utils.py 264 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
# coding=utf-8
# Copyright 2020 The Google AI Language Team Authors, Facebook AI Research authors and The HuggingFace Inc. team.
# Copyright (c) 2020, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

17
import copy
18
19
20
import inspect
import warnings
from dataclasses import dataclass
21
from typing import TYPE_CHECKING, Any, Callable, Dict, List, Optional, Tuple, Union
22
23
24
25
26

import torch
import torch.distributed as dist
from torch import nn

27
from ..integrations.deepspeed import is_deepspeed_zero3_enabled
28
29
30
31
32
33
34
35
from ..modeling_outputs import CausalLMOutputWithPast, Seq2SeqLMOutput
from ..models.auto import (
    MODEL_FOR_CAUSAL_IMAGE_MODELING_MAPPING,
    MODEL_FOR_CAUSAL_LM_MAPPING,
    MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING,
    MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING,
    MODEL_FOR_VISION_2_SEQ_MAPPING,
)
Marc Sun's avatar
Marc Sun committed
36
from ..utils import ExplicitEnum, ModelOutput, is_accelerate_available, logging
37
from .beam_constraints import DisjunctiveConstraint, PhrasalConstraint
38
from .beam_search import BeamScorer, BeamSearchScorer, ConstrainedBeamSearchScorer
39
from .configuration_utils import GenerationConfig
40
41
from .logits_process import (
    EncoderNoRepeatNGramLogitsProcessor,
Karim Foda's avatar
Karim Foda committed
42
    EncoderRepetitionPenaltyLogitsProcessor,
43
44
    EpsilonLogitsWarper,
    EtaLogitsWarper,
45
46
47
48
49
50
51
52
53
    ExponentialDecayLengthPenalty,
    ForcedBOSTokenLogitsProcessor,
    ForcedEOSTokenLogitsProcessor,
    ForceTokensLogitsProcessor,
    HammingDiversityLogitsProcessor,
    InfNanRemoveLogitsProcessor,
    LogitNormalization,
    LogitsProcessorList,
    MinLengthLogitsProcessor,
54
    MinNewTokensLengthLogitsProcessor,
55
56
57
58
    NoBadWordsLogitsProcessor,
    NoRepeatNGramLogitsProcessor,
    PrefixConstrainedLogitsProcessor,
    RepetitionPenaltyLogitsProcessor,
59
    SequenceBiasLogitsProcessor,
60
61
62
63
64
65
    SuppressTokensAtBeginLogitsProcessor,
    SuppressTokensLogitsProcessor,
    TemperatureLogitsWarper,
    TopKLogitsWarper,
    TopPLogitsWarper,
    TypicalLogitsWarper,
66
    UnbatchedClassifierFreeGuidanceLogitsProcessor,
67
68
69
70
71
72
73
74
75
76
)
from .stopping_criteria import (
    MaxLengthCriteria,
    MaxTimeCriteria,
    StoppingCriteria,
    StoppingCriteriaList,
    validate_stopping_criteria,
)


77
if TYPE_CHECKING:
78
    from ..modeling_utils import PreTrainedModel
79
80
    from .streamers import BaseStreamer

81
82
logger = logging.get_logger(__name__)

Marc Sun's avatar
Marc Sun committed
83
84
85
if is_accelerate_available():
    from accelerate.hooks import AlignDevicesHook, add_hook_to_module

86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106

@dataclass
class GreedySearchDecoderOnlyOutput(ModelOutput):
    """
    Base class for outputs of decoder-only generation models using greedy search.


    Args:
        sequences (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
            The generated sequences. The second dimension (sequence_length) is either equal to `max_length` or shorter
            if all batches finished early due to the `eos_token_id`.
        scores (`tuple(torch.FloatTensor)` *optional*, returned when `output_scores=True` is passed or when `config.output_scores=True`):
            Processed prediction scores of the language modeling head (scores for each vocabulary token before SoftMax)
            at each generation step. Tuple of `torch.FloatTensor` with up to `max_new_tokens` elements (one element for
            each generated token), with each tensor of shape `(batch_size, config.vocab_size)`.
        attentions (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `output_attentions=True` is passed or `config.output_attentions=True`):
            Tuple (one element for each generated token) of tuples (one element for each layer of the decoder) of
            `torch.FloatTensor` of shape `(batch_size, num_heads, generated_length, sequence_length)`.
        hidden_states (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
            Tuple (one element for each generated token) of tuples (one element for each layer of the decoder) of
            `torch.FloatTensor` of shape `(batch_size, generated_length, hidden_size)`.
107
108
109
110
111
112
113
        past_key_values (`tuple(tuple(torch.FloatTensor)))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
            NOTE: some models have a different `past_key_values` format, confirm with the model's documentation.
            Usually a Tuple (one element for each layer of the decoder) of tuples (two elements, key tensor and value
            tensor). The first Tuple is of length `config.n_layers`, with each tuple having 2 tensors of shape
            `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and optionally if
            `config.is_encoder_decoder=True` 2 additional tensors of shape `(batch_size, num_heads,
            encoder_sequence_length, embed_size_per_head)`.
114
115
116
117
118
119
    """

    sequences: torch.LongTensor = None
    scores: Optional[Tuple[torch.FloatTensor]] = None
    attentions: Optional[Tuple[Tuple[torch.FloatTensor]]] = None
    hidden_states: Optional[Tuple[Tuple[torch.FloatTensor]]] = None
120
    past_key_values: Optional[Tuple[Tuple[Tuple[torch.FloatTensor]]]] = None
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150


@dataclass
class ContrastiveSearchEncoderDecoderOutput(ModelOutput):
    """
    Base class for outputs of decoder-only generation models using contrastive search.

