modeling_openai.py 33.8 KB
Newer Older
thomwolf's avatar
thomwolf committed
1
# coding=utf-8
thomwolf's avatar
thomwolf committed
2
# Copyright 2018 The OpenAI Team Authors and HuggingFace Inc. team.
thomwolf's avatar
thomwolf committed
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
# Copyright (c) 2018, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""PyTorch OpenAI GPT model."""

18
19
from __future__ import absolute_import, division, print_function, unicode_literals

20
import collections
thomwolf's avatar
thomwolf committed
21
import json
thomwolf's avatar
thomwolf committed
22
import logging
23
24
import math
import os
thomwolf's avatar
thomwolf committed
25
26
import sys
from io import open
thomwolf's avatar
thomwolf committed
27
28
29

import torch
import torch.nn as nn
thomwolf's avatar
thomwolf committed
30
from torch.nn import CrossEntropyLoss
thomwolf's avatar
thomwolf committed
31
32
from torch.nn.parameter import Parameter

33
from .modeling_utils import (Conv1D, CONFIG_NAME, WEIGHTS_NAME, PretrainedConfig,
34
                             PreTrainedModel, prune_conv1d_layer, SequenceSummary)
thomwolf's avatar
thomwolf committed
35
from .modeling_bert import BertLayerNorm as LayerNorm
thomwolf's avatar
thomwolf committed
36

thomwolf's avatar
thomwolf committed
37
38
logger = logging.getLogger(__name__)

39
40
OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_MAP = {"openai-gpt": "https://s3.amazonaws.com/models.huggingface.co/bert/openai-gpt-pytorch_model.bin"}
OPENAI_GPT_PRETRAINED_CONFIG_ARCHIVE_MAP = {"openai-gpt": "https://s3.amazonaws.com/models.huggingface.co/bert/openai-gpt-config.json"}
41

42

43
def load_tf_weights_in_openai_gpt(model, config, openai_checkpoint_folder_path):
44
45
    """ Load tf pre-trained weights in a pytorch model (from NumPy arrays here)
    """
46
47
    import re
    import numpy as np
48
49
50
51
52
53

    if '.ckpt' in openai_checkpoint_folder_path:
        openai_checkpoint_folder_path = os.path.dirname(openai_checkpoint_folder_path)

    logger.info("Loading weights from {}".format(openai_checkpoint_folder_path))

54
55
56
57
58
59
60
    names = json.load(open(openai_checkpoint_folder_path + '/parameters_names.json', "r", encoding='utf-8'))
    shapes = json.load(open(openai_checkpoint_folder_path + '/params_shapes.json', "r", encoding='utf-8'))
    offsets = np.cumsum([np.prod(shape) for shape in shapes])
    init_params = [np.load(openai_checkpoint_folder_path + '/params_{}.npy'.format(n)) for n in range(10)]
    init_params = np.split(np.concatenate(init_params, 0), offsets)[:-1]
    init_params = [param.reshape(shape) for param, shape in zip(init_params, shapes)]

thomwolf's avatar
thomwolf committed
61
    # This was used when we had a single embedding matrix for positions and tokens
62
63
    # init_params[0] = np.concatenate([init_params[1], init_params[0]], 0)
    # del init_params[1]
64
65
66
    init_params = [arr.squeeze() for arr in init_params]

    try:
67
68
        assert model.tokens_embed.weight.shape == init_params[1].shape
        assert model.positions_embed.weight.shape == init_params[0].shape
69
    except AssertionError as e:
70
71
        e.args += (model.tokens_embed.weight.shape, init_params[1].shape)
        e.args += (model.positions_embed.weight.shape, init_params[0].shape)
72
73
        raise

74
75
    model.tokens_embed.weight.data = torch.from_numpy(init_params[1])
    model.positions_embed.weight.data = torch.from_numpy(init_params[0])
76
    names.pop(0)
77
78
    # Pop position and token embedding arrays
    init_params.pop(0)
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
    init_params.pop(0)

    for name, array in zip(names, init_params): # names[1:n_transfer], init_params[1:n_transfer]):
        name = name[6:]  # skip "model/"
        assert name[-2:] == ":0"
        name = name[:-2]
        name = name.split('/')
        pointer = model
        for m_name in name:
            if re.fullmatch(r'[A-Za-z]+\d+', m_name):
                l = re.split(r'(\d+)', m_name)
            else:
                l = [m_name]
            if l[0] == 'g':
                pointer = getattr(pointer, 'weight')
            elif l[0] == 'b':
                pointer = getattr(pointer, 'bias')
            elif l[0] == 'w':
                pointer = getattr(pointer, 'weight')
            else:
                pointer = getattr(pointer, l[0])
            if len(l) >= 2:
                num = int(l[1])
                pointer = pointer[num]
        try:
            assert pointer.shape == array.shape
        except AssertionError as e:
            e.args += (pointer.shape, array.shape)
            raise
        try:
            assert pointer.shape == array.shape
        except AssertionError as e:
            e.args += (pointer.shape, array.shape)
            raise
thomwolf's avatar
thomwolf committed
113
        logger.info("Initialize PyTorch weight {}".format(name))
114
115
116
        pointer.data = torch.from_numpy(array)
    return model

thomwolf's avatar
thomwolf committed
117
118
119
120
121
122
123
124
125

def gelu(x):
    return 0.5 * x * (1 + torch.tanh(math.sqrt(2 / math.pi) * (x + 0.044715 * torch.pow(x, 3))))


def swish(x):
    return x * torch.sigmoid(x)


126
127
ACT_FNS = {"relu": nn.ReLU, "swish": swish, "gelu": gelu}

thomwolf's avatar
thomwolf committed
128

129
class OpenAIGPTConfig(PretrainedConfig):
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
    """
    Configuration class to store the configuration of a `OpenAIGPTModel`.

