modeling_openai.py 38.8 KB
Newer Older
thomwolf's avatar
thomwolf committed
1
# coding=utf-8
thomwolf's avatar
thomwolf committed
2
# Copyright 2018 The OpenAI Team Authors and HuggingFace Inc. team.
thomwolf's avatar
thomwolf committed
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
# Copyright (c) 2018, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""PyTorch OpenAI GPT model."""

18
19
from __future__ import absolute_import, division, print_function, unicode_literals

20
import collections
thomwolf's avatar
thomwolf committed
21
22
import copy
import json
thomwolf's avatar
thomwolf committed
23
import logging
24
25
26
import math
import os
import shutil
thomwolf's avatar
thomwolf committed
27
28
import tarfile
import tempfile
thomwolf's avatar
thomwolf committed
29
30
import sys
from io import open
thomwolf's avatar
thomwolf committed
31
32
33

import torch
import torch.nn as nn
thomwolf's avatar
thomwolf committed
34
from torch.nn import CrossEntropyLoss
thomwolf's avatar
thomwolf committed
35
36
from torch.nn.parameter import Parameter

37
from .file_utils import cached_path, CONFIG_NAME, WEIGHTS_NAME
38
from .modeling import BertLayerNorm as LayerNorm
thomwolf's avatar
thomwolf committed
39

thomwolf's avatar
thomwolf committed
40
41
logger = logging.getLogger(__name__)

42
PRETRAINED_MODEL_ARCHIVE_MAP = {"openai-gpt": "https://s3.amazonaws.com/models.huggingface.co/bert/openai-gpt-pytorch_model.bin"}
thomwolf's avatar
thomwolf committed
43
PRETRAINED_CONFIG_ARCHIVE_MAP = {"openai-gpt": "https://s3.amazonaws.com/models.huggingface.co/bert/openai-gpt-config.json"}
44

45

46
47
48
def load_tf_weights_in_openai_gpt(model, openai_checkpoint_folder_path):
    """ Load tf pre-trained weights in a pytorch model (from NumPy arrays here)
    """
49
50
    import re
    import numpy as np
51
52
53
54
55
56
57
58
    print("Loading weights...")
    names = json.load(open(openai_checkpoint_folder_path + '/parameters_names.json', "r", encoding='utf-8'))
    shapes = json.load(open(openai_checkpoint_folder_path + '/params_shapes.json', "r", encoding='utf-8'))
    offsets = np.cumsum([np.prod(shape) for shape in shapes])
    init_params = [np.load(openai_checkpoint_folder_path + '/params_{}.npy'.format(n)) for n in range(10)]
    init_params = np.split(np.concatenate(init_params, 0), offsets)[:-1]
    init_params = [param.reshape(shape) for param, shape in zip(init_params, shapes)]

thomwolf's avatar
thomwolf committed
59
    # This was used when we had a single embedding matrix for positions and tokens
60
61
    # init_params[0] = np.concatenate([init_params[1], init_params[0]], 0)
    # del init_params[1]
62
63
64
    init_params = [arr.squeeze() for arr in init_params]

    try:
65
66
        assert model.tokens_embed.weight.shape == init_params[1].shape
        assert model.positions_embed.weight.shape == init_params[0].shape
67
    except AssertionError as e:
68
69
        e.args += (model.tokens_embed.weight.shape, init_params[1].shape)
        e.args += (model.positions_embed.weight.shape, init_params[0].shape)
70
71
        raise

72
73
    model.tokens_embed.weight.data = torch.from_numpy(init_params[1])
    model.positions_embed.weight.data = torch.from_numpy(init_params[0])
74
    names.pop(0)
75
76
    # Pop position and token embedding arrays
    init_params.pop(0)
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
    init_params.pop(0)

    for name, array in zip(names, init_params): # names[1:n_transfer], init_params[1:n_transfer]):
        name = name[6:]  # skip "model/"
        assert name[-2:] == ":0"
        name = name[:-2]
        name = name.split('/')
        pointer = model
        for m_name in name:
            if re.fullmatch(r'[A-Za-z]+\d+', m_name):
                l = re.split(r'(\d+)', m_name)
            else:
                l = [m_name]
            if l[0] == 'g':
                pointer = getattr(pointer, 'weight')
            elif l[0] == 'b':
                pointer = getattr(pointer, 'bias')
            elif l[0] == 'w':
                pointer = getattr(pointer, 'weight')
            else:
                pointer = getattr(pointer, l[0])
            if len(l) >= 2:
                num = int(l[1])
                pointer = pointer[num]
        try:
            assert pointer.shape == array.shape
        except AssertionError as e:
            e.args += (pointer.shape, array.shape)
            raise
        try:
            assert pointer.shape == array.shape
        except AssertionError as e:
            e.args += (pointer.shape, array.shape)
            raise
        print("Initialize PyTorch weight {}".format(name))
        pointer.data = torch.from_numpy(array)
    return model

thomwolf's avatar
thomwolf committed
115
116
117
118
119
120
121
122
123

def gelu(x):
    return 0.5 * x * (1 + torch.tanh(math.sqrt(2 / math.pi) * (x + 0.044715 * torch.pow(x, 3))))


def swish(x):
    return x * torch.sigmoid(x)


124
125
ACT_FNS = {"relu": nn.ReLU, "swish": swish, "gelu": gelu}

thomwolf's avatar
thomwolf committed
126

thomwolf's avatar
thomwolf committed
127
128
129
class OpenAIGPTConfig(object):
    """Configuration class to store the configuration of a `OpenAIGPTModel`.
    """
130
131
132
133
134

    def __init__(
        self,
        vocab_size_or_config_json_file=40478,
        n_special=0,
thomwolf's avatar
thomwolf committed
135
        n_positions=512,
136
137
138
139
140
141
142
143
        n_ctx=512,
        n_embd=768,
        n_layer=12,
        n_head=12,
        afn="gelu",
        resid_pdrop=0.1,
        embd_pdrop=0.1,
        attn_pdrop=0.1,
144
        layer_norm_epsilon=1e-5,
145
146
        initializer_range=0.02,
    ):
thomwolf's avatar
thomwolf committed
147
148
149
150
151
        """Constructs OpenAIGPTConfig.

