modeling_openai.py 33.8 KB
Newer Older
thomwolf's avatar
thomwolf committed
1
# coding=utf-8
thomwolf's avatar
thomwolf committed
2
# Copyright 2018 The OpenAI Team Authors and HuggingFace Inc. team.
thomwolf's avatar
thomwolf committed
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
# Copyright (c) 2018, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""PyTorch OpenAI GPT model."""

18
19
from __future__ import absolute_import, division, print_function, unicode_literals

20
import collections
thomwolf's avatar
thomwolf committed
21
import json
thomwolf's avatar
thomwolf committed
22
import logging
23
24
import math
import os
thomwolf's avatar
thomwolf committed
25
26
import sys
from io import open
thomwolf's avatar
thomwolf committed
27
28
29

import torch
import torch.nn as nn
thomwolf's avatar
thomwolf committed
30
from torch.nn import CrossEntropyLoss
thomwolf's avatar
thomwolf committed
31
32
from torch.nn.parameter import Parameter

33
from .modeling_utils import (Conv1D, CONFIG_NAME, WEIGHTS_NAME, PretrainedConfig,
thomwolf's avatar
thomwolf committed
34
35
                             PreTrainedModel, prune_conv1d_layer, SequenceSummary,
                             add_start_docstrings)
thomwolf's avatar
thomwolf committed
36
from .modeling_bert import BertLayerNorm as LayerNorm
thomwolf's avatar
thomwolf committed
37

thomwolf's avatar
thomwolf committed
38
39
logger = logging.getLogger(__name__)

40
41
OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_MAP = {"openai-gpt": "https://s3.amazonaws.com/models.huggingface.co/bert/openai-gpt-pytorch_model.bin"}
OPENAI_GPT_PRETRAINED_CONFIG_ARCHIVE_MAP = {"openai-gpt": "https://s3.amazonaws.com/models.huggingface.co/bert/openai-gpt-config.json"}
42

43

44
def load_tf_weights_in_openai_gpt(model, config, openai_checkpoint_folder_path):
45
46
    """ Load tf pre-trained weights in a pytorch model (from NumPy arrays here)
    """
47
48
    import re
    import numpy as np
49
50
51
52
53
54

    if '.ckpt' in openai_checkpoint_folder_path:
        openai_checkpoint_folder_path = os.path.dirname(openai_checkpoint_folder_path)

    logger.info("Loading weights from {}".format(openai_checkpoint_folder_path))

55
56
57
58
59
60
61
    names = json.load(open(openai_checkpoint_folder_path + '/parameters_names.json', "r", encoding='utf-8'))
    shapes = json.load(open(openai_checkpoint_folder_path + '/params_shapes.json', "r", encoding='utf-8'))
    offsets = np.cumsum([np.prod(shape) for shape in shapes])
    init_params = [np.load(openai_checkpoint_folder_path + '/params_{}.npy'.format(n)) for n in range(10)]
    init_params = np.split(np.concatenate(init_params, 0), offsets)[:-1]
    init_params = [param.reshape(shape) for param, shape in zip(init_params, shapes)]

thomwolf's avatar
thomwolf committed
62
    # This was used when we had a single embedding matrix for positions and tokens
63
64
    # init_params[0] = np.concatenate([init_params[1], init_params[0]], 0)
    # del init_params[1]
65
66
67
    init_params = [arr.squeeze() for arr in init_params]

    try:
68
69
        assert model.tokens_embed.weight.shape == init_params[1].shape
        assert model.positions_embed.weight.shape == init_params[0].shape
70
    except AssertionError as e:
71
72
        e.args += (model.tokens_embed.weight.shape, init_params[1].shape)
        e.args += (model.positions_embed.weight.shape, init_params[0].shape)
73
74
        raise

75
76
    model.tokens_embed.weight.data = torch.from_numpy(init_params[1])
    model.positions_embed.weight.data = torch.from_numpy(init_params[0])
77
    names.pop(0)
78
79
    # Pop position and token embedding arrays
    init_params.pop(0)
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
    init_params.pop(0)

    for name, array in zip(names, init_params): # names[1:n_transfer], init_params[1:n_transfer]):
        name = name[6:]  # skip "model/"
        assert name[-2:] == ":0"
        name = name[:-2]
        name = name.split('/')
        pointer = model
        for m_name in name:
            if re.fullmatch(r'[A-Za-z]+\d+', m_name):
                l = re.split(r'(\d+)', m_name)
            else:
                l = [m_name]
            if l[0] == 'g':
                pointer = getattr(pointer, 'weight')
            elif l[0] == 'b':
                pointer = getattr(pointer, 'bias')
            elif l[0] == 'w':
                pointer = getattr(pointer, 'weight')
            else:
                pointer = getattr(pointer, l[0])
            if len(l) >= 2:
                num = int(l[1])
                pointer = pointer[num]
        try:
            assert pointer.shape == array.shape
        except AssertionError as e:
            e.args += (pointer.shape, array.shape)
            raise
        try:
            assert pointer.shape == array.shape
        except AssertionError as e:
            e.args += (pointer.shape, array.shape)
            raise
thomwolf's avatar
thomwolf committed
114
        logger.info("Initialize PyTorch weight {}".format(name))
115
116
117
        pointer.data = torch.from_numpy(array)
    return model

thomwolf's avatar
thomwolf committed
118
119
120
121
122
123
124
125
126

def gelu(x):
    return 0.5 * x * (1 + torch.tanh(math.sqrt(2 / math.pi) * (x + 0.044715 * torch.pow(x, 3))))


def swish(x):
    return x * torch.sigmoid(x)


127
128
ACT_FNS = {"relu": nn.ReLU, "swish": swish, "gelu": gelu}

thomwolf's avatar
thomwolf committed
129

130
class OpenAIGPTConfig(PretrainedConfig):
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
    """
    Configuration class to store the configuration of a `OpenAIGPTModel`.