    Args:
        vocab_size_or_config_json_file: Vocabulary size of `inputs_ids` in `OpenAIGPTModel` or a configuration json file.
        n_special: The number of special tokens to learn during fine-tuning ('[SEP]', '[CLF]', ...)
        n_positions: Number of positional embeddings.
        n_ctx: Size of the causal mask (usually same as n_positions).
        n_embd: Dimensionality of the embeddings and hidden states.
        n_layer: Number of hidden layers in the Transformer encoder.
        n_head: Number of attention heads for each attention layer in
            the Transformer encoder.
        afn: The non-linear activation function (function or string) in the
            encoder and pooler. If string, "gelu", "relu" and "swish" are supported.
        resid_pdrop: The dropout probabilitiy for all fully connected
            layers in the embeddings, encoder, and pooler.
        attn_pdrop: The dropout ratio for the attention
            probabilities.
        embd_pdrop: The dropout ratio for the embeddings.
        layer_norm_epsilon: epsilon to use in the layer norm layers
        initializer_range: The sttdev of the truncated_normal_initializer for
            initializing all weight matrices.
        predict_special_tokens: should we predict special tokens (when the model has a LM head)
thomwolf's avatar
thomwolf committed
153
    """
154
    pretrained_config_archive_map = OPENAI_GPT_PRETRAINED_CONFIG_ARCHIVE_MAP
155
156
157
158

    def __init__(
        self,
        vocab_size_or_config_json_file=40478,
thomwolf's avatar
thomwolf committed
159
        n_positions=512,
160
161
162
163
164
165
166
167
        n_ctx=512,
        n_embd=768,
        n_layer=12,
        n_head=12,
        afn="gelu",
        resid_pdrop=0.1,
        embd_pdrop=0.1,
        attn_pdrop=0.1,
168
        layer_norm_epsilon=1e-5,
169
        initializer_range=0.02,
thomwolf's avatar
thomwolf committed
170
        predict_special_tokens=True,
thomwolf's avatar
thomwolf committed
171
172

        num_labels=1,
thomwolf's avatar
thomwolf committed
173
174
175
        summary_type='token_ids',
        summary_use_proj=True,
        summary_activation=None,
thomwolf's avatar
thomwolf committed
176
        summary_proj_to_labels=True,
177
        summary_first_dropout=0.1,
thomwolf's avatar
thomwolf committed
178
        **kwargs
179
    ):
thomwolf's avatar
thomwolf committed
180
181
        """Constructs OpenAIGPTConfig.
        """
thomwolf's avatar
thomwolf committed
182
183
        super(OpenAIGPTConfig, self).__init__(**kwargs)

thomwolf's avatar
thomwolf committed
184
185
        if isinstance(vocab_size_or_config_json_file, str) or (sys.version_info[0] == 2
                        and isinstance(vocab_size_or_config_json_file, unicode)):
186
            with open(vocab_size_or_config_json_file, "r", encoding="utf-8") as reader:
thomwolf's avatar
thomwolf committed
187
188
189
190
191
192
                json_config = json.loads(reader.read())
            for key, value in json_config.items():
                self.__dict__[key] = value
        elif isinstance(vocab_size_or_config_json_file, int):
            self.vocab_size = vocab_size_or_config_json_file
            self.n_ctx = n_ctx
thomwolf's avatar
thomwolf committed
193
            self.n_positions = n_positions
thomwolf's avatar
thomwolf committed
194
195
196
197
198
199
200
            self.n_embd = n_embd
            self.n_layer = n_layer
            self.n_head = n_head
            self.afn = afn
            self.resid_pdrop = resid_pdrop
            self.embd_pdrop = embd_pdrop
            self.attn_pdrop = attn_pdrop
201
            self.layer_norm_epsilon = layer_norm_epsilon
thomwolf's avatar
thomwolf committed
202
            self.initializer_range = initializer_range
203
            self.predict_special_tokens = predict_special_tokens
thomwolf's avatar
thomwolf committed
204
205

            self.num_labels = num_labels
thomwolf's avatar
thomwolf committed
206
207
208
            self.summary_type = summary_type
            self.summary_use_proj = summary_use_proj
            self.summary_activation = summary_activation
209
            self.summary_first_dropout = summary_first_dropout
thomwolf's avatar
thomwolf committed
210
            self.summary_proj_to_labels = summary_proj_to_labels
thomwolf's avatar
thomwolf committed
211
        else:
212
213
214
215
            raise ValueError(
                "First argument must be either a vocabulary size (int)"
                "or the path to a pretrained model config file (str)"
            )
thomwolf's avatar
thomwolf committed
216

217
218
219
220
    @property
    def max_position_embeddings(self):
        return self.n_positions

thomwolf's avatar
thomwolf committed
221
222
223
224
225
226
227
228
229
230
231
232
    @property
    def hidden_size(self):
        return self.n_embd