        Args:
            vocab_size_or_config_json_file: Vocabulary size of `inputs_ids` in `OpenAIGPTModel` or a configuration json file.
            n_special: The number of special tokens to learn during fine-tuning ('[SEP]', '[CLF]', ...)
thomwolf's avatar
thomwolf committed
152
153
            n_positions: Number of positional embeddings.
            n_ctx: Size of the causal mask (usually same as n_positions).
thomwolf's avatar
thomwolf committed
154
155
156
157
158
159
160
161
162
163
164
            n_embd: Dimensionality of the embeddings and hidden states.
            n_layer: Number of hidden layers in the Transformer encoder.
            n_head: Number of attention heads for each attention layer in
                the Transformer encoder.
            afn: The non-linear activation function (function or string) in the
                encoder and pooler. If string, "gelu", "relu" and "swish" are supported.
            resid_pdrop: The dropout probabilitiy for all fully connected
                layers in the embeddings, encoder, and pooler.
            attn_pdrop: The dropout ratio for the attention
                probabilities.
            embd_pdrop: The dropout ratio for the embeddings.
165
            layer_norm_epsilon: epsilon to use in the layer norm layers
thomwolf's avatar
thomwolf committed
166
167
168
            initializer_range: The sttdev of the truncated_normal_initializer for
                initializing all weight matrices.
        """
thomwolf's avatar
thomwolf committed
169
170
        if isinstance(vocab_size_or_config_json_file, str) or (sys.version_info[0] == 2
                        and isinstance(vocab_size_or_config_json_file, unicode)):
171
            with open(vocab_size_or_config_json_file, "r", encoding="utf-8") as reader:
thomwolf's avatar
thomwolf committed
172
173
174
175
176
177
178
                json_config = json.loads(reader.read())
            for key, value in json_config.items():
                self.__dict__[key] = value
        elif isinstance(vocab_size_or_config_json_file, int):
            self.vocab_size = vocab_size_or_config_json_file
            self.n_special = n_special
            self.n_ctx = n_ctx
thomwolf's avatar
thomwolf committed
179
            self.n_positions = n_positions
thomwolf's avatar
thomwolf committed
180
181
182
183
184
185
186
            self.n_embd = n_embd
            self.n_layer = n_layer
            self.n_head = n_head
            self.afn = afn
            self.resid_pdrop = resid_pdrop
            self.embd_pdrop = embd_pdrop
            self.attn_pdrop = attn_pdrop
187
            self.layer_norm_epsilon = layer_norm_epsilon
thomwolf's avatar
thomwolf committed
188
189
            self.initializer_range = initializer_range
        else:
190
191
192
193
            raise ValueError(
                "First argument must be either a vocabulary size (int)"
                "or the path to a pretrained model config file (str)"
            )
thomwolf's avatar
thomwolf committed
194
195

    @property
196
197
    def total_tokens_embeddings(self):
        return self.vocab_size + self.n_special
thomwolf's avatar
thomwolf committed
198
199
200
201
202
203
204
205
206
207
208
209

    @classmethod
    def from_dict(cls, json_object):
        """Constructs a `OpenAIGPTConfig` from a Python dictionary of parameters."""
        config = OpenAIGPTConfig(vocab_size_or_config_json_file=-1)
        for key, value in json_object.items():
            config.__dict__[key] = value
        return config

    @classmethod
    def from_json_file(cls, json_file):
        """Constructs a `OpenAIGPTConfig` from a json file of parameters."""
210
        with open(json_file, "r", encoding="utf-8") as reader:
thomwolf's avatar
thomwolf committed
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
            text = reader.read()
        return cls.from_dict(json.loads(text))

    def __repr__(self):
        return str(self.to_json_string())

    def to_dict(self):
        """Serializes this instance to a Python dictionary."""
        output = copy.deepcopy(self.__dict__)
        return output

    def to_json_string(self):
        """Serializes this instance to a JSON string."""
        return json.dumps(self.to_dict(), indent=2, sort_keys=True) + "\n"

226
227
228
229
230
    def to_json_file(self, json_file_path):
        """ Save this instance to a json file."""
        with open(json_file_path, "w", encoding='utf-8') as writer:
            writer.write(self.to_json_string())

231

thomwolf's avatar
thomwolf committed
232
233
234
235
236
237
238
239
class Conv1D(nn.Module):
    def __init__(self, nf, rf, nx):
        super(Conv1D, self).__init__()
        self.rf = rf
        self.nf = nf
        if rf == 1:  # faster 1x1 conv
            w = torch.empty(nx, nf)
            nn.init.normal_(w, std=0.02)
thomwolf's avatar
thomwolf committed
240
241
            self.weight = Parameter(w)
            self.bias = Parameter(torch.zeros(nf))
thomwolf's avatar
thomwolf committed
242
243
244
245
246
247
        else:  # was used to train LM
            raise NotImplementedError

    def forward(self, x):
        if self.rf == 1:
            size_out = x.size()[:-1] + (self.nf,)
thomwolf's avatar
thomwolf committed
248
            x = torch.addmm(self.bias, x.view(-1, x.size(-1)), self.weight)
thomwolf's avatar
thomwolf committed
249
250
251
252
253
254
255
            x = x.view(*size_out)
        else:
            raise NotImplementedError
        return x


class Attention(nn.Module):
thomwolf's avatar
thomwolf committed
256
    def __init__(self, nx, n_ctx, config, scale=False, output_attentions=False):
thomwolf's avatar
thomwolf committed
257
258
259
        super(Attention, self).__init__()
        n_state = nx  # in Attention: n_state=768 (nx=n_embd)
        # [switch nx => n_state from Block to Attention to keep identical to TF implem]
260
        assert n_state % config.n_head == 0
thomwolf's avatar
thomwolf committed
261
        self.register_buffer("bias", torch.tril(torch.ones(n_ctx, n_ctx)).view(1, 1, n_ctx, n_ctx))
262
        self.n_head = config.n_head
thomwolf's avatar
thomwolf committed
263
264
        self.split_size = n_state
        self.scale = scale
thomwolf's avatar
thomwolf committed
265
        self.output_attentions = output_attentions
thomwolf's avatar
thomwolf committed
266
267
        self.c_attn = Conv1D(n_state * 3, 1, nx)
        self.c_proj = Conv1D(n_state, 1, nx)
268
269
        self.attn_dropout = nn.Dropout(config.attn_pdrop)
        self.resid_dropout = nn.Dropout(config.resid_pdrop)
thomwolf's avatar
thomwolf committed
270
271
272
273
274