    Args:
        vocab_size_or_config_json_file: Vocabulary size of `inputs_ids` in `OpenAIGPTModel` or a configuration json file.
        n_special: The number of special tokens to learn during fine-tuning ('[SEP]', '[CLF]', ...)
        n_positions: Number of positional embeddings.
        n_ctx: Size of the causal mask (usually same as n_positions).
        n_embd: Dimensionality of the embeddings and hidden states.
        n_layer: Number of hidden layers in the Transformer encoder.
        n_head: Number of attention heads for each attention layer in
            the Transformer encoder.
        afn: The non-linear activation function (function or string) in the
            encoder and pooler. If string, "gelu", "relu" and "swish" are supported.
        resid_pdrop: The dropout probabilitiy for all fully connected
            layers in the embeddings, encoder, and pooler.
        attn_pdrop: The dropout ratio for the attention
            probabilities.
        embd_pdrop: The dropout ratio for the embeddings.
        layer_norm_epsilon: epsilon to use in the layer norm layers
        initializer_range: The sttdev of the truncated_normal_initializer for
            initializing all weight matrices.
        predict_special_tokens: should we predict special tokens (when the model has a LM head)
thomwolf's avatar
thomwolf committed
154
    """
155
    pretrained_config_archive_map = OPENAI_GPT_PRETRAINED_CONFIG_ARCHIVE_MAP
156
157
158
159

    def __init__(
        self,
        vocab_size_or_config_json_file=40478,
thomwolf's avatar
thomwolf committed
160
        n_positions=512,
161
162
163
164
165
166
167
168
        n_ctx=512,
        n_embd=768,
        n_layer=12,
        n_head=12,
        afn="gelu",
        resid_pdrop=0.1,
        embd_pdrop=0.1,
        attn_pdrop=0.1,
169
        layer_norm_epsilon=1e-5,
170
        initializer_range=0.02,
thomwolf's avatar
thomwolf committed
171
        predict_special_tokens=True,
thomwolf's avatar
thomwolf committed
172
173

        num_labels=1,
thomwolf's avatar
thomwolf committed
174
        summary_type='cls_index',
thomwolf's avatar
thomwolf committed
175
176
        summary_use_proj=True,
        summary_activation=None,
thomwolf's avatar
thomwolf committed
177
        summary_proj_to_labels=True,
178
        summary_first_dropout=0.1,
thomwolf's avatar
thomwolf committed
179
        **kwargs
180
    ):
thomwolf's avatar
thomwolf committed
181
182
        """Constructs OpenAIGPTConfig.
        """
thomwolf's avatar
thomwolf committed
183
184
        super(OpenAIGPTConfig, self).__init__(**kwargs)

thomwolf's avatar
thomwolf committed
185
186
        if isinstance(vocab_size_or_config_json_file, str) or (sys.version_info[0] == 2
                        and isinstance(vocab_size_or_config_json_file, unicode)):
187
            with open(vocab_size_or_config_json_file, "r", encoding="utf-8") as reader:
thomwolf's avatar
thomwolf committed
188
189
190
191
192
193
                json_config = json.loads(reader.read())
            for key, value in json_config.items():
                self.__dict__[key] = value
        elif isinstance(vocab_size_or_config_json_file, int):
            self.vocab_size = vocab_size_or_config_json_file
            self.n_ctx = n_ctx
thomwolf's avatar
thomwolf committed
194
            self.n_positions = n_positions
thomwolf's avatar
thomwolf committed
195
196
197
198
199
200
201
            self.n_embd = n_embd
            self.n_layer = n_layer
            self.n_head = n_head
            self.afn = afn
            self.resid_pdrop = resid_pdrop
            self.embd_pdrop = embd_pdrop
            self.attn_pdrop = attn_pdrop
202
            self.layer_norm_epsilon = layer_norm_epsilon
thomwolf's avatar
thomwolf committed
203
            self.initializer_range = initializer_range
204
            self.predict_special_tokens = predict_special_tokens
thomwolf's avatar
thomwolf committed
205
206

            self.num_labels = num_labels
thomwolf's avatar
thomwolf committed
207
208
209
            self.summary_type = summary_type
            self.summary_use_proj = summary_use_proj
            self.summary_activation = summary_activation
210
            self.summary_first_dropout = summary_first_dropout
thomwolf's avatar
thomwolf committed
211
            self.summary_proj_to_labels = summary_proj_to_labels
thomwolf's avatar
thomwolf committed
212
        else:
213
214
215
216
            raise ValueError(
                "First argument must be either a vocabulary size (int)"
                "or the path to a pretrained model config file (str)"
            )
thomwolf's avatar
thomwolf committed
217

218
219
220
221
    @property
    def max_position_embeddings(self):
        return self.n_positions

thomwolf's avatar
thomwolf committed
222
223
224
225
226
227
228
229
230
231
232
233
    @property
    def hidden_size(self):
        return self.n_embd