    @property
    def num_attention_heads(self):
        return self.n_head

    @property
    def num_hidden_layers(self):
        return self.n_layer

thomwolf's avatar
thomwolf committed
233
234

class Attention(nn.Module):
thomwolf's avatar
thomwolf committed
235
    def __init__(self, nx, n_ctx, config, scale=False):
thomwolf's avatar
thomwolf committed
236
237
238
        super(Attention, self).__init__()
        n_state = nx  # in Attention: n_state=768 (nx=n_embd)
        # [switch nx => n_state from Block to Attention to keep identical to TF implem]
239
        assert n_state % config.n_head == 0
thomwolf's avatar
thomwolf committed
240
        self.register_buffer("bias", torch.tril(torch.ones(n_ctx, n_ctx)).view(1, 1, n_ctx, n_ctx))
241
        self.n_head = config.n_head
thomwolf's avatar
thomwolf committed
242
243
        self.split_size = n_state
        self.scale = scale
244

thomwolf's avatar
thomwolf committed
245
        self.output_attentions = config.output_attentions
246

247
248
        self.c_attn = Conv1D(n_state * 3, nx)
        self.c_proj = Conv1D(n_state, nx)
249
250
        self.attn_dropout = nn.Dropout(config.attn_pdrop)
        self.resid_dropout = nn.Dropout(config.resid_pdrop)
thomwolf's avatar
thomwolf committed
251

252
    def prune_heads(self, heads):
thomwolf's avatar
thomwolf committed
253
254
        if len(heads) == 0:
            return
255
256
257
258
259
260
261
262
263
264
265
266
267
268
        mask = torch.ones(self.n_head, self.split_size // self.n_head)
        for head in heads:
            mask[head] = 0
        mask = mask.view(-1).contiguous().eq(1)
        index = torch.arange(len(mask))[mask].long()
        index_attn = torch.cat([index, index + self.split_size, index + (2*self.split_size)])
        # Prune conv1d layers
        self.c_attn = prune_conv1d_layer(self.c_attn, index_attn, dim=1)
        self.c_proj = prune_conv1d_layer(self.c_proj, index, dim=0)
        # Update hyper params
        self.split_size = (self.split_size // self.n_head) * (self.n_head - len(heads))
        self.n_head = self.n_head - len(heads)

    def _attn(self, q, k, v, head_mask=None):
thomwolf's avatar
thomwolf committed
269
270
271
        w = torch.matmul(q, k)
        if self.scale:
            w = w / math.sqrt(v.size(-1))
thomwolf's avatar
thomwolf committed
272
        # w = w * self.bias + -1e9 * (1 - self.bias)  # TF implem method: mask_attn_weights
thomwolf's avatar
thomwolf committed
273
        # XD: self.b may be larger than w, so we need to crop it
thomwolf's avatar
thomwolf committed
274
        b = self.bias[:, :, : w.size(-2), : w.size(-1)]
thomwolf's avatar
thomwolf committed
275
276
        w = w * b + -1e9 * (1 - b)

thomwolf's avatar
thomwolf committed
277
278
        w = nn.Softmax(dim=-1)(w)
        w = self.attn_dropout(w)
279
280
281
282
283

        # Mask heads if we want to
        if head_mask is not None:
            w = w * head_mask

thomwolf's avatar
thomwolf committed
284
        outputs = [torch.matmul(w, v)]
thomwolf's avatar
thomwolf committed
285
        if self.output_attentions:
thomwolf's avatar
thomwolf committed
286
287
            outputs.append(w)
        return outputs
thomwolf's avatar
thomwolf committed
288
289
290
291
292
293
294
295
296
297
298
299
300
301

    def merge_heads(self, x):
        x = x.permute(0, 2, 1, 3).contiguous()
        new_x_shape = x.size()[:-2] + (x.size(-2) * x.size(-1),)
        return x.view(*new_x_shape)  # in Tensorflow implem: fct merge_states

    def split_heads(self, x, k=False):
        new_x_shape = x.size()[:-1] + (self.n_head, x.size(-1) // self.n_head)
        x = x.view(*new_x_shape)  # in Tensorflow implem: fct split_states
        if k:
            return x.permute(0, 2, 3, 1)
        else:
            return x.permute(0, 2, 1, 3)

302
    def forward(self, x, head_mask=None):
thomwolf's avatar
thomwolf committed
303
304
305
306
307
        x = self.c_attn(x)
        query, key, value = x.split(self.split_size, dim=2)
        query = self.split_heads(query)
        key = self.split_heads(key, k=True)
        value = self.split_heads(value)
308

thomwolf's avatar
thomwolf committed
309
310
        attn_outputs = self._attn(query, key, value, head_mask)
        a = attn_outputs[0]
311

thomwolf's avatar
thomwolf committed
312
313
314
        a = self.merge_heads(a)
        a = self.c_proj(a)
        a = self.resid_dropout(a)
thomwolf's avatar
thomwolf committed
315
316
317

        outputs = [a] + attn_outputs[1:]
        return outputs  # a, (attentions)
thomwolf's avatar
thomwolf committed
318
319
320