    def _attn(self, q, k, v):
        w = torch.matmul(q, k)
        if self.scale:
            w = w / math.sqrt(v.size(-1))
thomwolf's avatar
thomwolf committed
275
        # w = w * self.bias + -1e9 * (1 - self.bias)  # TF implem method: mask_attn_weights
thomwolf's avatar
thomwolf committed
276
        # XD: self.b may be larger than w, so we need to crop it
thomwolf's avatar
thomwolf committed
277
        b = self.bias[:, :, : w.size(-2), : w.size(-1)]
thomwolf's avatar
thomwolf committed
278
279
        w = w * b + -1e9 * (1 - b)

thomwolf's avatar
thomwolf committed
280
281
        w = nn.Softmax(dim=-1)(w)
        w = self.attn_dropout(w)
thomwolf's avatar
thomwolf committed
282
283
        if self.output_attentions:
            return w, torch.matmul(w, v)
thomwolf's avatar
thomwolf committed
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
        return torch.matmul(w, v)

    def merge_heads(self, x):
        x = x.permute(0, 2, 1, 3).contiguous()
        new_x_shape = x.size()[:-2] + (x.size(-2) * x.size(-1),)
        return x.view(*new_x_shape)  # in Tensorflow implem: fct merge_states

    def split_heads(self, x, k=False):
        new_x_shape = x.size()[:-1] + (self.n_head, x.size(-1) // self.n_head)
        x = x.view(*new_x_shape)  # in Tensorflow implem: fct split_states
        if k:
            return x.permute(0, 2, 3, 1)
        else:
            return x.permute(0, 2, 1, 3)

    def forward(self, x):
        x = self.c_attn(x)
        query, key, value = x.split(self.split_size, dim=2)
        query = self.split_heads(query)
        key = self.split_heads(key, k=True)
        value = self.split_heads(value)
        a = self._attn(query, key, value)
thomwolf's avatar
thomwolf committed
306
307
        if self.output_attentions:
            attentions, a = a
thomwolf's avatar
thomwolf committed
308
309
310
        a = self.merge_heads(a)
        a = self.c_proj(a)
        a = self.resid_dropout(a)
thomwolf's avatar
thomwolf committed
311
312
        if self.output_attentions:
            return attentions, a
thomwolf's avatar
thomwolf committed
313
314
315
316
        return a


class MLP(nn.Module):
317
    def __init__(self, n_state, config):  # in MLP: n_state=3072 (4 * n_embd)
thomwolf's avatar
thomwolf committed
318
        super(MLP, self).__init__()
319
        nx = config.n_embd
thomwolf's avatar
thomwolf committed
320
321
        self.c_fc = Conv1D(n_state, 1, nx)
        self.c_proj = Conv1D(nx, 1, n_state)
322
323
        self.act = ACT_FNS[config.afn]
        self.dropout = nn.Dropout(config.resid_pdrop)
thomwolf's avatar
thomwolf committed
324
325
326
327
328
329
330
331

    def forward(self, x):
        h = self.act(self.c_fc(x))
        h2 = self.c_proj(h)
        return self.dropout(h2)


class Block(nn.Module):
thomwolf's avatar
thomwolf committed
332
    def __init__(self, n_ctx, config, scale=False, output_attentions=False):
thomwolf's avatar
thomwolf committed
333
        super(Block, self).__init__()
334
        nx = config.n_embd
thomwolf's avatar
thomwolf committed
335
336
        self.output_attentions = output_attentions
        self.attn = Attention(nx, n_ctx, config, scale, output_attentions)
337
        self.ln_1 = LayerNorm(nx, eps=config.layer_norm_epsilon)
338
        self.mlp = MLP(4 * nx, config)
339
        self.ln_2 = LayerNorm(nx, eps=config.layer_norm_epsilon)
thomwolf's avatar
thomwolf committed
340
341
342

    def forward(self, x):
        a = self.attn(x)
thomwolf's avatar
thomwolf committed
343
344
        if self.output_attentions:
            attentions, a = a
thomwolf's avatar
thomwolf committed
345
346
347
        n = self.ln_1(x + a)
        m = self.mlp(n)
        h = self.ln_2(n + m)
thomwolf's avatar
thomwolf committed
348
349
        if self.output_attentions:
            return attentions, h
thomwolf's avatar
thomwolf committed
350
351
352
        return h


thomwolf's avatar
thomwolf committed
353
class OpenAIGPTLMHead(nn.Module):
thomwolf's avatar
thomwolf committed
354
355
    """ Language Model Head for the transformer """

356
    def __init__(self, model_embeddings_weights, config):
thomwolf's avatar
thomwolf committed
357
        super(OpenAIGPTLMHead, self).__init__()
358
        self.n_embd = config.n_embd
thomwolf's avatar
thomwolf committed
359
360
        embed_shape = model_embeddings_weights.shape
        self.decoder = nn.Linear(embed_shape[1], embed_shape[0], bias=False)
thomwolf's avatar
thomwolf committed
361
362
363
364
        self.set_embeddings_weights(model_embeddings_weights)

    def set_embeddings_weights(self, model_embeddings_weights):
        embed_shape = model_embeddings_weights.shape
365
        self.decoder.weight = model_embeddings_weights  # Tied weights
thomwolf's avatar
thomwolf committed
366

thomwolf's avatar
thomwolf committed
367
    def forward(self, hidden_state):
thomwolf's avatar
thomwolf committed
368
        # Truncated Language modeling logits (we remove the last token)
thomwolf's avatar
thomwolf committed
369
370
        # h_trunc = h[:, :-1].contiguous().view(-1, self.n_embd)
        lm_logits = self.decoder(hidden_state)
thomwolf's avatar
thomwolf committed
371
372
373
        return lm_logits


thomwolf's avatar
thomwolf committed
374
class OpenAIGPTMultipleChoiceHead(nn.Module):
thomwolf's avatar
thomwolf committed
375
376
    """ Classifier Head for the transformer """