    Args:
        sequences (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
            The generated sequences. The second dimension (sequence_length) is either equal to `max_length` or shorter
            if all batches finished early due to the `eos_token_id`.
        scores (`tuple(torch.FloatTensor)` *optional*, returned when `output_scores=True` is passed or when `config.output_scores=True`):
            Processed prediction scores of the language modeling head (scores for each vocabulary token before SoftMax)
            at each generation step. Tuple of `torch.FloatTensor` with up to `max_new_tokens` elements (one element for
            each generated token), with each tensor of shape `(batch_size, config.vocab_size)`.
        encoder_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or `config.output_attentions=True`):
            Tuple of `torch.FloatTensor` (one for each layer of the decoder) of shape `(batch_size, num_heads,
            sequence_length, sequence_length)`.
        encoder_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
            Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
            shape `(batch_size, sequence_length, hidden_size)`.
        decoder_attentions (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `output_attentions=True` is passed or `config.output_attentions=True`):
            Tuple (one element for each generated token) of tuples (one element for each layer of the decoder) of
            `torch.FloatTensor` of shape `(batch_size, num_heads, generated_length, sequence_length)`.
        cross_attentions (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `output_attentions=True` is passed or `config.output_attentions=True`):
            Tuple (one element for each generated token) of tuples (one element for each layer of the decoder) of
            `torch.FloatTensor` of shape `(batch_size, num_heads, generated_length, sequence_length)`.
        decoder_hidden_states (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
            Tuple (one element for each generated token) of tuples (one element for each layer of the decoder) of
            `torch.FloatTensor` of shape `(batch_size, generated_length, hidden_size)`.
151
152
153
154
155
156
157
        past_key_values (`tuple(tuple(torch.FloatTensor)))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
            NOTE: some models have a different `past_key_values` format, confirm with the model's documentation.
            Usually a Tuple (one element for each layer of the decoder) of tuples (two elements, key tensor and value
            tensor). The first Tuple is of length `config.n_layers`, with each tuple having 2 tensors of shape
            `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and optionally if
            `config.is_encoder_decoder=True` 2 additional tensors of shape `(batch_size, num_heads,
            encoder_sequence_length, embed_size_per_head)`.
158
159
160
161
162
163
164
165
166
    """

    sequences: torch.LongTensor = None
    scores: Optional[Tuple[torch.FloatTensor]] = None
    encoder_attentions: Optional[Tuple[torch.FloatTensor]] = None
    encoder_hidden_states: Optional[Tuple[torch.FloatTensor]] = None
    decoder_attentions: Optional[Tuple[Tuple[torch.FloatTensor]]] = None
    cross_attentions: Optional[Tuple[Tuple[torch.FloatTensor]]] = None
    decoder_hidden_states: Optional[Tuple[Tuple[torch.FloatTensor]]] = None
167
    past_key_values: Optional[Tuple[Tuple[Tuple[torch.FloatTensor]]]] = None
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187


@dataclass
class ContrastiveSearchDecoderOnlyOutput(ModelOutput):
    """
    Base class for outputs of decoder-only generation models using contrastive search.

    Args:
        sequences (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
            The generated sequences. The second dimension (sequence_length) is either equal to `max_length` or shorter
            if all batches finished early due to the `eos_token_id`.
        scores (`tuple(torch.FloatTensor)` *optional*, returned when `output_scores=True` is passed or when
        `config.output_scores=True`):
            Processed prediction scores of the language modeling head (scores for each vocabulary token before SoftMax)
            at each generation step. Tuple of `torch.FloatTensor` with up to `max_new_tokens` elements (one element for
            each generated token), with each tensor of shape `(batch_size, config.vocab_size)`.
        attentions (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `output_attentions=True` is passed or `config.output_attentions=True`):
            Tuple (one element for each generated token) of tuples (one element for each layer of the decoder) of
            `torch.FloatTensor` of shape `(batch_size, num_heads, generated_length, sequence_length)`.
        hidden_states (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `output_hidden_states=True` is
188
189
190
191
192
193
194
195
196
197
            passed or when `config.output_hidden_states=True`): Tuple (one element for each generated token) of tuples
            (one element for each layer of the decoder) of `torch.FloatTensor` of shape `(batch_size, generated_length,
            hidden_size)`.
        past_key_values (`tuple(tuple(torch.FloatTensor)))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
            NOTE: some models have a different `past_key_values` format, confirm with the model's documentation.
            Usually a Tuple (one element for each layer of the decoder) of tuples (two elements, key tensor and value
            tensor). The first Tuple is of length `config.n_layers`, with each tuple having 2 tensors of shape
            `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and optionally if
            `config.is_encoder_decoder=True` 2 additional tensors of shape `(batch_size, num_heads,
            encoder_sequence_length, embed_size_per_head)`.
198
199
200
201
202
203
    """

    sequences: torch.LongTensor = None
    scores: Optional[Tuple[torch.FloatTensor]] = None
    attentions: Optional[Tuple[Tuple[torch.FloatTensor]]] = None
    hidden_states: Optional[Tuple[Tuple[torch.FloatTensor]]] = None
204
    past_key_values: Optional[Tuple[Tuple[Tuple[torch.FloatTensor]]]] = None
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237


@dataclass
class GreedySearchEncoderDecoderOutput(ModelOutput):
    """
    Base class for outputs of encoder-decoder generation models using greedy search. Hidden states and attention
    weights of the decoder (respectively the encoder) can be accessed via the encoder_attentions and the
    encoder_hidden_states attributes (respectively the decoder_attentions and the decoder_hidden_states attributes)