class MLP(nn.Module):
321
    def __init__(self, n_state, config):  # in MLP: n_state=3072 (4 * n_embd)
thomwolf's avatar
thomwolf committed
322
        super(MLP, self).__init__()
323
        nx = config.n_embd
324
325
        self.c_fc = Conv1D(n_state, nx)
        self.c_proj = Conv1D(nx, n_state)
326
327
        self.act = ACT_FNS[config.afn]
        self.dropout = nn.Dropout(config.resid_pdrop)
thomwolf's avatar
thomwolf committed
328
329
330
331
332
333
334
335

    def forward(self, x):
        h = self.act(self.c_fc(x))
        h2 = self.c_proj(h)
        return self.dropout(h2)


class Block(nn.Module):
thomwolf's avatar
thomwolf committed
336
    def __init__(self, n_ctx, config, scale=False):
thomwolf's avatar
thomwolf committed
337
        super(Block, self).__init__()
338
        nx = config.n_embd
thomwolf's avatar
thomwolf committed
339
        self.attn = Attention(nx, n_ctx, config, scale)
340
        self.ln_1 = LayerNorm(nx, eps=config.layer_norm_epsilon)
341
        self.mlp = MLP(4 * nx, config)
342
        self.ln_2 = LayerNorm(nx, eps=config.layer_norm_epsilon)
thomwolf's avatar
thomwolf committed
343

344
    def forward(self, x, head_mask=None):
thomwolf's avatar
thomwolf committed
345
346
347
        attn_outputs = self.attn(x, head_mask=head_mask)
        a = attn_outputs[0]

thomwolf's avatar
thomwolf committed
348
349
350
        n = self.ln_1(x + a)
        m = self.mlp(n)
        h = self.ln_2(n + m)
thomwolf's avatar
thomwolf committed
351
352
353

        outputs = [h] + attn_outputs[1:]
        return outputs
thomwolf's avatar
thomwolf committed
354
355


356
class OpenAIGPTPreTrainedModel(PreTrainedModel):
thomwolf's avatar
thomwolf committed
357
358
359
    """ An abstract class to handle weights initialization and
        a simple interface for dowloading and loading pretrained models.
    """
360
    config_class = OpenAIGPTConfig
361
    pretrained_model_archive_map = OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_MAP
362
363
    load_tf_weights = load_tf_weights_in_openai_gpt
    base_model_prefix = "transformer"
364

365
366
367
    def __init__(self, *inputs, **kwargs):
        super(OpenAIGPTPreTrainedModel, self).__init__(*inputs, **kwargs)

thomwolf's avatar
thomwolf committed
368
369
370
    def init_weights(self, module):
        """ Initialize the weights.
        """
371
        if isinstance(module, (nn.Linear, nn.Embedding, Conv1D)):
thomwolf's avatar
thomwolf committed
372
373
374
            # Slightly different from the TF version which uses truncated_normal for initialization
            # cf https://github.com/pytorch/pytorch/pull/5617
            module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
375
376
            if isinstance(module, (nn.Linear, Conv1D)) and module.bias is not None:
                module.bias.data.zero_()
thomwolf's avatar
thomwolf committed
377
378
379
        elif isinstance(module, LayerNorm):
            module.bias.data.zero_()
            module.weight.data.fill_(1.0)
thomwolf's avatar
thomwolf committed
380
381


thomwolf's avatar
thomwolf committed
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
OPENAI_GPT_START_DOCSTRING = r"""    OpenAI GPT model was proposed in
    `Improving Language Understanding by Generative Pre-Training`_
    by Alec Radford, Karthik Narasimhan, Tim Salimans and Ilya Sutskever.
    It's a causal (unidirectional) transformer pre-trained using language modeling on a large
    corpus will long range dependencies, the Toronto Book Corpus.

    This model is a PyTorch `torch.nn.Module`_ sub-class. Use it as a regular PyTorch Module and
    refer to the PyTorch documentation for all matter related to general usage and behavior.

    .. _`Improving Language Understanding by Generative Pre-Training`:
        https://openai.com/blog/language-unsupervised/

    .. _`torch.nn.Module`:
        https://pytorch.org/docs/stable/nn.html#module

    Parameters:
        config (:class:`~pytorch_transformers.BertConfig`): Model configuration class with all the parameters of the model.
"""

OPENAI_GPT_INPUTS_DOCTRING = r"""    Inputs:
        **input_ids**: ``torch.LongTensor`` of shape ``(batch_size, sequence_length)``:
            Indices of input sequence tokens in the vocabulary.
            Indices can be obtained using :class:`pytorch_transformers.BPT2Tokenizer`.
            See :func:`pytorch_transformers.PreTrainedTokenizer.encode` and
            :func:`pytorch_transformers.PreTrainedTokenizer.convert_tokens_to_ids` for details.
        **position_ids**: (`optional`) ``torch.LongTensor`` of shape ``(batch_size, sequence_length)``:
            Indices of positions of each input sequence tokens in the position embeddings.
            Selected in the range ``[0, config.max_position_embeddings - 1[``.
        **token_type_ids**: (`optional`) ``torch.LongTensor`` of shape ``(batch_size, sequence_length)``:
            A parallel sequence of tokens (can be used to indicate various portions of the inputs).
            The embeddings from these tokens will be summed with the respective token embeddings.
            Indices are selected in the vocabulary (unlike BERT which has a specific vocabulary for segment indices).
        **attention_mask**: (`optional`) ``torch.Tensor`` of shape ``(batch_size, sequence_length)``:
            Mask to avoid performing attention on padding token indices.
            Mask indices selected in ``[0, 1]``:
            ``1`` for tokens that are NOT MASKED, ``0`` for MASKED tokens.
        **head_mask**: (`optional`) ``torch.Tensor`` of shape ``(num_heads,)`` or ``(num_layers, num_heads)``:
            Mask to nullify selected heads of the self-attention modules.
            Mask indices selected in ``[0, 1]``:
            ``1`` indicates the head is **not masked**, ``0`` indicates the head is **masked**.
"""