377
    def __init__(self, config):
thomwolf's avatar
thomwolf committed
378
        super(OpenAIGPTMultipleChoiceHead, self).__init__()
379
        self.n_embd = config.n_embd
thomwolf's avatar
thomwolf committed
380
        # self.multiple_choice_token = multiple_choice_token
381
382
        self.dropout = nn.Dropout2d(config.resid_pdrop)  # To reproduce the noise_shape parameter of TF implementation
        self.linear = nn.Linear(config.n_embd, 1)
thomwolf's avatar
thomwolf committed
383

384
        nn.init.normal_(self.linear.weight, std=0.02)
thomwolf's avatar
thomwolf committed
385
386
        nn.init.normal_(self.linear.bias, 0)

thomwolf's avatar
thomwolf committed
387
    def forward(self, hidden_states, mc_token_ids):
thomwolf's avatar
thomwolf committed
388
        # Classification logits
thomwolf's avatar
thomwolf committed
389
        # hidden_state (bsz, num_choices, seq_length, hidden_size)
thomwolf's avatar
thomwolf committed
390
        # mc_token_ids (bsz, num_choices)
thomwolf's avatar
thomwolf committed
391
        mc_token_ids = mc_token_ids.unsqueeze(-1).unsqueeze(-1).expand(-1, -1, -1, hidden_states.size(-1))
thomwolf's avatar
thomwolf committed
392
393
394
        # (bsz, num_choices, 1, hidden_size)
        multiple_choice_h = hidden_states.gather(2, mc_token_ids).squeeze(2)
        # (bsz, num_choices, hidden_size)
Philipp Glock's avatar
Philipp Glock committed
395
        multiple_choice_h = self.dropout(multiple_choice_h.transpose(1, 2)).transpose(1, 2)
thomwolf's avatar
thomwolf committed
396
        multiple_choice_logits = self.linear(multiple_choice_h).squeeze(-1)
thomwolf's avatar
thomwolf committed
397
        # (bsz, num_choices)
thomwolf's avatar
thomwolf committed
398
399
400
401
402
403
404
        return multiple_choice_logits


class OpenAIGPTPreTrainedModel(nn.Module):
    """ An abstract class to handle weights initialization and
        a simple interface for dowloading and loading pretrained models.
    """
405

thomwolf's avatar
thomwolf committed
406
407
408
409
410
411
412
413
    def __init__(self, config, *inputs, **kwargs):
        super(OpenAIGPTPreTrainedModel, self).__init__()
        if not isinstance(config, OpenAIGPTConfig):
            raise ValueError(
                "Parameter config in `{}(config)` should be an instance of class `OpenAIGPTConfig`. "
                "To create a model from a pretrained model use "
                "`model = {}.from_pretrained(PRETRAINED_MODEL_NAME)`".format(
                    self.__class__.__name__, self.__class__.__name__
414
415
                )
            )
thomwolf's avatar
thomwolf committed
416
417
418
419
420
421
422
423
424
425
426
427
428
429
        self.config = config

    def init_weights(self, module):
        """ Initialize the weights.
        """
        if isinstance(module, (nn.Linear, nn.Embedding)):
            # Slightly different from the TF version which uses truncated_normal for initialization
            # cf https://github.com/pytorch/pytorch/pull/5617
            module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
        elif isinstance(module, LayerNorm):
            module.bias.data.zero_()
            module.weight.data.fill_(1.0)
        if isinstance(module, nn.Linear) and module.bias is not None:
            module.bias.data.zero_()
thomwolf's avatar
thomwolf committed
430

thomwolf's avatar
thomwolf committed
431
432
433
434
    def set_num_special_tokens(self, num_special_tokens):
        pass

    @classmethod
435
    def from_pretrained(
thomwolf's avatar
thomwolf committed
436
        cls, pretrained_model_name_or_path, num_special_tokens=None, state_dict=None, cache_dir=None, from_tf=False, *inputs, **kwargs
437
    ):
thomwolf's avatar
thomwolf committed
438
439
440
441
442
        """
        Instantiate a OpenAIGPTPreTrainedModel from a pre-trained model file or a pytorch state dict.
        Download and cache the pre-trained model file if needed.