    @property
    def num_attention_heads(self):
        return self.n_head

    @property
    def num_hidden_layers(self):
        return self.n_layer

thomwolf's avatar
thomwolf committed
234
235

class Attention(nn.Module):
thomwolf's avatar
thomwolf committed
236
    def __init__(self, nx, n_ctx, config, scale=False):
thomwolf's avatar
thomwolf committed
237
238
239
        super(Attention, self).__init__()
        n_state = nx  # in Attention: n_state=768 (nx=n_embd)
        # [switch nx => n_state from Block to Attention to keep identical to TF implem]
240
        assert n_state % config.n_head == 0
thomwolf's avatar
thomwolf committed
241
        self.register_buffer("bias", torch.tril(torch.ones(n_ctx, n_ctx)).view(1, 1, n_ctx, n_ctx))
242
        self.n_head = config.n_head
thomwolf's avatar
thomwolf committed
243
244
        self.split_size = n_state
        self.scale = scale
245

thomwolf's avatar
thomwolf committed
246
        self.output_attentions = config.output_attentions
247

248
249
        self.c_attn = Conv1D(n_state * 3, nx)
        self.c_proj = Conv1D(n_state, nx)
250
251
        self.attn_dropout = nn.Dropout(config.attn_pdrop)
        self.resid_dropout = nn.Dropout(config.resid_pdrop)
252
        self.pruned_heads = set()
thomwolf's avatar
thomwolf committed
253

254
    def prune_heads(self, heads):
thomwolf's avatar
thomwolf committed
255
256
        if len(heads) == 0:
            return
257
        mask = torch.ones(self.n_head, self.split_size // self.n_head)
258
        heads = set(heads) - self.pruned_heads
259
        for head in heads:
260
            head -= sum(1 if h < head else 0 for h in self.pruned_heads)
261
262
263
264
265
266
267
268
269
270
            mask[head] = 0
        mask = mask.view(-1).contiguous().eq(1)
        index = torch.arange(len(mask))[mask].long()
        index_attn = torch.cat([index, index + self.split_size, index + (2*self.split_size)])
        # Prune conv1d layers
        self.c_attn = prune_conv1d_layer(self.c_attn, index_attn, dim=1)
        self.c_proj = prune_conv1d_layer(self.c_proj, index, dim=0)
        # Update hyper params
        self.split_size = (self.split_size // self.n_head) * (self.n_head - len(heads))
        self.n_head = self.n_head - len(heads)
271
        self.pruned_heads = self.pruned_heads.union(heads)
272
273

    def _attn(self, q, k, v, head_mask=None):
thomwolf's avatar
thomwolf committed
274
275
276
        w = torch.matmul(q, k)
        if self.scale:
            w = w / math.sqrt(v.size(-1))
thomwolf's avatar
thomwolf committed
277
        # w = w * self.bias + -1e9 * (1 - self.bias)  # TF implem method: mask_attn_weights
thomwolf's avatar
thomwolf committed
278
        # XD: self.b may be larger than w, so we need to crop it
thomwolf's avatar
thomwolf committed
279
        b = self.bias[:, :, : w.size(-2), : w.size(-1)]
thomwolf's avatar
thomwolf committed
280
281
        w = w * b + -1e9 * (1 - b)

thomwolf's avatar
thomwolf committed
282
283
        w = nn.Softmax(dim=-1)(w)
        w = self.attn_dropout(w)
284
285
286
287
288

        # Mask heads if we want to
        if head_mask is not None:
            w = w * head_mask

thomwolf's avatar
thomwolf committed
289
        outputs = [torch.matmul(w, v)]
thomwolf's avatar
thomwolf committed
290
        if self.output_attentions:
thomwolf's avatar
thomwolf committed
291
292
            outputs.append(w)
        return outputs
thomwolf's avatar
thomwolf committed
293
294
295
296
297
298
299
300
301
302
303
304
305
306

    def merge_heads(self, x):
        x = x.permute(0, 2, 1, 3).contiguous()
        new_x_shape = x.size()[:-2] + (x.size(-2) * x.size(-1),)
        return x.view(*new_x_shape)  # in Tensorflow implem: fct merge_states

    def split_heads(self, x, k=False):
        new_x_shape = x.size()[:-1] + (self.n_head, x.size(-1) // self.n_head)
        x = x.view(*new_x_shape)  # in Tensorflow implem: fct split_states
        if k:
            return x.permute(0, 2, 3, 1)
        else:
            return x.permute(0, 2, 1, 3)

307
    def forward(self, x, head_mask=None):
thomwolf's avatar
thomwolf committed
308
309
310
311
312
        x = self.c_attn(x)
        query, key, value = x.split(self.split_size, dim=2)
        query = self.split_heads(query)
        key = self.split_heads(key, k=True)
        value = self.split_heads(value)
313

thomwolf's avatar
thomwolf committed
314
315
        attn_outputs = self._attn(query, key, value, head_mask)
        a = attn_outputs[0]
316

thomwolf's avatar
thomwolf committed
317
318
319
        a = self.merge_heads(a)
        a = self.c_proj(a)
        a = self.resid_dropout(a)
thomwolf's avatar
thomwolf committed
320
321
322

        outputs = [a] + attn_outputs[1:]
        return outputs  # a, (attentions)
thomwolf's avatar
thomwolf committed
323
324
325


class MLP(nn.Module):
326
    def __init__(self, n_state, config):  # in MLP: n_state=3072 (4 * n_embd)
thomwolf's avatar
thomwolf committed
327
        super(MLP, self).__init__()
328
        nx = config.n_embd
329
330
        self.c_fc = Conv1D(n_state, nx)
        self.c_proj = Conv1D(nx, n_state)
331
332
        self.act = ACT_FNS[config.afn]
        self.dropout = nn.Dropout(config.resid_pdrop)
thomwolf's avatar
thomwolf committed
333
334
335
336
337
338
339
340

    def forward(self, x):
        h = self.act(self.c_fc(x))
        h2 = self.c_proj(h)
        return self.dropout(h2)


class Block(nn.Module):
thomwolf's avatar
thomwolf committed
341
    def __init__(self, n_ctx, config, scale=False):
thomwolf's avatar
thomwolf committed
342
        super(Block, self).__init__()
343
        nx = config.n_embd
thomwolf's avatar
thomwolf committed
344
        self.attn = Attention(nx, n_ctx, config, scale)
345
        self.ln_1 = LayerNorm(nx, eps=config.layer_norm_epsilon)
346
        self.mlp = MLP(4 * nx, config)
347
        self.ln_2 = LayerNorm(nx, eps=config.layer_norm_epsilon)
thomwolf's avatar
thomwolf committed
348

