatar
thomwolf committed
656
657
658
659
660
661
662
663
664
665
666
667
668
    Outputs: `Tuple` comprising various elements depending on the configuration (config) and inputs:
        **lm_loss**: (`optional`, returned when ``lm_labels`` is provided) ``torch.FloatTensor`` of shape ``(1,)``:
            Language modeling loss.
        **mc_loss**: (`optional`, returned when ``multiple_choice_labels`` is provided) ``torch.FloatTensor`` of shape ``(1,)``:
            Multiple choice classification loss.
        **lm_prediction_scores**: ``torch.FloatTensor`` of shape ``(batch_size, num_choices, sequence_length, config.vocab_size)``
            Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
        **mc_prediction_scores**: ``torch.FloatTensor`` of shape ``(batch_size, num_choices)``
            Prediction scores of the multiplechoice classification head (scores for each choice before SoftMax).
        **hidden_states**: (`optional`, returned when ``config.output_hidden_states=True``)
            list of ``torch.FloatTensor`` (one for the output of each layer + the output of the embeddings)
            of shape ``(batch_size, sequence_length, hidden_size)``:
            Hidden-states of the model at the output of each layer plus the initial embedding outputs.
thomwolf's avatar
thomwolf committed
669
670
671
        **attentions**: (`optional`, returned when ``config.output_attentions=True``)
            list of ``torch.FloatTensor`` (one for each layer) of shape ``(batch_size, num_heads, sequence_length, sequence_length)``:
            Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
thomwolf's avatar
thomwolf committed
672
673
674

    Examples::

wangfei's avatar
wangfei committed
675
676
        tokenizer = OpenAIGPTTokenizer.from_pretrained('openai-gpt')
        model = OpenAIGPTDoubleHeadsModel.from_pretrained('openai-gpt')
thomwolf's avatar
thomwolf committed
677
678
        tokenizer.add_special_tokens({'cls_token': '[CLS]'})  # Add a [CLS] to the vocabulary (we should train it also!)
        choices = ["Hello, my dog is cute [CLS]", "Hello, my cat is cute [CLS]"]
wangfei's avatar
wangfei committed
679
        input_ids = torch.tensor([tokenizer.encode(s) for s in choices]).unsqueeze(0)  # Batch size 1, 2 choices
thomwolf's avatar
thomwolf committed
680
        mc_token_ids = torch.tensor([input_ids.size(-1), input_ids.size(-1)]).unsqueeze(0)  # Batch size 1
wangfei's avatar
wangfei committed
681
682
        outputs = model(input_ids, mc_token_ids)
        lm_prediction_scores, mc_prediction_scores = outputs[:2]
683

684
    """
thomwolf's avatar
thomwolf committed
685
    def __init__(self, config):
686
        super(OpenAIGPTDoubleHeadsModel, self).__init__(config)
thomwolf's avatar
thomwolf committed
687

thomwolf's avatar
thomwolf committed
688
        self.transformer = OpenAIGPTModel(config)
thomwolf's avatar
thomwolf committed
689
        self.lm_head = nn.Linear(config.n_embd, config.vocab_size, bias=False)
thomwolf's avatar
thomwolf committed
690
691
        self.multiple_choice_head = SequenceSummary(config)

692
        self.init_weights()
thomwolf's avatar
thomwolf committed
693
        self.tie_weights()
thomwolf's avatar
thomwolf committed
694

thomwolf's avatar
thomwolf committed
695
696
697
    def tie_weights(self):
        """ Make sure we are sharing the input and output embeddings.
            Export to TorchScript can't handle parameter sharing so we are cloning them instead.
698
        """
thomwolf's avatar
thomwolf committed
699
700
        self._tie_or_clone_weights(self.lm_head,
                                   self.transformer.tokens_embed)
thomwolf's avatar
thomwolf committed
701

702
703
704
705
706
707
    def forward(self, input_ids, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None,
                lm_labels=None, mc_labels=None):
        transformer_outputs = self.transformer(input_ids,
                                               attention_mask=attention_mask,
                                               token_type_ids=token_type_ids,
                                               position_ids=position_ids,
thomwolf's avatar
thomwolf committed
708
                                               head_mask=head_mask)
thomwolf's avatar
thomwolf committed
709
        hidden_states = transformer_outputs[0]
710

thomwolf's avatar
thomwolf committed
711
        lm_logits = self.lm_head(hidden_states)
thomwolf's avatar
thomwolf committed
712
        mc_logits = self.multiple_choice_head(hidden_states, mc_token_ids).squeeze(-1)
thomwolf's avatar
thomwolf committed
713

714
        outputs = (lm_logits, mc_logits) + transformer_outputs[1:]
thomwolf's avatar
thomwolf committed
715
716
717
718
        if mc_labels is not None:
            loss_fct = CrossEntropyLoss()
            loss = loss_fct(mc_logits.view(-1, mc_logits.size(-1)),
                            mc_labels.view(-1))
719
            outputs = (loss,) + outputs
thomwolf's avatar
thomwolf committed
720
        if lm_labels is not None:
thomwolf's avatar
thomwolf committed
721
722
            shift_logits = lm_logits[..., :-1, :].contiguous()
            shift_labels = lm_labels[..., 1:].contiguous()
thomwolf's avatar
thomwolf committed
723
            loss_fct = CrossEntropyLoss(ignore_index=-1)
thomwolf's avatar
thomwolf committed
724
725
            loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)),
                            shift_labels.view(-1))
726
            outputs = (loss,) + outputs
thomwolf's avatar
thomwolf committed
727
728

        return outputs  # (lm loss), (mc loss), lm logits, mc logits, (all hidden_states), (attentions)