    Args:
        sequences (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
            The generated sequences. The second dimension (sequence_length) is either equal to `max_length` or shorter
            if all batches finished early due to the `eos_token_id`.
        scores (`tuple(torch.FloatTensor)` *optional*, returned when `output_scores=True` is passed or when `config.output_scores=True`):
            Processed prediction scores of the language modeling head (scores for each vocabulary token before SoftMax)
            at each generation step. Tuple of `torch.FloatTensor` with up to `max_new_tokens` elements (one element for
            each generated token), with each tensor of shape `(batch_size, config.vocab_size)`.
        encoder_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or `config.output_attentions=True`):
            Tuple of `torch.FloatTensor` (one for each layer of the decoder) of shape `(batch_size, num_heads,
            sequence_length, sequence_length)`.
        encoder_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
            Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
            shape `(batch_size, sequence_length, hidden_size)`.
        decoder_attentions (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `output_attentions=True` is passed or `config.output_attentions=True`):
            Tuple (one element for each generated token) of tuples (one element for each layer of the decoder) of
            `torch.FloatTensor` of shape `(batch_size, num_heads, generated_length, sequence_length)`.
        cross_attentions (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `output_attentions=True` is passed or `config.output_attentions=True`):
            Tuple (one element for each generated token) of tuples (one element for each layer of the decoder) of
            `torch.FloatTensor` of shape `(batch_size, num_heads, generated_length, sequence_length)`.
        decoder_hidden_states (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
            Tuple (one element for each generated token) of tuples (one element for each layer of the decoder) of
            `torch.FloatTensor` of shape `(batch_size, generated_length, hidden_size)`.
238
239
240
241
242
243
244
        past_key_values (`tuple(tuple(torch.FloatTensor)))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
            NOTE: some models have a different `past_key_values` format, confirm with the model's documentation.
            Usually a Tuple (one element for each layer of the decoder) of tuples (two elements, key tensor and value
            tensor). The first Tuple is of length `config.n_layers`, with each tuple having 2 tensors of shape
            `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and optionally if
            `config.is_encoder_decoder=True` 2 additional tensors of shape `(batch_size, num_heads,
            encoder_sequence_length, embed_size_per_head)`.
245
246
247
248
249
250
251
252
253
    """

    sequences: torch.LongTensor = None
    scores: Optional[Tuple[torch.FloatTensor]] = None
    encoder_attentions: Optional[Tuple[torch.FloatTensor]] = None
    encoder_hidden_states: Optional[Tuple[torch.FloatTensor]] = None
    decoder_attentions: Optional[Tuple[Tuple[torch.FloatTensor]]] = None
    cross_attentions: Optional[Tuple[Tuple[torch.FloatTensor]]] = None
    decoder_hidden_states: Optional[Tuple[Tuple[torch.FloatTensor]]] = None
254
    past_key_values: Optional[Tuple[Tuple[Tuple[torch.FloatTensor]]]] = None
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277


@dataclass
class SampleDecoderOnlyOutput(ModelOutput):
    """
    Base class for outputs of decoder-only generation models using sampling.


    Args:
        sequences (`torch.LongTensor` of shape `(batch_size*num_return_sequences, sequence_length)`):
            The generated sequences. The second dimension (sequence_length) is either equal to `max_length` or shorter
            if all batches finished early due to the `eos_token_id`.
        scores (`tuple(torch.FloatTensor)` *optional*, returned when `output_scores=True` is passed or when `config.output_scores=True`):
            Processed prediction scores of the language modeling head (scores for each vocabulary token before SoftMax)
            at each generation step. Tuple of `torch.FloatTensor` with up to `max_new_tokens` elements (one element for
            each generated token), with each tensor of shape `(batch_size*num_return_sequences, config.vocab_size)`.
        attentions (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `output_attentions=True` is passed or `config.output_attentions=True`):
            Tuple (one element for each generated token) of tuples (one element for each layer of the decoder) of
            `torch.FloatTensor` of shape `(num_return_sequences*batch_size, num_heads, generated_length,
            sequence_length)`.
        hidden_states (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
            Tuple (one element for each generated token) of tuples (one element for each layer of the decoder) of
            `torch.FloatTensor` of shape `(num_return_sequences*batch_size, generated_length, hidden_size)`.
278
279
280
281
282
283
284
        past_key_values (`tuple(tuple(torch.FloatTensor)))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
            NOTE: some models have a different `past_key_values` format, confirm with the model's documentation.
            Usually a Tuple (one element for each layer of the decoder) of tuples (two elements, key tensor and value
            tensor). The first Tuple is of length `config.n_layers`, with each tuple having 2 tensors of shape
            `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and optionally if
            `config.is_encoder_decoder=True` 2 additional tensors of shape `(batch_size, num_heads,
            encoder_sequence_length, embed_size_per_head)`.
285
286
287
288
289
290
    """

    sequences: torch.LongTensor = None
    scores: Optional[Tuple[torch.FloatTensor]] = None
    attentions: Optional[Tuple[Tuple[torch.FloatTensor]]] = None
    hidden_states: Optional[Tuple[Tuple[torch.FloatTensor]]] = None
291
    past_key_values: Optional[Tuple[Tuple[Tuple[torch.FloatTensor]]]] = None
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325