349
    def forward(self, x, head_mask=None):
thomwolf's avatar
thomwolf committed
350
351
352
        attn_outputs = self.attn(x, head_mask=head_mask)
        a = attn_outputs[0]

thomwolf's avatar
thomwolf committed
353
354
355
        n = self.ln_1(x + a)
        m = self.mlp(n)
        h = self.ln_2(n + m)
thomwolf's avatar
thomwolf committed
356
357
358

        outputs = [h] + attn_outputs[1:]
        return outputs
thomwolf's avatar
thomwolf committed
359
360


361
class OpenAIGPTPreTrainedModel(PreTrainedModel):
thomwolf's avatar
thomwolf committed
362
363
364
    """ An abstract class to handle weights initialization and
        a simple interface for dowloading and loading pretrained models.
    """
365
    config_class = OpenAIGPTConfig
366
    pretrained_model_archive_map = OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_MAP
367
368
    load_tf_weights = load_tf_weights_in_openai_gpt
    base_model_prefix = "transformer"
369

370
    def _init_weights(self, module):
thomwolf's avatar
thomwolf committed
371
372
        """ Initialize the weights.
        """
373
        if isinstance(module, (nn.Linear, nn.Embedding, Conv1D)):
thomwolf's avatar
thomwolf committed
374
375
376
            # Slightly different from the TF version which uses truncated_normal for initialization
            # cf https://github.com/pytorch/pytorch/pull/5617
            module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
377
378
            if isinstance(module, (nn.Linear, Conv1D)) and module.bias is not None:
                module.bias.data.zero_()
thomwolf's avatar
thomwolf committed
379
380
381
        elif isinstance(module, LayerNorm):
            module.bias.data.zero_()
            module.weight.data.fill_(1.0)
thomwolf's avatar
thomwolf committed
382
383


thomwolf's avatar
thomwolf committed
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
OPENAI_GPT_START_DOCSTRING = r"""    OpenAI GPT model was proposed in
    `Improving Language Understanding by Generative Pre-Training`_
    by Alec Radford, Karthik Narasimhan, Tim Salimans and Ilya Sutskever.
    It's a causal (unidirectional) transformer pre-trained using language modeling on a large
    corpus will long range dependencies, the Toronto Book Corpus.

    This model is a PyTorch `torch.nn.Module`_ sub-class. Use it as a regular PyTorch Module and
    refer to the PyTorch documentation for all matter related to general usage and behavior.

    .. _`Improving Language Understanding by Generative Pre-Training`:
        https://openai.com/blog/language-unsupervised/

    .. _`torch.nn.Module`:
        https://pytorch.org/docs/stable/nn.html#module

    Parameters:
thomwolf's avatar
thomwolf committed
400
        config (:class:`~pytorch_transformers.OpenAIGPTConfig`): Model configuration class with all the parameters of the model.
401
402
            Initializing with a config file does not load the weights associated with the model, only the configuration.
            Check out the :meth:`~pytorch_transformers.PreTrainedModel.from_pretrained` method to load the model weights.
thomwolf's avatar
thomwolf committed
403
404
"""

thomwolf's avatar
thomwolf committed
405
OPENAI_GPT_INPUTS_DOCSTRING = r"""    Inputs:
thomwolf's avatar
thomwolf committed
406
407
        **input_ids**: ``torch.LongTensor`` of shape ``(batch_size, sequence_length)``:
            Indices of input sequence tokens in the vocabulary.
thomwolf's avatar
thomwolf committed
408
409
            GPT is a model with absolute position embeddings so it's usually advised to pad the inputs on
            the right rather than the left.
thomwolf's avatar
thomwolf committed
410
411
412
413
414
            Indices can be obtained using :class:`pytorch_transformers.BPT2Tokenizer`.
            See :func:`pytorch_transformers.PreTrainedTokenizer.encode` and
            :func:`pytorch_transformers.PreTrainedTokenizer.convert_tokens_to_ids` for details.
        **position_ids**: (`optional`) ``torch.LongTensor`` of shape ``(batch_size, sequence_length)``:
            Indices of positions of each input sequence tokens in the position embeddings.
LysandreJik's avatar
LysandreJik committed
415
            Selected in the range ``[0, config.max_position_embeddings - 1]``.
thomwolf's avatar
thomwolf committed
416
417
418
        **token_type_ids**: (`optional`) ``torch.LongTensor`` of shape ``(batch_size, sequence_length)``:
            A parallel sequence of tokens (can be used to indicate various portions of the inputs).
            The embeddings from these tokens will be summed with the respective token embeddings.
419
            Indices are selected in the vocabulary (unlike BERT which has a specific vocabulary for segment indices)
thomwolf's avatar
thomwolf committed
420
        **head_mask**: (`optional`) ``torch.FloatTensor`` of shape ``(num_heads,)`` or ``(num_layers, num_heads)``:
thomwolf's avatar
thomwolf committed
421
            Mask to nullify selected heads of the self-attention modules.
thomwolf's avatar
thomwolf committed
422
            Mask values selected in ``[0, 1]``:
thomwolf's avatar
thomwolf committed
423
424
425
426
            ``1`` indicates the head is **not masked**, ``0`` indicates the head is **masked**.
"""