@add_start_docstrings("The bare OpenAI GPT transformer model outputing raw hidden-states without any specific head on top.",
                      OPENAI_GPT_START_DOCSTRING, GPT2_INPUTS_DOCTRING)
thomwolf's avatar
thomwolf committed
426
class OpenAIGPTModel(OpenAIGPTPreTrainedModel):
thomwolf's avatar
thomwolf committed
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
    r"""
    Outputs: `Tuple` comprising various elements depending on the configuration (config) and inputs:
        **last_hidden_state**: ``torch.FloatTensor`` of shape ``(batch_size, sequence_length, hidden_size)``
            Sequence of hidden-states at the last layer of the model.
        **attentions**: (`optional`, returned when ``config.output_attentions=True``)
            list of ``torch.FloatTensor`` (one for each layer) of shape ``(batch_size, num_heads, sequence_length, sequence_length)``:
            Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
        **hidden_states**: (`optional`, returned when ``config.output_hidden_states=True``)
            list of ``torch.FloatTensor`` (one for the output of each layer + the output of the embeddings)
            of shape ``(batch_size, sequence_length, hidden_size)``:
            Hidden-states of the model at the output of each layer plus the initial embedding outputs.

    Examples::

        >>> config = OpenAIGPTConfig.from_pretrained('openai-gpt')
        >>> tokenizer = OpenAIGPTTokenizer.from_pretrained('openai-gpt')
        >>> model = OpenAIGPTModel(config)
        >>> input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0)  # Batch size 1
        >>> outputs = model(input_ids)
        >>> last_hidden_states = outputs[0]  # The last hidden-state is the first element of the output tuple
447
448

    """
thomwolf's avatar
thomwolf committed
449
    def __init__(self, config):
450
        super(OpenAIGPTModel, self).__init__(config)
thomwolf's avatar
thomwolf committed
451
452
453
        self.output_attentions = config.output_attentions
        self.output_hidden_states = config.output_hidden_states

thomwolf's avatar
thomwolf committed
454
        self.tokens_embed = nn.Embedding(config.vocab_size, config.n_embd)
455
        self.positions_embed = nn.Embedding(config.n_positions, config.n_embd)
456
        self.drop = nn.Dropout(config.embd_pdrop)
457
        self.h = nn.ModuleList([Block(config.n_ctx, config, scale=True) for _ in range(config.n_layer)])
thomwolf's avatar
thomwolf committed
458

thomwolf's avatar
thomwolf committed
459
460
        self.apply(self.init_weights)

thomwolf's avatar
thomwolf committed
461
462
    def _resize_token_embeddings(self, new_num_tokens):
        self.tokens_embed = self._get_resized_embeddings(self.tokens_embed, new_num_tokens)
thomwolf's avatar
thomwolf committed
463
        return self.tokens_embed
thomwolf's avatar
thomwolf committed
464

thomwolf's avatar
thomwolf committed
465
    def _prune_heads(self, heads_to_prune):
466
467
468
469
470
471
472
        """ Prunes heads of the model.
            heads_to_prune: dict of {layer_num: list of heads to prune in this layer}
        """
        for layer, heads in heads_to_prune.items():
            self.h[layer].attn.prune_heads(heads)

    def forward(self, input_ids, position_ids=None, token_type_ids=None, head_mask=None):
thomwolf's avatar
thomwolf committed
473
        if position_ids is None:
474
475
476
477
478
            # This was used when we had a single embedding matrice from position and token embeddings
            # start = self.config.vocab_size + self.config.n_special
            # end = start + input_ids.size(-1)
            # position_ids = torch.arange(start, end, dtype=torch.long, device=input_ids.device)
            position_ids = torch.arange(input_ids.size(-1), dtype=torch.long, device=input_ids.device)
thomwolf's avatar
thomwolf committed
479
480
            position_ids = position_ids.unsqueeze(0).expand_as(input_ids)

481
        # Prepare head mask if needed
thomwolf's avatar
thomwolf committed
482
        # 1.0 in head_mask indicate we keep the head
483
        # attention_probs has shape bsz x n_heads x N x N
484
        # head_mask has shape n_layer x batch x n_heads x N x N
485
486
        if head_mask is not None:
            if head_mask.dim() == 1:
487
                head_mask = head_mask.unsqueeze(0).unsqueeze(0).unsqueeze(-1).unsqueeze(-1)
thomwolf's avatar
thomwolf committed
488
                head_mask = head_mask.expand(self.config.n_layer, -1, -1, -1, -1)
489
            elif head_mask.dim() == 2:
490
                head_mask = head_mask.unsqueeze(1).unsqueeze(-1).unsqueeze(-1)  # We can specify head_mask for each layer
491
            head_mask = head_mask.to(dtype=next(self.parameters()).dtype) # switch to fload if need + fp16 compatibility
492
493
        else:
            head_mask = [None] * self.config.n_layer
494

thomwolf's avatar
thomwolf committed
495
496
497
498
        input_shape = input_ids.size()
        input_ids = input_ids.view(-1, input_ids.size(-1))
        position_ids = position_ids.view(-1, position_ids.size(-1))