@dataclass
class SampleEncoderDecoderOutput(ModelOutput):
    """
    Base class for outputs of encoder-decoder generation models using sampling. Hidden states and attention weights of
    the decoder (respectively the encoder) can be accessed via the encoder_attentions and the encoder_hidden_states
    attributes (respectively the decoder_attentions and the decoder_hidden_states attributes)


    Args:
        sequences (`torch.LongTensor` of shape `(batch_size*num_return_sequences, sequence_length)`):
            The generated sequences. The second dimension (sequence_length) is either equal to `max_length` or shorter
            if all batches finished early due to the `eos_token_id`.
        scores (`tuple(torch.FloatTensor)` *optional*, returned when `output_scores=True` is passed or when `config.output_scores=True`):
            Processed prediction scores of the language modeling head (scores for each vocabulary token before SoftMax)
            at each generation step. Tuple of `torch.FloatTensor` with up to `max_new_tokens` elements (one element for
            each generated token), with each tensor of shape `(batch_size*num_return_sequences, config.vocab_size)`.
        encoder_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or `config.output_attentions=True`):
            Tuple of `torch.FloatTensor` (one for each layer of the decoder) of shape
            `(batch_size*num_return_sequences, num_heads, sequence_length, sequence_length)`.
        encoder_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
            Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
            shape `(batch_size*num_return_sequences, sequence_length, hidden_size)`.
        decoder_attentions (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `output_attentions=True` is passed or `config.output_attentions=True`):
            Tuple (one element for each generated token) of tuples (one element for each layer of the decoder) of
            `torch.FloatTensor` of shape `(batch_size*num_return_sequences, num_heads, generated_length,
            sequence_length)`.
        cross_attentions (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `output_attentions=True` is passed or `config.output_attentions=True`):
            Tuple (one element for each generated token) of tuples (one element for each layer of the decoder) of
            `torch.FloatTensor` of shape `(batch_size, num_heads, generated_length, sequence_length)`.
        decoder_hidden_states (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
            Tuple (one element for each generated token) of tuples (one element for each layer of the decoder) of
            `torch.FloatTensor` of shape `(batch_size*num_return_sequences, generated_length, hidden_size)`.
326
327
328
329
330
331
332
        past_key_values (`tuple(tuple(torch.FloatTensor)))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
            NOTE: some models have a different `past_key_values` format, confirm with the model's documentation.
            Usually a Tuple (one element for each layer of the decoder) of tuples (two elements, key tensor and value
            tensor). The first Tuple is of length `config.n_layers`, with each tuple having 2 tensors of shape
            `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and optionally if
            `config.is_encoder_decoder=True` 2 additional tensors of shape `(batch_size, num_heads,
            encoder_sequence_length, embed_size_per_head)`.
333
334
335
336
337
338
339
340
341
    """

    sequences: torch.LongTensor = None
    scores: Optional[Tuple[torch.FloatTensor]] = None
    encoder_attentions: Optional[Tuple[torch.FloatTensor]] = None
    encoder_hidden_states: Optional[Tuple[torch.FloatTensor]] = None
    decoder_attentions: Optional[Tuple[Tuple[torch.FloatTensor]]] = None
    cross_attentions: Optional[Tuple[Tuple[torch.FloatTensor]]] = None
    decoder_hidden_states: Optional[Tuple[Tuple[torch.FloatTensor]]] = None
342
    past_key_values: Optional[Tuple[Tuple[Tuple[torch.FloatTensor]]]] = None
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360


@dataclass
class BeamSearchDecoderOnlyOutput(ModelOutput):
    """
    Base class for outputs of decoder-only generation models using beam search.

    Args:
        sequences (`torch.LongTensor` of shape `(batch_size*num_return_sequences, sequence_length)`):
            The generated sequences. The second dimension (sequence_length) is either equal to `max_length` or shorter
            if all batches finished early due to the `eos_token_id`.
        sequences_scores (`torch.FloatTensor` of shape `(batch_size*num_return_sequences)`, *optional*, returned when `output_scores=True` is passed or when `config.output_scores=True`):
            Final beam scores of the generated `sequences`.
        scores (`tuple(torch.FloatTensor)` *optional*, returned when `output_scores=True` is passed or when `config.output_scores=True`):
            Beam transition scores for each vocabulary token at each generation step. Beam transition scores consisting
            of log probabilities of tokens conditioned on log softmax of previously generated tokens in this beam.
            Tuple of `torch.FloatTensor` with up to `max_new_tokens` elements (one element for each generated token),
            with each tensor of shape `(batch_size*num_beams*num_return_sequences, config.vocab_size)`.
361
        beam_indices (`torch.LongTensor`, *optional*, returned when `output_scores=True` is passed or when `config.output_scores=True`):
362
            Beam indices of generated token id at each generation step. `torch.LongTensor` of shape
363
            `(batch_size*num_return_sequences, sequence_length)`.
364
365
366
367
368
369
        attentions (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `output_attentions=True` is passed or `config.output_attentions=True`):
            Tuple (one element for each generated token) of tuples (one element for each layer of the decoder) of
            `torch.FloatTensor` of shape `(batch_size*num_beams, num_heads, generated_length, sequence_length)`.
        hidden_states (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
            Tuple (one element for each generated token) of tuples (one element for each layer of the decoder) of
            `torch.FloatTensor` of shape `(batch_size*num_beams*num_return_sequences, generated_length, hidden_size)`.
370
371
372
373
374
375
376
        past_key_values (`tuple(tuple(torch.FloatTensor)))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
            NOTE: some models have a different `past_key_values` format, confirm with the model's documentation.
            Usually a Tuple (one element for each layer of the decoder) of tuples (two elements, key tensor and value
            tensor). The first Tuple is of length `config.n_layers`, with each tuple having 2 tensors of shape
            `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and optionally if
            `config.is_encoder_decoder=True` 2 additional tensors of shape `(batch_size, num_heads,
            encoder_sequence_length, embed_size_per_head)`.
377
378
379
380
381
382
383
384
    """

    sequences: torch.LongTensor = None
    sequences_scores: Optional[torch.FloatTensor] = None
    scores: Optional[Tuple[torch.FloatTensor]] = None
    beam_indices: Optional[torch.LongTensor] = None
    attentions: Optional[Tuple[Tuple[torch.FloatTensor]]] = None
    hidden_states: Optional[Tuple[Tuple[torch.FloatTensor]]] = None
385
    past_key_values: Optional[Tuple[Tuple[Tuple[torch.FloatTensor]]]] = None
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405