@add_start_docstrings("The bare OpenAI GPT transformer model outputing raw hidden-states without any specific head on top.",
thomwolf's avatar
thomwolf committed
427
                      OPENAI_GPT_START_DOCSTRING, OPENAI_GPT_INPUTS_DOCSTRING)
thomwolf's avatar
thomwolf committed
428
class OpenAIGPTModel(OpenAIGPTPreTrainedModel):
thomwolf's avatar
thomwolf committed
429
430
431
432
433
434
435
436
    r"""
    Outputs: `Tuple` comprising various elements depending on the configuration (config) and inputs:
        **last_hidden_state**: ``torch.FloatTensor`` of shape ``(batch_size, sequence_length, hidden_size)``
            Sequence of hidden-states at the last layer of the model.
        **hidden_states**: (`optional`, returned when ``config.output_hidden_states=True``)
            list of ``torch.FloatTensor`` (one for the output of each layer + the output of the embeddings)
            of shape ``(batch_size, sequence_length, hidden_size)``:
            Hidden-states of the model at the output of each layer plus the initial embedding outputs.
thomwolf's avatar
thomwolf committed
437
438
439
        **attentions**: (`optional`, returned when ``config.output_attentions=True``)
            list of ``torch.FloatTensor`` (one for each layer) of shape ``(batch_size, num_heads, sequence_length, sequence_length)``:
            Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
thomwolf's avatar
thomwolf committed
440
441
442

    Examples::

wangfei's avatar
wangfei committed
443
444
445
446
447
        tokenizer = OpenAIGPTTokenizer.from_pretrained('openai-gpt')
        model = OpenAIGPTModel.from_pretrained('openai-gpt')
        input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0)  # Batch size 1
        outputs = model(input_ids)
        last_hidden_states = outputs[0]  # The last hidden-state is the first element of the output tuple
448
449

    """
thomwolf's avatar
thomwolf committed
450
    def __init__(self, config):
451
        super(OpenAIGPTModel, self).__init__(config)
thomwolf's avatar
thomwolf committed
452
453
454
        self.output_attentions = config.output_attentions
        self.output_hidden_states = config.output_hidden_states

thomwolf's avatar
thomwolf committed
455
        self.tokens_embed = nn.Embedding(config.vocab_size, config.n_embd)
456
        self.positions_embed = nn.Embedding(config.n_positions, config.n_embd)
457
        self.drop = nn.Dropout(config.embd_pdrop)
458
        self.h = nn.ModuleList([Block(config.n_ctx, config, scale=True) for _ in range(config.n_layer)])
thomwolf's avatar
thomwolf committed
459

460
        self.init_weights()
thomwolf's avatar
thomwolf committed
461

thomwolf's avatar
thomwolf committed
462
463
    def _resize_token_embeddings(self, new_num_tokens):
        self.tokens_embed = self._get_resized_embeddings(self.tokens_embed, new_num_tokens)
thomwolf's avatar
thomwolf committed
464
        return self.tokens_embed
thomwolf's avatar
thomwolf committed
465

thomwolf's avatar
thomwolf committed
466
    def _prune_heads(self, heads_to_prune):
467
468
469
470
471
472
473
        """ Prunes heads of the model.
            heads_to_prune: dict of {layer_num: list of heads to prune in this layer}
        """
        for layer, heads in heads_to_prune.items():
            self.h[layer].attn.prune_heads(heads)

    def forward(self, input_ids, position_ids=None, token_type_ids=None, head_mask=None):
thomwolf's avatar
thomwolf committed
474
        if position_ids is None:
475
476
477
478
479
            # This was used when we had a single embedding matrice from position and token embeddings
            # start = self.config.vocab_size + self.config.n_special
            # end = start + input_ids.size(-1)
            # position_ids = torch.arange(start, end, dtype=torch.long, device=input_ids.device)
            position_ids = torch.arange(input_ids.size(-1), dtype=torch.long, device=input_ids.device)
thomwolf's avatar
thomwolf committed
480
481
            position_ids = position_ids.unsqueeze(0).expand_as(input_ids)

482
        # Prepare head mask if needed
thomwolf's avatar
thomwolf committed
483
        # 1.0 in head_mask indicate we keep the head
484
        # attention_probs has shape bsz x n_heads x N x N
485
        # head_mask has shape n_layer x batch x n_heads x N x N
486
487
        if head_mask is not None:
            if head_mask.dim() == 1:
488
                head_mask = head_mask.unsqueeze(0).unsqueeze(0).unsqueeze(-1).unsqueeze(-1)
thomwolf's avatar
thomwolf committed
489
                head_mask = head_mask.expand(self.config.n_layer, -1, -1, -1, -1)
490
            elif head_mask.dim() == 2:
491
                head_mask = head_mask.unsqueeze(1).unsqueeze(-1).unsqueeze(-1)  # We can specify head_mask for each layer
492
            head_mask = head_mask.to(dtype=next(self.parameters()).dtype) # switch to fload if need + fp16 compatibility
493
494
        else:
            head_mask = [None] * self.config.n_layer
495

thomwolf's avatar
thomwolf committed
496
497
498
499
        input_shape = input_ids.size()
        input_ids = input_ids.view(-1, input_ids.size(-1))
        position_ids = position_ids.view(-1, position_ids.size(-1))