499
500
        inputs_embeds = self.tokens_embed(input_ids)
        position_embeds = self.positions_embed(position_ids)
thomwolf's avatar
thomwolf committed
501
502
        if token_type_ids is not None:
            token_type_ids = token_type_ids.view(-1, token_type_ids.size(-1))
503
            token_type_embeds = self.tokens_embed(token_type_ids)
thomwolf's avatar
thomwolf committed
504
505
506
        else:
            token_type_embeds = 0
        hidden_states = inputs_embeds + position_embeds + token_type_embeds
507
508
        hidden_states = self.drop(hidden_states)

509
510
        output_shape = input_shape + (hidden_states.size(-1),)

511
512
        all_attentions = ()
        all_hidden_states = ()
513
        for i, block in enumerate(self.h):
thomwolf's avatar
thomwolf committed
514
            if self.output_hidden_states:
515
                all_hidden_states = all_hidden_states + (hidden_states.view(*output_shape),)
thomwolf's avatar
thomwolf committed
516

517
            outputs = block(hidden_states, head_mask[i])
thomwolf's avatar
thomwolf committed
518
            hidden_states = outputs[0]
thomwolf's avatar
thomwolf committed
519
            if self.output_attentions:
520
                all_attentions = all_attentions + (outputs[1],)
thomwolf's avatar
thomwolf committed
521
522
523

        # Add last layer
        if self.output_hidden_states:
524
            all_hidden_states = all_hidden_states + (hidden_states.view(*output_shape),)
525

526
        outputs = (hidden_states.view(*output_shape),)
thomwolf's avatar
thomwolf committed
527
        if self.output_hidden_states:
528
            outputs = outputs + (all_hidden_states,)
thomwolf's avatar
thomwolf committed
529
        if self.output_attentions:
530
            outputs = outputs + (all_attentions,)
thomwolf's avatar
thomwolf committed
531
        return outputs  # last hidden state, (all hidden states), (all attentions)
thomwolf's avatar
thomwolf committed
532

533

thomwolf's avatar
thomwolf committed
534
535
@add_start_docstrings("""OpenAI GPT Model transformer with a language modeling head on top
(linear layer with weights tied to the input embeddings). """, OPENAI_GPT_START_DOCSTRING, OPENAI_GPT_INPUTS_DOCTRING)
thomwolf's avatar
thomwolf committed
536
class OpenAIGPTLMHeadModel(OpenAIGPTPreTrainedModel):
thomwolf's avatar
thomwolf committed
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
    r"""
        **lm_labels**: (`optional`) ``torch.LongTensor`` of shape ``(batch_size, sequence_length)``:
            Labels for language modeling.
            Note that the labels **are shifted** inside the model, i.e. you can set ``lm_labels = input_ids``
            Indices are selected in ``[-1, 0, ..., config.vocab_size]``
            All labels set to ``-1`` are ignored (masked), the loss is only
            computed for labels in ``[0, ..., config.vocab_size]``

    Outputs: `Tuple` comprising various elements depending on the configuration (config) and inputs:
        **loss**: (`optional`, returned when ``lm_labels`` is provided) ``torch.FloatTensor`` of shape ``(1,)``:
            Language modeling loss.
        **prediction_scores**: ``torch.FloatTensor`` of shape ``(batch_size, sequence_length, config.vocab_size)``
            Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
        **attentions**: (`optional`, returned when ``config.output_attentions=True``)
            list of ``torch.FloatTensor`` (one for each layer) of shape ``(batch_size, num_heads, sequence_length, sequence_length)``:
            Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
        **hidden_states**: (`optional`, returned when ``config.output_hidden_states=True``)
            list of ``torch.FloatTensor`` (one for the output of each layer + the output of the embeddings)
            of shape ``(batch_size, sequence_length, hidden_size)``:
            Hidden-states of the model at the output of each layer plus the initial embedding outputs.

    Examples::

        >>> config = OpenAIGPTConfig.from_pretrained('openai-gpt')
        >>> tokenizer = OpenAIGPTTokenizer.from_pretrained('openai-gpt')
        >>> model = OpenAIGPTLMHeadModel(config)
        >>> input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0)  # Batch size 1
        >>> outputs = model(input_ids, lm_labels=input_ids)
        >>> loss, logits = outputs[:2]
566
567

    """
thomwolf's avatar
thomwolf committed
568
    def __init__(self, config):
569
        super(OpenAIGPTLMHeadModel, self).__init__(config)
thomwolf's avatar
thomwolf committed
570
        self.transformer = OpenAIGPTModel(config)
thomwolf's avatar
thomwolf committed
571
        self.lm_head = nn.Linear(config.n_embd, config.vocab_size, bias=False)
572

thomwolf's avatar
thomwolf committed
573
574
        self.apply(self.init_weights)
        self.tie_weights()
575

thomwolf's avatar
thomwolf committed
576
577
578
    def tie_weights(self):
        """ Make sure we are sharing the input and output embeddings.
            Export to TorchScript can't handle parameter sharing so we are cloning them instead.
579
        """
thomwolf's avatar
thomwolf committed
580
581
        self._tie_or_clone_weights(self.lm_head,
                                   self.transformer.tokens_embed)
thomwolf's avatar
thomwolf committed
582