@dataclass
class BeamSearchEncoderDecoderOutput(ModelOutput):
    """
    Base class for outputs of encoder-decoder generation models using beam search. Hidden states and attention weights
    of the decoder (respectively the encoder) can be accessed via the encoder_attentions and the encoder_hidden_states
    attributes (respectively the decoder_attentions and the decoder_hidden_states attributes)

    Args:
        sequences (`torch.LongTensor` of shape `(batch_size*num_return_sequences, sequence_length)`):
            The generated sequences. The second dimension (sequence_length) is either equal to `max_length` or shorter
            if all batches finished early due to the `eos_token_id`.
        sequences_scores (`torch.FloatTensor` of shape `(batch_size*num_return_sequences)`, *optional*, returned when `output_scores=True` is passed or when `config.output_scores=True`):
            Final beam scores of the generated `sequences`.
        scores (`tuple(torch.FloatTensor)` *optional*, returned when `output_scores=True` is passed or when `config.output_scores=True`):
            Beam transition scores for each vocabulary token at each generation step. Beam transition scores consisting
            of log probabilities of tokens conditioned on log softmax of previously generated tokens in this beam.
            Tuple of `torch.FloatTensor` with up to `max_new_tokens` elements (one element for each generated token),
            with each tensor of shape `(batch_size*num_beams, config.vocab_size)`.
406
        beam_indices (`torch.LongTensor`, *optional*, returned when `output_scores=True` is passed or when `config.output_scores=True`):
407
            Beam indices of generated token id at each generation step. `torch.LongTensor` of shape
408
            `(batch_size*num_return_sequences, sequence_length)`.
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
        encoder_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or `config.output_attentions=True`):
            Tuple of `torch.FloatTensor` (one for each layer of the decoder) of shape `(batch_size, num_heads,
            sequence_length, sequence_length)`.
        encoder_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
            Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
            shape `(batch_size*num_beams*num_return_sequences, sequence_length, hidden_size)`.
        decoder_attentions (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `output_attentions=True` is passed or `config.output_attentions=True`):
            Tuple (one element for each generated token) of tuples (one element for each layer of the decoder) of
            `torch.FloatTensor` of shape `(batch_size*num_beams*num_return_sequences, num_heads, generated_length,
            sequence_length)`.
        cross_attentions (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `output_attentions=True` is passed or `config.output_attentions=True`):
            Tuple (one element for each generated token) of tuples (one element for each layer of the decoder) of
            `torch.FloatTensor` of shape `(batch_size, num_heads, generated_length, sequence_length)`.
        decoder_hidden_states (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
            Tuple (one element for each generated token) of tuples (one element for each layer of the decoder) of
            `torch.FloatTensor` of shape `(batch_size*num_beams*num_return_sequences, generated_length, hidden_size)`.
425
426
427
428
429
430
431
        past_key_values (`tuple(tuple(torch.FloatTensor)))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
            NOTE: some models have a different `past_key_values` format, confirm with the model's documentation.
            Usually a Tuple (one element for each layer of the decoder) of tuples (two elements, key tensor and value
            tensor). The first Tuple is of length `config.n_layers`, with each tuple having 2 tensors of shape
            `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and optionally if
            `config.is_encoder_decoder=True` 2 additional tensors of shape `(batch_size, num_heads,
            encoder_sequence_length, embed_size_per_head)`.
432
433
434
435
436
437
438
439
440
441
442
    """

    sequences: torch.LongTensor = None
    sequences_scores: Optional[torch.FloatTensor] = None
    scores: Optional[Tuple[torch.FloatTensor]] = None
    beam_indices: Optional[torch.LongTensor] = None
    encoder_attentions: Optional[Tuple[torch.FloatTensor]] = None
    encoder_hidden_states: Optional[Tuple[torch.FloatTensor]] = None
    decoder_attentions: Optional[Tuple[Tuple[torch.FloatTensor]]] = None
    cross_attentions: Optional[Tuple[Tuple[torch.FloatTensor]]] = None
    decoder_hidden_states: Optional[Tuple[Tuple[torch.FloatTensor]]] = None
443
    past_key_values: Optional[Tuple[Tuple[Tuple[torch.FloatTensor]]]] = None
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461


@dataclass
class BeamSampleDecoderOnlyOutput(ModelOutput):
    """
    Base class for outputs of decoder-only generation models using beam sample.