500
501
        inputs_embeds = self.tokens_embed(input_ids)
        position_embeds = self.positions_embed(position_ids)
thomwolf's avatar
thomwolf committed
502
503
        if token_type_ids is not None:
            token_type_ids = token_type_ids.view(-1, token_type_ids.size(-1))
504
            token_type_embeds = self.tokens_embed(token_type_ids)
thomwolf's avatar
thomwolf committed
505
506
507
        else:
            token_type_embeds = 0
        hidden_states = inputs_embeds + position_embeds + token_type_embeds
508
509
        hidden_states = self.drop(hidden_states)

510
511
        output_shape = input_shape + (hidden_states.size(-1),)

512
513
        all_attentions = ()
        all_hidden_states = ()
514
        for i, block in enumerate(self.h):
thomwolf's avatar
thomwolf committed
515
            if self.output_hidden_states:
516
                all_hidden_states = all_hidden_states + (hidden_states.view(*output_shape),)
thomwolf's avatar
thomwolf committed
517

518
            outputs = block(hidden_states, head_mask[i])
thomwolf's avatar
thomwolf committed
519
            hidden_states = outputs[0]
thomwolf's avatar
thomwolf committed
520
            if self.output_attentions:
521
                all_attentions = all_attentions + (outputs[1],)
thomwolf's avatar
thomwolf committed
522
523
524

        # Add last layer
        if self.output_hidden_states:
525
            all_hidden_states = all_hidden_states + (hidden_states.view(*output_shape),)
526

527
        outputs = (hidden_states.view(*output_shape),)
thomwolf's avatar
thomwolf committed
528
        if self.output_hidden_states:
529
            outputs = outputs + (all_hidden_states,)
thomwolf's avatar
thomwolf committed
530
        if self.output_attentions:
531
            outputs = outputs + (all_attentions,)
thomwolf's avatar
thomwolf committed
532
        return outputs  # last hidden state, (all hidden states), (all attentions)
thomwolf's avatar
thomwolf committed
533

534

thomwolf's avatar
thomwolf committed
535
@add_start_docstrings("""OpenAI GPT Model transformer with a language modeling head on top
thomwolf's avatar
thomwolf committed
536
(linear layer with weights tied to the input embeddings). """, OPENAI_GPT_START_DOCSTRING, OPENAI_GPT_INPUTS_DOCSTRING)
thomwolf's avatar
thomwolf committed
537
class OpenAIGPTLMHeadModel(OpenAIGPTPreTrainedModel):
thomwolf's avatar
thomwolf committed
538
    r"""
thomwolf's avatar
thomwolf committed
539
        **labels**: (`optional`) ``torch.LongTensor`` of shape ``(batch_size, sequence_length)``:
thomwolf's avatar
thomwolf committed
540
            Labels for language modeling.
541
            Note that the labels **are shifted** inside the model, i.e. you can set ``labels = input_ids``
thomwolf's avatar
thomwolf committed
542
543
544
545
546
            Indices are selected in ``[-1, 0, ..., config.vocab_size]``
            All labels set to ``-1`` are ignored (masked), the loss is only
            computed for labels in ``[0, ..., config.vocab_size]``

    Outputs: `Tuple` comprising various elements depending on the configuration (config) and inputs:
thomwolf's avatar
thomwolf committed
547
        **loss**: (`optional`, returned when ``labels`` is provided) ``torch.FloatTensor`` of shape ``(1,)``:
thomwolf's avatar
thomwolf committed
548
549
550
551
552
553
554
            Language modeling loss.
        **prediction_scores**: ``torch.FloatTensor`` of shape ``(batch_size, sequence_length, config.vocab_size)``
            Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
        **hidden_states**: (`optional`, returned when ``config.output_hidden_states=True``)
            list of ``torch.FloatTensor`` (one for the output of each layer + the output of the embeddings)
            of shape ``(batch_size, sequence_length, hidden_size)``:
            Hidden-states of the model at the output of each layer plus the initial embedding outputs.
thomwolf's avatar
thomwolf committed
555
556
557
        **attentions**: (`optional`, returned when ``config.output_attentions=True``)
            list of ``torch.FloatTensor`` (one for each layer) of shape ``(batch_size, num_heads, sequence_length, sequence_length)``:
            Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
thomwolf's avatar
thomwolf committed
558
559
560

    Examples::

wangfei's avatar
wangfei committed
561
562
563
564
565
        tokenizer = OpenAIGPTTokenizer.from_pretrained('openai-gpt')
        model = OpenAIGPTLMHeadModel.from_pretrained('openai-gpt')
        input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0)  # Batch size 1
        outputs = model(input_ids, labels=input_ids)
        loss, logits = outputs[:2]
566
567

    """
thomwolf's avatar
thomwolf committed
568
    def __init__(self, config):
569
        super(OpenAIGPTLMHeadModel, self).__init__(config)
thomwolf's avatar
thomwolf committed
570
        self.transformer = OpenAIGPTModel(config)
thomwolf's avatar
thomwolf committed
571
        self.lm_head = nn.Linear(config.n_embd, config.vocab_size, bias=False)
572