        Params:
thomwolf's avatar
thomwolf committed
443
            pretrained_model_name_or_path: either:
thomwolf's avatar
thomwolf committed
444
445
446
447
448
                - a str with the name of a pre-trained model to load selected in the list of:
                    . `openai-gpt`
                - a path or url to a pretrained model archive containing:
                    . `openai_gpt_config.json` a configuration file for the model
                    . `pytorch_model.bin` a PyTorch dump of a OpenAIGPTModel instance
449
450
451
452
                - a path or url to a pretrained model archive containing:
                    . `bert_config.json` a configuration file for the model
                    . a series of NumPy files containing OpenAI TensorFlow trained weights
            from_tf: should we load the weights from a locally saved TensorFlow checkpoint
thomwolf's avatar
thomwolf committed
453
454
455
456
457
            cache_dir: an optional path to a folder in which the pre-trained models will be cached.
            state_dict: an optional state dictionnary (collections.OrderedDict object) to use instead of pre-trained models
            *inputs, **kwargs: additional input for the specific Bert class
                (ex: num_labels for BertForSequenceClassification)
        """
thomwolf's avatar
thomwolf committed
458
459
        if pretrained_model_name_or_path in PRETRAINED_MODEL_ARCHIVE_MAP:
            archive_file = PRETRAINED_MODEL_ARCHIVE_MAP[pretrained_model_name_or_path]
460
            config_file = PRETRAINED_CONFIG_ARCHIVE_MAP[pretrained_model_name_or_path]
thomwolf's avatar
thomwolf committed
461
        else:
thomwolf's avatar
thomwolf committed
462
            archive_file = os.path.join(pretrained_model_name_or_path, WEIGHTS_NAME)
463
            config_file = os.path.join(pretrained_model_name_or_path, CONFIG_NAME)
thomwolf's avatar
thomwolf committed
464
465
466
        # redirect to the cache, if necessary
        try:
            resolved_archive_file = cached_path(archive_file, cache_dir=cache_dir)
467
            resolved_config_file = cached_path(config_file, cache_dir=cache_dir)
thomwolf's avatar
thomwolf committed
468
        except EnvironmentError:
thomwolf's avatar
thomwolf committed
469
470
            logger.error(
                "Model name '{}' was not found in model name list ({}). "
471
472
                "We assumed '{}' was a path or url but couldn't find files {} and {} "
                "at this path or url.".format(
thomwolf's avatar
thomwolf committed
473
                    pretrained_model_name_or_path, ", ".join(PRETRAINED_MODEL_ARCHIVE_MAP.keys()), pretrained_model_name_or_path,
474
                    archive_file, config_file
475
476
                )
            )
thomwolf's avatar
thomwolf committed
477
            return None
478
479
480
        if resolved_archive_file == archive_file and resolved_config_file == config_file:
            logger.info("loading weights file {}".format(archive_file))
            logger.info("loading configuration file {}".format(config_file))
thomwolf's avatar
thomwolf committed
481
        else:
482
483
484
485
            logger.info("loading weights file {} from cache at {}".format(
                archive_file, resolved_archive_file))
            logger.info("loading configuration file {} from cache at {}".format(
                config_file, resolved_config_file))
thomwolf's avatar
thomwolf committed
486
        # Load config
487
        config = OpenAIGPTConfig.from_json_file(resolved_config_file)
thomwolf's avatar
thomwolf committed
488
489
490
        logger.info("Model config {}".format(config))
        # Instantiate model.
        model = cls(config, *inputs, **kwargs)
491
        if state_dict is None and not from_tf:
thomwolf's avatar
thomwolf committed
492
            state_dict = torch.load(resolved_archive_file, map_location='cpu')
493
494
        if from_tf:
            # Directly load from a TensorFlow checkpoint (stored as NumPy array)
495
            return load_tf_weights_in_openai_gpt(model, resolved_archive_file)
thomwolf's avatar
thomwolf committed
496
497
498
499
500

        old_keys = []
        new_keys = []
        for key in state_dict.keys():
            new_key = None
thomwolf's avatar
thomwolf committed
501
502
503
504
505
506
            if key.endswith(".g"):
                new_key = key[:-2] + ".weight"
            elif key.endswith(".b"):
                new_key = key[:-2] + ".bias"
            elif key.endswith(".w"):
                new_key = key[:-2] + ".weight"
thomwolf's avatar
thomwolf committed
507
508
509
510
511
512
513
514
515
516
            if new_key:
                old_keys.append(key)
                new_keys.append(new_key)
        for old_key, new_key in zip(old_keys, new_keys):
            state_dict[new_key] = state_dict.pop(old_key)

        missing_keys = []
        unexpected_keys = []
        error_msgs = []
        # copy state_dict so _load_from_state_dict can modify it
517
        metadata = getattr(state_dict, "_metadata", None)
thomwolf's avatar
thomwolf committed
518
519
520
521
        state_dict = state_dict.copy()
        if metadata is not None:
            state_dict._metadata = metadata

522
        def load(module, prefix=""):
thomwolf's avatar
thomwolf committed
523
524
            local_metadata = {} if metadata is None else metadata.get(prefix[:-1], {})
            module._load_from_state_dict(
525
526
                state_dict, prefix, local_metadata, True, missing_keys, unexpected_keys, error_msgs
            )
thomwolf's avatar
thomwolf committed
527
528
            for name, child in module._modules.items():
                if child is not None:
529
530
                    load(child, prefix + name + ".")

thomwolf's avatar
thomwolf committed
531
532
        start_model = model
        if hasattr(model, "transformer") and all(not s.startswith('transformer.') for s in state_dict.keys()):
thomwolf's avatar
update  
thomwolf committed
533
534
535
            start_model = model.transformer
        load(start_model, prefix="")

thomwolf's avatar
thomwolf committed
536
        if len(missing_keys) > 0:
537
538
539
            logger.info(
                "Weights of {} not initialized from pretrained model: {}".format(model.__class__.__name__, missing_keys)
            )
thomwolf's avatar
thomwolf committed
540
        if len(unexpected_keys) > 0:
541
542
543
            logger.info(
                "Weights from pretrained model not used in {}: {}".format(model.__class__.__name__, unexpected_keys)
            )
thomwolf's avatar
thomwolf committed
544
        if len(error_msgs) > 0:
545
546
547
            raise RuntimeError(
                "Error(s) in loading state_dict for {}:\n\t{}".format(model.__class__.__name__, "\n\t".join(error_msgs))
            )
548

thomwolf's avatar
thomwolf committed
549
        # Add additional embeddings for special tokens if needed
550
551
        # This step also make sure we are still sharing the output and input embeddings after loading weights
        model.set_num_special_tokens(num_special_tokens if num_special_tokens is not None else config.n_special)
thomwolf's avatar
thomwolf committed
552
        return model
thomwolf's avatar
thomwolf committed
553
554


thomwolf's avatar
thomwolf committed
555
class OpenAIGPTModel(OpenAIGPTPreTrainedModel):
556
557
    """OpenAI GPT model ("Improving Language Understanding by Generative Pre-Training").

558
559
560
561
562
563
    OpenAI GPT use a single embedding matrix to store the word and special embeddings.
    Special tokens embeddings are additional tokens that are not pre-trained: [SEP], [CLS]...
    Special tokens need to be trained during the fine-tuning if you use them.
    The number of special embeddings can be controled using the `set_num_special_tokens(num_special_tokens)` function.