    Args:
        sequences (`torch.LongTensor` of shape `(batch_size*num_return_sequences, sequence_length)`):
            The generated sequences. The second dimension (sequence_length) is either equal to `max_length` or shorter
            if all batches finished early due to the `eos_token_id`.
        sequences_scores (`torch.FloatTensor` of shape `(batch_size * num_return_sequence)`, *optional*, returned when `output_scores=True` is passed or when `config.output_scores=True`):
            Final beam scores of the generated `sequences`.
        scores (`tuple(torch.FloatTensor)` *optional*, returned when `output_scores=True` is passed or when `config.output_scores=True`):
            Beam transition scores for each vocabulary token at each generation step. Beam transition scores consisting
            of log probabilities of tokens conditioned on log softmax of previously generated tokens in this beam.
            Tuple of `torch.FloatTensor` with up to `max_new_tokens` elements (one element for each generated token),
            with each tensor of shape `(batch_size*num_beams*num_return_sequences, config.vocab_size)`.
462
        beam_indices (`torch.LongTensor`, *optional*, returned when `output_scores=True` is passed or when `config.output_scores=True`):
463
            Beam indices of generated token id at each generation step. `torch.LongTensor` of shape
464
            `(batch_size*num_return_sequences, sequence_length)`.
465
466
467
468
469
470
        attentions (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `output_attentions=True` is passed or `config.output_attentions=True`):
            Tuple (one element for each generated token) of tuples (one element for each layer of the decoder) of
            `torch.FloatTensor` of shape `(batch_size*num_beams, num_heads, generated_length, sequence_length)`.
        hidden_states (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
            Tuple (one element for each generated token) of tuples (one element for each layer of the decoder) of
            `torch.FloatTensor` of shape `(batch_size*num_beams, generated_length, hidden_size)`.
471
472
473
474
475
476
477
        past_key_values (`tuple(tuple(torch.FloatTensor)))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
            NOTE: some models have a different `past_key_values` format, confirm with the model's documentation.
            Usually a Tuple (one element for each layer of the decoder) of tuples (two elements, key tensor and value
            tensor). The first Tuple is of length `config.n_layers`, with each tuple having 2 tensors of shape
            `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and optionally if
            `config.is_encoder_decoder=True` 2 additional tensors of shape `(batch_size, num_heads,
            encoder_sequence_length, embed_size_per_head)`.
478
479
480
481
482
483
484
485
    """

    sequences: torch.LongTensor = None
    sequences_scores: Optional[torch.FloatTensor] = None
    scores: Optional[Tuple[torch.FloatTensor]] = None
    beam_indices: Optional[torch.LongTensor] = None
    attentions: Optional[Tuple[Tuple[torch.FloatTensor]]] = None
    hidden_states: Optional[Tuple[Tuple[torch.FloatTensor]]] = None
486
    past_key_values: Optional[Tuple[Tuple[Tuple[torch.FloatTensor]]]] = None
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508


@dataclass
class BeamSampleEncoderDecoderOutput(ModelOutput):
    """
    Base class for outputs of encoder-decoder generation models using beam sampling. Hidden states and attention
    weights of the decoder (respectively the encoder) can be accessed via the encoder_attentions and the
    encoder_hidden_states attributes (respectively the decoder_attentions and the decoder_hidden_states attributes)

    Args:
        sequences (`torch.LongTensor` of shape `(batch_size*num_beams, sequence_length)`):
            The generated sequences. The second dimension (sequence_length) is either equal to `max_length` or shorter
            if all batches finished early due to the `eos_token_id`.
        sequences_scores (`torch.FloatTensor` of shape `(batch_size * num_return_sequence)`, *optional*, returned when `output_scores=True` is passed or when `config.output_scores=True`):
            Final beam scores of the generated `sequences`.
        scores (`tuple(torch.FloatTensor)` *optional*, returned when `output_scores=True` is passed or when `config.output_scores=True`):
            Beam transition scores for each vocabulary token at each generation step. Beam transition scores consisting
            of log probabilities of tokens conditioned on log softmax of previously generated tokens in this beam.
            Tuple of `torch.FloatTensor` with up to `max_new_tokens` elements (one element for each generated token),
            with each tensor of shape `(batch_size*num_beams, config.vocab_size)`).
        beam_indices (`torch.LongTensor`, *optional*, returned when `output_scores=True` is passed or when `config.output_scores=True`):
            Beam indices of generated token id at each generation step. `torch.LongTensor` of shape
509
            `(batch_size*num_return_sequences, sequence_length)`.
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
        encoder_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or `config.output_attentions=True`):
            Tuple of `torch.FloatTensor` (one for each layer of the decoder) of shape `(batch_size, num_heads,
            sequence_length, sequence_length)`.
        encoder_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
            Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
            shape `(batch_size*num_beams, sequence_length, hidden_size)`.
        decoder_attentions (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `output_attentions=True` is passed or `config.output_attentions=True`):
            Tuple (one element for each generated token) of tuples (one element for each layer of the decoder) of
            `torch.FloatTensor` of shape `(batch_size*num_beams, num_heads, generated_length, sequence_length)`.
        cross_attentions (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `output_attentions=True` is passed or `config.output_attentions=True`):
            Tuple (one element for each generated token) of tuples (one element for each layer of the decoder) of
            `torch.FloatTensor` of shape `(batch_size, num_heads, generated_length, sequence_length)`.
        decoder_hidden_states (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
            Tuple (one element for each generated token) of tuples (one element for each layer of the decoder) of
            `torch.FloatTensor` of shape `(batch_size*num_beams, generated_length, hidden_size)`.
525
526
527
528
529
530
531
        past_key_values (`tuple(tuple(torch.FloatTensor)))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
            NOTE: some models have a different `past_key_values` format, confirm with the model's documentation.
            Usually a Tuple (one element for each layer of the decoder) of tuples (two elements, key tensor and value
            tensor). The first Tuple is of length `config.n_layers`, with each tuple having 2 tensors of shape
            `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and optionally if
            `config.is_encoder_decoder=True` 2 additional tensors of shape `(batch_size, num_heads,
            encoder_sequence_length, embed_size_per_head)`.
532
533
534
535
536
537
538
539
540
541
542
    """