583
    def forward(self, input_ids, position_ids=None, token_type_ids=None, lm_labels=None, head_mask=None):
thomwolf's avatar
thomwolf committed
584
585
        transformer_outputs = self.transformer(input_ids, position_ids, token_type_ids, head_mask)
        hidden_states = transformer_outputs[0]
thomwolf's avatar
thomwolf committed
586
        lm_logits = self.lm_head(hidden_states)
thomwolf's avatar
thomwolf committed
587

588
        outputs = (lm_logits,) + transformer_outputs[1:]
thomwolf's avatar
thomwolf committed
589
        if lm_labels is not None:
590
            # Shift so that tokens < n predict n
thomwolf's avatar
thomwolf committed
591
592
            shift_logits = lm_logits[..., :-1, :].contiguous()
            shift_labels = lm_labels[..., 1:].contiguous()
Catalin Voss's avatar
Catalin Voss committed
593
            # Flatten the tokens
thomwolf's avatar
thomwolf committed
594
            loss_fct = CrossEntropyLoss(ignore_index=-1)
595
            loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)),
596
                            shift_labels.view(-1))
597
            outputs = (loss,) + outputs
thomwolf's avatar
thomwolf committed
598
599

        return outputs  # (loss), lm_logits, (all hidden states), (all attentions)
thomwolf's avatar
thomwolf committed
600

601

thomwolf's avatar
thomwolf committed
602
603
604
605
606
@add_start_docstrings("""OpenAI GPT Model transformer with a language modeling and a multiple-choice classification
head on top e.g. for RocStories/SWAG tasks. The two heads are two linear layers.
The language modeling head has its weights tied to the input embeddings,
the classification head takes as input the input of a specified classification token index in the intput sequence).
""", OPENAI_GPT_START_DOCSTRING)
thomwolf's avatar
thomwolf committed
607
class OpenAIGPTDoubleHeadsModel(OpenAIGPTPreTrainedModel):
thomwolf's avatar
thomwolf committed
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
    r"""    Inputs:
        **input_ids**: ``torch.LongTensor`` of shape ``(batch_size, num_choices, sequence_length)``:
            Indices of input sequence tokens in the vocabulary.
            The second dimension of the input (`num_choices`) indicates the number of choices to score.
            Indices can be obtained using :class:`pytorch_transformers.BPT2Tokenizer`.
            See :func:`pytorch_transformers.PreTrainedTokenizer.encode` and
            :func:`pytorch_transformers.PreTrainedTokenizer.convert_tokens_to_ids` for details.
        **mc_token_ids**: ``torch.LongTensor`` of shape ``(batch_size, num_choices)``:
            Index of the classification token in each input sequence.
            Selected in the range ``[0, input_ids.size(-1) - 1[``.
        **position_ids**: (`optional`) ``torch.LongTensor`` of shape ``(batch_size, num_choices, sequence_length)``:
            Indices of positions of each input sequence tokens in the position embeddings.
            Selected in the range ``[0, config.max_position_embeddings - 1[``.
        **token_type_ids**: (`optional`) ``torch.LongTensor`` of shape ``(batch_size, num_choices, sequence_length)``:
            A parallel sequence of tokens (can be used to indicate various portions of the inputs).
            The embeddings from these tokens will be summed with the respective token embeddings.
            Indices are selected in the vocabulary (unlike BERT which has a specific vocabulary for segment indices).
        **attention_mask**: (`optional`) ``torch.Tensor`` of shape ``(batch_size, num_choices, sequence_length)``:
            Mask to avoid performing attention on padding token indices.
            Mask indices selected in ``[0, 1]``:
            ``1`` for tokens that are NOT MASKED, ``0`` for MASKED tokens.
        **head_mask**: (`optional`) ``torch.Tensor`` of shape ``(num_heads,)`` or ``(num_layers, num_heads)``:
            Mask to nullify selected heads of the self-attention modules.
            Mask indices selected in ``[0, 1]``:
            ``1`` indicates the head is **not masked**, ``0`` indicates the head is **masked**.
        **lm_labels**: (`optional`) ``torch.LongTensor`` of shape ``(batch_size, sequence_length)``:
            Labels for language modeling.
            Note that the labels **are shifted** inside the model, i.e. you can set ``lm_labels = input_ids``
            Indices are selected in ``[-1, 0, ..., config.vocab_size]``
            All labels set to ``-1`` are ignored (masked), the loss is only
            computed for labels in ``[0, ..., config.vocab_size]``
        **multiple_choice_labels**: (`optional`) ``torch.LongTensor`` of shape ``(batch_size)``:
            Labels for computing the multiple choice classification loss.
            Indices should be in ``[0, ..., num_choices]`` where `num_choices` is the size of the second dimension
            of the input tensors. (see `input_ids` above)
643

thomwolf's avatar
thomwolf committed
644
645
            `multiple_choice_labels`: optional multiple choice labels: ``torch.LongTensor`` of shape [batch_size]
                with indices selected in [0, ..., num_choices].
646