    The embeddings are ordered as follow in the token embeddings matrice:
564
565
566
567
568
        [0,                                                         ----------------------
         ...                                                        -> word embeddings
         config.vocab_size - 1,                                     ______________________
         config.vocab_size,
         ...                                                        -> special embeddings
569
         config.vocab_size + config.n_special - 1]                  ______________________
570

571
572
    where total_tokens_embeddings can be obtained as config.total_tokens_embeddings and is:
        total_tokens_embeddings = config.vocab_size + config.n_special
573
574
575
576
577
578
579
    You should use the associate indices to index the embeddings.

    Params:
        config: a OpenAIGPTConfig class instance with the configuration to build a new model

    Inputs:
        `input_ids`: a torch.LongTensor of shape [batch_size, sequence_length] (or more generally [d_1, ..., d_n, sequence_length]
580
            were d_1 ... d_n are arbitrary dimensions) with the word BPE token indices selected in the range [0, total_tokens_embeddings[
581
        `position_ids`: an optional torch.LongTensor with the same shape as input_ids
582
            with the position indices (selected in the range [0, config.n_positions - 1[.
583
        `token_type_ids`: an optional torch.LongTensor with the same shape as input_ids
584
585
586
587
            You can use it to add a third type of embedding to each input token in the sequence
            (the previous two being the word and position embeddings).
            The input, position and token_type embeddings are summed inside the Transformer before the first
            self-attention block.
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604

    Outputs:
        `hidden_states`: the encoded-hidden-states at the top of the model
            as a torch.FloatTensor of size [batch_size, sequence_length, hidden_size]
            (or more generally [d_1, ..., d_n, hidden_size] were d_1 ... d_n are the dimension of input_ids)

    Example usage:
    ```python
    # Already been converted into BPE token ids
    input_ids = torch.LongTensor([[31, 51, 99], [15, 5, 0]])

    config = modeling_openai.OpenAIGPTConfig()

    model = modeling_openai.OpenAIGPTModel(config)
    hidden_states = model(input_ids)
    ```
    """
605

thomwolf's avatar
thomwolf committed
606
    def __init__(self, config, output_attentions=False):
607
        super(OpenAIGPTModel, self).__init__(config)
thomwolf's avatar
thomwolf committed
608
        self.output_attentions = output_attentions
thomwolf's avatar
thomwolf committed
609
        self.tokens_embed = nn.Embedding(config.total_tokens_embeddings, config.n_embd)
610
        self.positions_embed = nn.Embedding(config.n_positions, config.n_embd)
611
        self.drop = nn.Dropout(config.embd_pdrop)
thomwolf's avatar
thomwolf committed
612
        block = Block(config.n_ctx, config, scale=True, output_attentions=output_attentions)
613
        self.h = nn.ModuleList([copy.deepcopy(block) for _ in range(config.n_layer)])
thomwolf's avatar
thomwolf committed
614

thomwolf's avatar
thomwolf committed
615
616
617
618
        self.apply(self.init_weights)
        # nn.init.normal_(self.embed.weight, std=0.02)

    def set_num_special_tokens(self, num_special_tokens):
619
620
621
        " Update input embeddings with new embedding matrice if needed "
        if self.config.n_special == num_special_tokens:
            return
thomwolf's avatar
thomwolf committed
622
623
        # Update config
        self.config.n_special = num_special_tokens
thomwolf's avatar
thomwolf committed
624
        # Build new embeddings and initialize all new embeddings (in particular the special tokens)
625
        old_embed = self.tokens_embed
626
        self.tokens_embed = nn.Embedding(self.config.total_tokens_embeddings, self.config.n_embd)
thomwolf's avatar
thomwolf committed
627
        self.tokens_embed.to(old_embed.weight.device)
628
        self.init_weights(self.tokens_embed)
thomwolf's avatar
thomwolf committed
629
630
        # Copy word embeddings from the previous weights
        self.tokens_embed.weight.data[:self.config.vocab_size, :] = old_embed.weight.data[:self.config.vocab_size, :]
thomwolf's avatar
thomwolf committed
631

thomwolf's avatar
thomwolf committed
632
633
    def forward(self, input_ids, position_ids=None, token_type_ids=None):
        if position_ids is None:
634
635
636
637
638
            # This was used when we had a single embedding matrice from position and token embeddings
            # start = self.config.vocab_size + self.config.n_special
            # end = start + input_ids.size(-1)
            # position_ids = torch.arange(start, end, dtype=torch.long, device=input_ids.device)
            position_ids = torch.arange(input_ids.size(-1), dtype=torch.long, device=input_ids.device)
thomwolf's avatar
thomwolf committed
639
640
641
642
643
644
            position_ids = position_ids.unsqueeze(0).expand_as(input_ids)

        input_shape = input_ids.size()
        input_ids = input_ids.view(-1, input_ids.size(-1))
        position_ids = position_ids.view(-1, position_ids.size(-1))

645
646
        inputs_embeds = self.tokens_embed(input_ids)
        position_embeds = self.positions_embed(position_ids)
thomwolf's avatar
thomwolf committed
647
648
        if token_type_ids is not None:
            token_type_ids = token_type_ids.view(-1, token_type_ids.size(-1))
649
            token_type_embeds = self.tokens_embed(token_type_ids)
thomwolf's avatar
thomwolf committed
650
651
        else:
            token_type_embeds = 0
thomwolf's avatar
thomwolf committed
652
        # Add the position information to the input embeddings
thomwolf's avatar
thomwolf committed
653
654
        # h = e.sum(dim=2)
        hidden_states = inputs_embeds + position_embeds + token_type_embeds
thomwolf's avatar
thomwolf committed
655
        all_attentions = []
thomwolf's avatar
thomwolf committed
656
        for block in self.h:
thomwolf's avatar
thomwolf committed
657
658
659
660
661
            if self.output_attentions:
                attentions, hidden_states = block(hidden_states)
                all_attentions.append(attentions)
            else:
                hidden_states = block(hidden_states)
thomwolf's avatar
thomwolf committed
662
        output_shape = input_shape + (hidden_states.size(-1),)
thomwolf's avatar
thomwolf committed
663
664
        if self.output_attentions:
            return all_attentions, hidden_states.view(*output_shape)
thomwolf's avatar
thomwolf committed
665
        return hidden_states.view(*output_shape)
thomwolf's avatar
thomwolf committed
666

667

thomwolf's avatar
thomwolf committed
668
class OpenAIGPTLMHeadModel(OpenAIGPTPreTrainedModel):
669
670
    """OpenAI GPT model with a Language Modeling head ("Improving Language Understanding by Generative Pre-Training").