573
        self.init_weights()
thomwolf's avatar
thomwolf committed
574
        self.tie_weights()
575

thomwolf's avatar
thomwolf committed
576
577
578
    def tie_weights(self):
        """ Make sure we are sharing the input and output embeddings.
            Export to TorchScript can't handle parameter sharing so we are cloning them instead.
579
        """
thomwolf's avatar
thomwolf committed
580
581
        self._tie_or_clone_weights(self.lm_head,
                                   self.transformer.tokens_embed)
thomwolf's avatar
thomwolf committed
582

thomwolf's avatar
thomwolf committed
583
    def forward(self, input_ids, position_ids=None, token_type_ids=None, labels=None, head_mask=None):
thomwolf's avatar
thomwolf committed
584
585
        transformer_outputs = self.transformer(input_ids, position_ids=position_ids, token_type_ids=token_type_ids,
                                               head_mask=head_mask)
thomwolf's avatar
thomwolf committed
586
        hidden_states = transformer_outputs[0]
thomwolf's avatar
thomwolf committed
587
        lm_logits = self.lm_head(hidden_states)
thomwolf's avatar
thomwolf committed
588

589
        outputs = (lm_logits,) + transformer_outputs[1:]
thomwolf's avatar
thomwolf committed
590
        if labels is not None:
591
            # Shift so that tokens < n predict n
thomwolf's avatar
thomwolf committed
592
            shift_logits = lm_logits[..., :-1, :].contiguous()
thomwolf's avatar
thomwolf committed
593
            shift_labels = labels[..., 1:].contiguous()
Catalin Voss's avatar
Catalin Voss committed
594
            # Flatten the tokens
thomwolf's avatar
thomwolf committed
595
            loss_fct = CrossEntropyLoss(ignore_index=-1)
596
            loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)),
597
                            shift_labels.view(-1))
598
            outputs = (loss,) + outputs
thomwolf's avatar
thomwolf committed
599
600

        return outputs  # (loss), lm_logits, (all hidden states), (all attentions)
thomwolf's avatar
thomwolf committed
601

602

thomwolf's avatar
thomwolf committed
603
604
605
@add_start_docstrings("""OpenAI GPT Model transformer with a language modeling and a multiple-choice classification
head on top e.g. for RocStories/SWAG tasks. The two heads are two linear layers.
The language modeling head has its weights tied to the input embeddings,
Julien Chaumond's avatar
Julien Chaumond committed
606
the classification head takes as input the input of a specified classification token index in the input sequence).
thomwolf's avatar
thomwolf committed
607
""", OPENAI_GPT_START_DOCSTRING)
thomwolf's avatar
thomwolf committed
608
class OpenAIGPTDoubleHeadsModel(OpenAIGPTPreTrainedModel):
thomwolf's avatar
thomwolf committed
609
610
611
612
613
614
615
616
617
618
619
620
    r"""    Inputs:
        **input_ids**: ``torch.LongTensor`` of shape ``(batch_size, num_choices, sequence_length)``:
            Indices of input sequence tokens in the vocabulary.
            The second dimension of the input (`num_choices`) indicates the number of choices to score.
            Indices can be obtained using :class:`pytorch_transformers.BPT2Tokenizer`.
            See :func:`pytorch_transformers.PreTrainedTokenizer.encode` and
            :func:`pytorch_transformers.PreTrainedTokenizer.convert_tokens_to_ids` for details.
        **mc_token_ids**: ``torch.LongTensor`` of shape ``(batch_size, num_choices)``:
            Index of the classification token in each input sequence.
            Selected in the range ``[0, input_ids.size(-1) - 1[``.
        **position_ids**: (`optional`) ``torch.LongTensor`` of shape ``(batch_size, num_choices, sequence_length)``:
            Indices of positions of each input sequence tokens in the position embeddings.
LysandreJik's avatar
LysandreJik committed
621
            Selected in the range ``[0, config.max_position_embeddings - 1]``.
thomwolf's avatar
thomwolf committed
622
623
624
625
        **token_type_ids**: (`optional`) ``torch.LongTensor`` of shape ``(batch_size, num_choices, sequence_length)``:
            A parallel sequence of tokens (can be used to indicate various portions of the inputs).
            The embeddings from these tokens will be summed with the respective token embeddings.
            Indices are selected in the vocabulary (unlike BERT which has a specific vocabulary for segment indices).
thomwolf's avatar
thomwolf committed
626
        **head_mask**: (`optional`) ``torch.FloatTensor`` of shape ``(num_heads,)`` or ``(num_layers, num_heads)``:
thomwolf's avatar
thomwolf committed
627
            Mask to nullify selected heads of the self-attention modules.
thomwolf's avatar
thomwolf committed
628
            Mask values selected in ``[0, 1]``:
thomwolf's avatar
thomwolf committed
629
630
631
632
633
634
635
            ``1`` indicates the head is **not masked**, ``0`` indicates the head is **masked**.
        **lm_labels**: (`optional`) ``torch.LongTensor`` of shape ``(batch_size, sequence_length)``:
            Labels for language modeling.
            Note that the labels **are shifted** inside the model, i.e. you can set ``lm_labels = input_ids``
            Indices are selected in ``[-1, 0, ..., config.vocab_size]``
            All labels set to ``-1`` are ignored (masked), the loss is only
            computed for labels in ``[0, ..., config.vocab_size]``
636
        **mc_labels**: (`optional`) ``torch.LongTensor`` of shape ``(batch_size)``:
thomwolf's avatar
thomwolf committed
637
638
639
            Labels for computing the multiple choice classification loss.
            Indices should be in ``[0, ..., num_choices]`` where `num_choices` is the size of the second dimension
            of the input tensors. (see `input_ids` above)
640

thomwolf's avatar
thomwolf committed
641
642
            `multiple_choice_labels`: optional multiple choice labels: ``torch.LongTensor`` of shape [batch_size]
                with indices selected in [0, ..., num_choices].
643