    sequences: torch.LongTensor = None
    sequences_scores: Optional[torch.FloatTensor] = None
    scores: Optional[Tuple[torch.FloatTensor]] = None
    beam_indices: Optional[torch.LongTensor] = None
    encoder_attentions: Optional[Tuple[torch.FloatTensor]] = None
    encoder_hidden_states: Optional[Tuple[torch.FloatTensor]] = None
    decoder_attentions: Optional[Tuple[Tuple[torch.FloatTensor]]] = None
    cross_attentions: Optional[Tuple[Tuple[torch.FloatTensor]]] = None
    decoder_hidden_states: Optional[Tuple[Tuple[torch.FloatTensor]]] = None
543
    past_key_values: Optional[Tuple[Tuple[Tuple[torch.FloatTensor]]]] = None
544
545
546
547
548
549
550
551
552
553


GreedySearchOutput = Union[GreedySearchEncoderDecoderOutput, GreedySearchDecoderOnlyOutput]
SampleOutput = Union[SampleEncoderDecoderOutput, SampleDecoderOnlyOutput]
BeamSearchOutput = Union[BeamSearchEncoderDecoderOutput, BeamSearchDecoderOnlyOutput]
BeamSampleOutput = Union[BeamSampleEncoderDecoderOutput, BeamSampleDecoderOnlyOutput]
ContrastiveSearchOutput = Union[ContrastiveSearchEncoderDecoderOutput, ContrastiveSearchDecoderOnlyOutput]
GenerateOutput = Union[GreedySearchOutput, SampleOutput, BeamSearchOutput, BeamSampleOutput, ContrastiveSearchOutput]


554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
class GenerationMode(ExplicitEnum):
    """
    Possible generation modes, downstream of the [`~generation.GenerationMixin.generate`] method.
    """

    # Non-beam methods
    CONTRASTIVE_SEARCH = "contrastive_search"
    GREEDY_SEARCH = "greedy_search"
    SAMPLE = "sample"
    ASSISTED_GENERATION = "assisted_generation"
    # Beam methods
    BEAM_SEARCH = "beam_search"
    BEAM_SAMPLE = "beam_sample"
    CONSTRAINED_BEAM_SEARCH = "constrained_beam_search"
    GROUP_BEAM_SEARCH = "group_beam_search"


571
572
573
574
575
576
class GenerationMixin:
    """
    A class containing all functions for auto-regressive text generation, to be used as a mixin in [`PreTrainedModel`].

    The class exposes [`~generation.GenerationMixin.generate`], which can be used for:
        - *greedy decoding* by calling [`~generation.GenerationMixin.greedy_search`] if `num_beams=1` and
577
          `do_sample=False`
578
579
580
        - *contrastive search* by calling [`~generation.GenerationMixin.contrastive_search`] if `penalty_alpha>0` and
          `top_k>1`
        - *multinomial sampling* by calling [`~generation.GenerationMixin.sample`] if `num_beams=1` and
581
          `do_sample=True`
582
        - *beam-search decoding* by calling [`~generation.GenerationMixin.beam_search`] if `num_beams>1` and
583
          `do_sample=False`
584
        - *beam-search multinomial sampling* by calling [`~generation.GenerationMixin.beam_sample`] if `num_beams>1`
585
          and `do_sample=True`
586
        - *diverse beam-search decoding* by calling [`~generation.GenerationMixin.group_beam_search`], if `num_beams>1`
587
          and `num_beam_groups>1`
588
        - *constrained beam-search decoding* by calling [`~generation.GenerationMixin.constrained_beam_search`], if
589
590
591
          `constraints!=None` or `force_words_ids!=None`

    You do not need to call any of the above methods directly. Pass custom parameter values to 'generate' instead. To
592
    learn more about decoding strategies refer to the [text generation strategies guide](../generation_strategies).
593
594
    """

595
596
    def prepare_inputs_for_generation(self, *args, **kwargs):
        raise NotImplementedError(
597
            "A model class needs to define a `prepare_inputs_for_generation` method in order to use `.generate()`."
598
599
        )

600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
    def _prepare_model_inputs(
        self,
        inputs: Optional[torch.Tensor] = None,
        bos_token_id: Optional[int] = None,
        model_kwargs: Optional[Dict[str, torch.Tensor]] = None,
    ) -> Tuple[torch.Tensor, Optional[str], Dict[str, torch.Tensor]]:
        """
        This function extracts the model-specific `inputs` for generation.
        """
        # 1. retrieve all kwargs that are non-None or non-model input related.
        # some encoder-decoder models have different names for model and encoder
        if (
            self.config.is_encoder_decoder
            and hasattr(self, "encoder")
            and self.encoder.main_input_name != self.main_input_name
        ):
            input_name = self.encoder.main_input_name
        else:
            input_name = self.main_input_name

        model_kwargs = {k: v for k, v in model_kwargs.items() if v is not None or k != input_name}

        # 2. check whether model_input_name is passed as kwarg
        # if yes and `inputs` is None use kwarg inputs
        inputs_kwarg = model_kwargs.pop(input_name, None)
        if inputs_kwarg is not None and inputs is not None:
            raise ValueError(
627
                f"`inputs`: {inputs}` were passed alongside {input_name} which is not allowed. "
628
629
630
631
632
                f"Make sure to either pass {inputs} or {input_name}=..."
            )
        elif inputs_kwarg is not None:
            inputs = inputs_kwarg