671
672
673
674
675
676
    OpenAI GPT use a single embedding matrix to store the word and special embeddings.
    Special tokens embeddings are additional tokens that are not pre-trained: [SEP], [CLS]...
    Special tokens need to be trained during the fine-tuning if you use them.
    The number of special embeddings can be controled using the `set_num_special_tokens(num_special_tokens)` function.

    The embeddings are ordered as follow in the token embeddings matrice:
677
678
679
680
681
        [0,                                                         ----------------------
         ...                                                        -> word embeddings
         config.vocab_size - 1,                                     ______________________
         config.vocab_size,
         ...                                                        -> special embeddings
682
         config.vocab_size + config.n_special - 1]                  ______________________
683

684
685
686
    where total_tokens_embeddings can be obtained as config.total_tokens_embeddings and is:
        total_tokens_embeddings = config.vocab_size + config.n_special
    You should use the associate indices to index the embeddings.
687
688
689
690
691
692

    Params:
        config: a OpenAIGPTConfig class instance with the configuration to build a new model

    Inputs:
        `input_ids`: a torch.LongTensor of shape [batch_size, sequence_length] (or more generally [d_1, ..., d_n, sequence_length]
693
            were d_1 ... d_n are arbitrary dimensions) with the word BPE token indices selected in the range [0, total_tokens_embeddings[
694
        `position_ids`: an optional torch.LongTensor with the same shape as input_ids
695
            with the position indices (selected in the range [0, config.n_positions - 1[.
696
        `token_type_ids`: an optional torch.LongTensor with the same shape as input_ids
697
698
699
700
            You can use it to add a third type of embedding to each input token in the sequence
            (the previous two being the word and position embeddings).
            The input, position and token_type embeddings are summed inside the Transformer before the first
            self-attention block.
701
702
703
704
705
706
707
708
        `lm_labels`: optional language modeling labels: torch.LongTensor of shape [batch_size, sequence_length]
            with indices selected in [-1, 0, ..., vocab_size]. All labels set to -1 are ignored (masked), the loss
            is only computed for the labels set in [0, ..., vocab_size]

    Outputs:
        if `lm_labels` is not `None`:
            Outputs the language modeling loss.
        else:
709
710
            `lm_logits`: the language modeling logits as a torch.FloatTensor of size [batch_size, sequence_length, total_tokens_embeddings]
                (or more generally [d_1, ..., d_n, total_tokens_embeddings] were d_1 ... d_n are the dimension of input_ids)
711
712
713
714
715
716
717
718
719
720
721
722

    Example usage:
    ```python
    # Already been converted into BPE token ids
    input_ids = torch.LongTensor([[31, 51, 99], [15, 5, 0]])

    config = modeling_openai.OpenAIGPTConfig()

    model = modeling_openai.OpenAIGPTLMHeadModel(config)
    lm_logits = model(input_ids)
    ```
    """
723

thomwolf's avatar
thomwolf committed
724
    def __init__(self, config, output_attentions=False):
725
        super(OpenAIGPTLMHeadModel, self).__init__(config)
thomwolf's avatar
thomwolf committed
726
        self.transformer = OpenAIGPTModel(config, output_attentions=output_attentions)
727
        self.lm_head = OpenAIGPTLMHead(self.transformer.tokens_embed.weight, config)
thomwolf's avatar
thomwolf committed
728
729
730
        self.apply(self.init_weights)

    def set_num_special_tokens(self, num_special_tokens):
731
732
733
        """ Update input and output embeddings with new embedding matrice
            Make sure we are sharing the embeddings
        """
thomwolf's avatar
thomwolf committed
734
        self.transformer.set_num_special_tokens(num_special_tokens)
735
        self.lm_head.set_embeddings_weights(self.transformer.tokens_embed.weight)
thomwolf's avatar
thomwolf committed
736
737
738

    def forward(self, input_ids, position_ids=None, token_type_ids=None, lm_labels=None):
        hidden_states = self.transformer(input_ids, position_ids, token_type_ids)
thomwolf's avatar
thomwolf committed
739
740
        if self.transformer.output_attentions:
            all_attentions, hidden_states = hidden_states
thomwolf's avatar
thomwolf committed
741
742
        lm_logits = self.lm_head(hidden_states)
        if lm_labels is not None:
743
            # Shift so that tokens < n predict n
thomwolf's avatar
thomwolf committed
744
745
            shift_logits = lm_logits[..., :-1, :].contiguous()
            shift_labels = lm_labels[..., 1:].contiguous()
Catalin Voss's avatar
Catalin Voss committed
746
            # Flatten the tokens
thomwolf's avatar
thomwolf committed
747
            loss_fct = CrossEntropyLoss(ignore_index=-1)
748
            loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)),
749
                            shift_labels.view(-1))
thomwolf's avatar
thomwolf committed
750
            return loss
thomwolf's avatar
thomwolf committed
751
752
        if self.transformer.output_attentions:
            return all_attentions, lm_logits
thomwolf's avatar
thomwolf committed
753
        return lm_logits
thomwolf's avatar
thomwolf committed
754

755

thomwolf's avatar
thomwolf committed
756
class OpenAIGPTDoubleHeadsModel(OpenAIGPTPreTrainedModel):
thomwolf's avatar
thomwolf committed
757
    """OpenAI GPT model with a Language Modeling and a Multiple Choice head ("Improving Language Understanding by Generative Pre-Training").
758

759
760
761
762
763
764
    OpenAI GPT use a single embedding matrix to store the word and special embeddings.
    Special tokens embeddings are additional tokens that are not pre-trained: [SEP], [CLS]...
    Special tokens need to be trained during the fine-tuning if you use them.
    The number of special embeddings can be controled using the `set_num_special_tokens(num_special_tokens)` function.