thomwolf's avatar
thomwolf committed
644
645
646
647
648
649
650
651
652
653
654
655
656
    Outputs: `Tuple` comprising various elements depending on the configuration (config) and inputs:
        **lm_loss**: (`optional`, returned when ``lm_labels`` is provided) ``torch.FloatTensor`` of shape ``(1,)``:
            Language modeling loss.
        **mc_loss**: (`optional`, returned when ``multiple_choice_labels`` is provided) ``torch.FloatTensor`` of shape ``(1,)``:
            Multiple choice classification loss.
        **lm_prediction_scores**: ``torch.FloatTensor`` of shape ``(batch_size, num_choices, sequence_length, config.vocab_size)``
            Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
        **mc_prediction_scores**: ``torch.FloatTensor`` of shape ``(batch_size, num_choices)``
            Prediction scores of the multiplechoice classification head (scores for each choice before SoftMax).
        **hidden_states**: (`optional`, returned when ``config.output_hidden_states=True``)
            list of ``torch.FloatTensor`` (one for the output of each layer + the output of the embeddings)
            of shape ``(batch_size, sequence_length, hidden_size)``:
            Hidden-states of the model at the output of each layer plus the initial embedding outputs.
thomwolf's avatar
thomwolf committed
657
658
659
        **attentions**: (`optional`, returned when ``config.output_attentions=True``)
            list of ``torch.FloatTensor`` (one for each layer) of shape ``(batch_size, num_heads, sequence_length, sequence_length)``:
            Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
thomwolf's avatar
thomwolf committed
660
661
662

    Examples::

wangfei's avatar
wangfei committed
663
664
        tokenizer = OpenAIGPTTokenizer.from_pretrained('openai-gpt')
        model = OpenAIGPTDoubleHeadsModel.from_pretrained('openai-gpt')
thomwolf's avatar
thomwolf committed
665
666
        tokenizer.add_special_tokens({'cls_token': '[CLS]'})  # Add a [CLS] to the vocabulary (we should train it also!)
        choices = ["Hello, my dog is cute [CLS]", "Hello, my cat is cute [CLS]"]
wangfei's avatar
wangfei committed
667
        input_ids = torch.tensor([tokenizer.encode(s) for s in choices]).unsqueeze(0)  # Batch size 1, 2 choices
thomwolf's avatar
thomwolf committed
668
        mc_token_ids = torch.tensor([input_ids.size(-1), input_ids.size(-1)]).unsqueeze(0)  # Batch size 1
wangfei's avatar
wangfei committed
669
670
        outputs = model(input_ids, mc_token_ids)
        lm_prediction_scores, mc_prediction_scores = outputs[:2]
671

672
    """
thomwolf's avatar
thomwolf committed
673
    def __init__(self, config):
674
        super(OpenAIGPTDoubleHeadsModel, self).__init__(config)
thomwolf's avatar
thomwolf committed
675

thomwolf's avatar
thomwolf committed
676
        self.transformer = OpenAIGPTModel(config)
thomwolf's avatar
thomwolf committed
677
        self.lm_head = nn.Linear(config.n_embd, config.vocab_size, bias=False)
thomwolf's avatar
thomwolf committed
678
679
        self.multiple_choice_head = SequenceSummary(config)

680
        self.init_weights()
thomwolf's avatar
thomwolf committed
681
        self.tie_weights()
thomwolf's avatar
thomwolf committed
682

thomwolf's avatar
thomwolf committed
683
684
685
    def tie_weights(self):
        """ Make sure we are sharing the input and output embeddings.
            Export to TorchScript can't handle parameter sharing so we are cloning them instead.
686
        """
thomwolf's avatar
thomwolf committed
687
688
        self._tie_or_clone_weights(self.lm_head,
                                   self.transformer.tokens_embed)
thomwolf's avatar
thomwolf committed
689

thomwolf's avatar
thomwolf committed
690
    def forward(self, input_ids, mc_token_ids=None, lm_labels=None, mc_labels=None, token_type_ids=None,
691
                position_ids=None, head_mask=None):
thomwolf's avatar
thomwolf committed
692
693
        transformer_outputs = self.transformer(input_ids, position_ids=position_ids, token_type_ids=token_type_ids,
                                               head_mask=head_mask)
thomwolf's avatar
thomwolf committed
694
        hidden_states = transformer_outputs[0]
695

thomwolf's avatar
thomwolf committed
696
        lm_logits = self.lm_head(hidden_states)
thomwolf's avatar
thomwolf committed
697
        mc_logits = self.multiple_choice_head(hidden_states, mc_token_ids).squeeze(-1)
thomwolf's avatar
thomwolf committed
698

699
        outputs = (lm_logits, mc_logits) + transformer_outputs[1:]
thomwolf's avatar
thomwolf committed
700
701
702
703
        if mc_labels is not None:
            loss_fct = CrossEntropyLoss()
            loss = loss_fct(mc_logits.view(-1, mc_logits.size(-1)),
                            mc_labels.view(-1))
704
            outputs = (loss,) + outputs
thomwolf's avatar
thomwolf committed
705
        if lm_labels is not None:
thomwolf's avatar
thomwolf committed
706
707
            shift_logits = lm_logits[..., :-1, :].contiguous()
            shift_labels = lm_labels[..., 1:].contiguous()
thomwolf's avatar
thomwolf committed
708
            loss_fct = CrossEntropyLoss(ignore_index=-1)
thomwolf's avatar
thomwolf committed
709
710
            loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)),
                            shift_labels.view(-1))
711
            outputs = (loss,) + outputs
thomwolf's avatar
thomwolf committed
712
713

        return outputs  # (lm loss), (mc loss), lm logits, mc logits, (all hidden_states), (attentions)