thomwolf's avatar
thomwolf committed
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
    Outputs: `Tuple` comprising various elements depending on the configuration (config) and inputs:
        **lm_loss**: (`optional`, returned when ``lm_labels`` is provided) ``torch.FloatTensor`` of shape ``(1,)``:
            Language modeling loss.
        **mc_loss**: (`optional`, returned when ``multiple_choice_labels`` is provided) ``torch.FloatTensor`` of shape ``(1,)``:
            Multiple choice classification loss.
        **lm_prediction_scores**: ``torch.FloatTensor`` of shape ``(batch_size, num_choices, sequence_length, config.vocab_size)``
            Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
        **mc_prediction_scores**: ``torch.FloatTensor`` of shape ``(batch_size, num_choices)``
            Prediction scores of the multiplechoice classification head (scores for each choice before SoftMax).
        **attentions**: (`optional`, returned when ``config.output_attentions=True``)
            list of ``torch.FloatTensor`` (one for each layer) of shape ``(batch_size, num_heads, sequence_length, sequence_length)``:
            Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
        **hidden_states**: (`optional`, returned when ``config.output_hidden_states=True``)
            list of ``torch.FloatTensor`` (one for the output of each layer + the output of the embeddings)
            of shape ``(batch_size, sequence_length, hidden_size)``:
            Hidden-states of the model at the output of each layer plus the initial embedding outputs.

    Examples::

        >>> config = OpenAIGPTConfig.from_pretrained('openai-gpt')
        >>> tokenizer = OpenAIGPTTokenizer.from_pretrained('openai-gpt')
        >>> model = OpenAIGPTDoubleHeadsModel(config)
        >>> choices = ["Hello, my dog is cute [CLS]", "Hello, my cat is cute [CLS]"]  # Assume you've added [CLS] to the vocabulary
        >>> input_ids = torch.tensor([tokenizer.encode(s) for s in choices]).unsqueeze(0)  # Batch size 1, 2 choices
        >>> mc_token_ids = torch.tensor([-1, -1]).unsqueeze(0)  # Batch size 1
        >>> outputs = model(input_ids, mc_token_ids)
        >>> lm_prediction_scores, mc_prediction_scores = outputs[:2]
674

675
    """
thomwolf's avatar
thomwolf committed
676
    def __init__(self, config):
677
        super(OpenAIGPTDoubleHeadsModel, self).__init__(config)
thomwolf's avatar
thomwolf committed
678

thomwolf's avatar
thomwolf committed
679
        self.transformer = OpenAIGPTModel(config)
thomwolf's avatar
thomwolf committed
680
        self.lm_head = nn.Linear(config.n_embd, config.vocab_size, bias=False)
thomwolf's avatar
thomwolf committed
681
682
        self.multiple_choice_head = SequenceSummary(config)

thomwolf's avatar
thomwolf committed
683
        self.apply(self.init_weights)
thomwolf's avatar
thomwolf committed
684
        self.tie_weights()
thomwolf's avatar
thomwolf committed
685

thomwolf's avatar
thomwolf committed
686
687
688
    def tie_weights(self):
        """ Make sure we are sharing the input and output embeddings.
            Export to TorchScript can't handle parameter sharing so we are cloning them instead.
689
        """
thomwolf's avatar
thomwolf committed
690
691
        self._tie_or_clone_weights(self.lm_head,
                                   self.transformer.tokens_embed)
thomwolf's avatar
thomwolf committed
692

thomwolf's avatar
thomwolf committed
693
    def forward(self, input_ids, mc_token_ids=None, lm_labels=None, mc_labels=None, token_type_ids=None,
694
                position_ids=None, head_mask=None):
thomwolf's avatar
thomwolf committed
695
696
        transformer_outputs = self.transformer(input_ids, position_ids, token_type_ids, head_mask)
        hidden_states = transformer_outputs[0]
697

thomwolf's avatar
thomwolf committed
698
        lm_logits = self.lm_head(hidden_states)
thomwolf's avatar
thomwolf committed
699
        mc_logits = self.multiple_choice_head(hidden_states, mc_token_ids).squeeze(-1)
thomwolf's avatar
thomwolf committed
700

701
        outputs = (lm_logits, mc_logits) + transformer_outputs[1:]
thomwolf's avatar
thomwolf committed
702
703
704
705
        if mc_labels is not None:
            loss_fct = CrossEntropyLoss()
            loss = loss_fct(mc_logits.view(-1, mc_logits.size(-1)),
                            mc_labels.view(-1))
706
            outputs = (loss,) + outputs
thomwolf's avatar
thomwolf committed
707
        if lm_labels is not None:
thomwolf's avatar
thomwolf committed
708
709
            shift_logits = lm_logits[..., :-1, :].contiguous()
            shift_labels = lm_labels[..., 1:].contiguous()
thomwolf's avatar
thomwolf committed
710
            loss_fct = CrossEntropyLoss(ignore_index=-1)
thomwolf's avatar
thomwolf committed
711
712
            loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)),
                            shift_labels.view(-1))
713
            outputs = (loss,) + outputs
thomwolf's avatar
thomwolf committed
714
715

        return outputs  # (lm loss), (mc loss), lm logits, mc logits, (all hidden_states), (attentions)