    The embeddings are ordered as follow in the token embeddings matrice:
765
766
767
768
769
        [0,                                                         ----------------------
         ...                                                        -> word embeddings
         config.vocab_size - 1,                                     ______________________
         config.vocab_size,
         ...                                                        -> special embeddings
770
         config.vocab_size + config.n_special - 1]                  ______________________
771

772
773
774
    where total_tokens_embeddings can be obtained as config.total_tokens_embeddings and is:
        total_tokens_embeddings = config.vocab_size + config.n_special
    You should use the associate indices to index the embeddings.
775
776
777
778
779

    Params:
        config: a OpenAIGPTConfig class instance with the configuration to build a new model

    Inputs:
thomwolf's avatar
thomwolf committed
780
781
782
783
        `input_ids`: a torch.LongTensor of shape [batch_size, num_choices, sequence_length] with the BPE token
            indices selected in the range [0, total_tokens_embeddings[
        `mc_token_ids`: a torch.LongTensor of shape [batch_size, num_choices] with the index of the token from
            which we should take the hidden state to feed the multiple choice classifier (usually last token of the sequence)
784
        `position_ids`: an optional torch.LongTensor with the same shape as input_ids
785
            with the position indices (selected in the range [0, config.n_positions - 1[.
786
        `token_type_ids`: an optional torch.LongTensor with the same shape as input_ids
787
788
789
790
            You can use it to add a third type of embedding to each input token in the sequence
            (the previous two being the word and position embeddings).
            The input, position and token_type embeddings are summed inside the Transformer before the first
            self-attention block.
791
        `lm_labels`: optional language modeling labels: torch.LongTensor of shape [batch_size, num_choices, sequence_length]
792
793
            with indices selected in [-1, 0, ..., total_tokens_embeddings]. All labels set to -1 are ignored (masked), the loss
            is only computed for the labels set in [0, ..., total_tokens_embeddings]
794
795
796
797
798
799
800
        `multiple_choice_labels`: optional multiple choice labels: torch.LongTensor of shape [batch_size]
            with indices selected in [0, ..., num_choices].

    Outputs:
        if `lm_labels` and `multiple_choice_labels` are not `None`:
            Outputs a tuple of losses with the language modeling loss and the multiple choice loss.
        else: a tuple with
801
            `lm_logits`: the language modeling logits as a torch.FloatTensor of size [batch_size, num_choices, sequence_length, total_tokens_embeddings]
802
803
804
805
806
            `multiple_choice_logits`: the multiple choice logits as a torch.FloatTensor of size [batch_size, num_choices]

    Example usage:
    ```python
    # Already been converted into BPE token ids
thomwolf's avatar
thomwolf committed
807
808
    input_ids = torch.LongTensor([[[31, 51, 99], [15, 5, 0]]])  # (bsz, number of choice, seq length)
    mc_token_ids = torch.LongTensor([[2], [1]]) # (bsz, number of choice)
809
810
811
812

    config = modeling_openai.OpenAIGPTConfig()

    model = modeling_openai.OpenAIGPTLMHeadModel(config)
thomwolf's avatar
thomwolf committed
813
    lm_logits, multiple_choice_logits = model(input_ids, mc_token_ids)
814
815
    ```
    """
816

thomwolf's avatar
thomwolf committed
817
    def __init__(self, config, output_attentions=False):
818
        super(OpenAIGPTDoubleHeadsModel, self).__init__(config)
thomwolf's avatar
thomwolf committed
819
        self.transformer = OpenAIGPTModel(config, output_attentions=output_attentions)
820
        self.lm_head = OpenAIGPTLMHead(self.transformer.tokens_embed.weight, config)
821
        self.multiple_choice_head = OpenAIGPTMultipleChoiceHead(config)
thomwolf's avatar
thomwolf committed
822
        self.apply(self.init_weights)
thomwolf's avatar
thomwolf committed
823

thomwolf's avatar
thomwolf committed
824
    def set_num_special_tokens(self, num_special_tokens):
825
826
827
        """ Update input and output embeddings with new embedding matrice
            Make sure we are sharing the embeddings
        """
thomwolf's avatar
thomwolf committed
828
        self.transformer.set_num_special_tokens(num_special_tokens)
829
        self.lm_head.set_embeddings_weights(self.transformer.tokens_embed.weight)
thomwolf's avatar
thomwolf committed
830

thomwolf's avatar
thomwolf committed
831
    def forward(self, input_ids, mc_token_ids, lm_labels=None, mc_labels=None, token_type_ids=None, position_ids=None):
thomwolf's avatar
thomwolf committed
832
        hidden_states = self.transformer(input_ids, position_ids, token_type_ids)
thomwolf's avatar
thomwolf committed
833
834
        if self.transformer.output_attentions:
            all_attentions, hidden_states = hidden_states
thomwolf's avatar
thomwolf committed
835
        lm_logits = self.lm_head(hidden_states)
thomwolf's avatar
thomwolf committed
836
        mc_logits = self.multiple_choice_head(hidden_states, mc_token_ids)
thomwolf's avatar
thomwolf committed
837
838
        losses = []
        if lm_labels is not None:
thomwolf's avatar
thomwolf committed
839
840
            shift_logits = lm_logits[..., :-1, :].contiguous()
            shift_labels = lm_labels[..., 1:].contiguous()
thomwolf's avatar
thomwolf committed
841
            loss_fct = CrossEntropyLoss(ignore_index=-1)
thomwolf's avatar
thomwolf committed
842
            losses.append(loss_fct(shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1)))
843
        if mc_labels is not None:
thomwolf's avatar
thomwolf committed
844
            loss_fct = CrossEntropyLoss()
845
            losses.append(loss_fct(mc_logits.view(-1, mc_logits.size(-1)), mc_labels.view(-1)))
thomwolf's avatar
thomwolf committed
846
847
        if losses:
            return losses
thomwolf's avatar
thomwolf committed
848
849
        if self.transformer.output_attentions:
            return all_attentions, lm_logits, mc_logits
850
        return lm_logits, mc_logits