633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
        # 3. In the presence of `inputs_embeds` for text models:
        # - decoder-only models should complain if the user attempts to pass `inputs_embeds`, but the model
        # doesn't have its forwarding implemented. `inputs_embeds` is kept in `model_kwargs` and can coexist with
        # input_ids (`inputs_embeds` will be used in the 1st generation step, as opposed to `input_ids`)
        # - encoder-decoder models should complain if the user attempts to pass `inputs_embeds` and `input_ids`, and
        # pull the former to inputs. It will be used in place of `input_ids` to get the encoder hidden states.
        if input_name == "input_ids" and "inputs_embeds" in model_kwargs:
            if not self.config.is_encoder_decoder:
                has_inputs_embeds_forwarding = "inputs_embeds" in set(
                    inspect.signature(self.prepare_inputs_for_generation).parameters.keys()
                )
                if not has_inputs_embeds_forwarding:
                    raise ValueError(
                        f"You passed `inputs_embeds` to `.generate()`, but the model class {self.__class__.__name__} "
                        "doesn't have its forwarding implemented. See the GPT2 implementation for an example "
                        "(https://github.com/huggingface/transformers/pull/21405), and feel free to open a PR with it!"
                    )
650
651
652
                # In this case, `input_ids` is moved to the `model_kwargs`, so a few automations (like the creation of
                # the attention mask) can rely on the actual model input.
                model_kwargs["input_ids"] = self._maybe_initialize_input_ids_for_generation(
653
                    inputs, bos_token_id, model_kwargs=model_kwargs
654
                )
655
656
657
            else:
                if inputs is not None:
                    raise ValueError("You passed `inputs_embeds` and `input_ids` to `.generate()`. Please pick one.")
658
            inputs, input_name = model_kwargs["inputs_embeds"], "inputs_embeds"
659
660

        # 4. if `inputs` is still None, try to create `input_ids` from BOS token
661
        inputs = self._maybe_initialize_input_ids_for_generation(inputs, bos_token_id, model_kwargs)
662
663
        return inputs, input_name, model_kwargs

664
665
666
667
    def _maybe_initialize_input_ids_for_generation(
        self,
        inputs: Optional[torch.Tensor] = None,
        bos_token_id: Optional[int] = None,
668
        model_kwargs: Optional[Dict[str, torch.Tensor]] = None,
669
    ) -> torch.LongTensor:
670
671
672
673
        """Initializes input ids for generation, if necessary."""
        if inputs is not None:
            return inputs

674
        encoder_outputs = model_kwargs.get("encoder_outputs")
675
676
677
678
679
680
681
        if self.config.is_encoder_decoder and encoder_outputs is not None:
            # make dummy input_ids with value -100, as a sanity check ensuring that they won't be used for encoding
            shape = encoder_outputs.last_hidden_state.size()[:-1]
            return torch.ones(shape, dtype=torch.long, device=self.device) * -100

        if bos_token_id is None:
            raise ValueError("`bos_token_id` has to be defined when no `input_ids` are provided.")
682

683
684
685
686
687
688
689
        # If there is some tensor in `model_kwargs`, we can infer the batch size from it. This is helpful with
        # soft-prompting or in multimodal implementations built on top of decoder-only language models.
        batch_size = 1
        for value in model_kwargs.values():
            if isinstance(value, torch.Tensor):
                batch_size = value.shape[0]
                break
690
        return torch.ones((batch_size, 1), dtype=torch.long, device=self.device) * bos_token_id
691
692
693
694
695

    def _prepare_attention_mask_for_generation(
        self,
        inputs: torch.Tensor,
        pad_token_id: Optional[int],
696
        eos_token_id: Optional[Union[int, List[int]]],
697
698
699
    ) -> torch.LongTensor:
        is_input_ids = len(inputs.shape) == 2 and inputs.dtype in [torch.int, torch.long]
        is_pad_token_in_inputs = (pad_token_id is not None) and (pad_token_id in inputs)
700
701
702
        if isinstance(eos_token_id, int):
            eos_token_id = [eos_token_id]
        is_pad_token_not_equal_to_eos_token_id = (eos_token_id is None) or (pad_token_id not in eos_token_id)
703
704
705
706
707
708
709
710
711
712
713
714

        # Check if input is input_ids and padded -> only then is attention_mask defined
        if is_input_ids and is_pad_token_in_inputs and is_pad_token_not_equal_to_eos_token_id:
            return inputs.ne(pad_token_id).long()
        else:
            return torch.ones(inputs.shape[:2], dtype=torch.long, device=inputs.device)

    def _prepare_encoder_decoder_kwargs_for_generation(
        self, inputs_tensor: torch.Tensor, model_kwargs, model_input_name: Optional[str] = None
    ) -> Dict[str, Any]:
        # 1. get encoder
        encoder = self.get_encoder()
715
716
        # Compatibility with Accelerate big model inference: we need the encoder to outputs stuff on the same device
        # as the inputs.
Marc Sun's avatar
Marc Sun committed
717
718
719
720
721
        if hasattr(self, "hf_device_map"):
            if hasattr(encoder, "_hf_hook"):
                encoder._hf_hook.io_same_device = True
            else:
                add_hook_to_module(encoder, AlignDevicesHook(io_same_device=True))
722

723
        # 2. Prepare encoder args and encoder kwargs from model kwargs.
724
725
726
727
728
729
        irrelevant_prefix = ["decoder_", "cross_attn", "use_cache"]
        encoder_kwargs = {
            argument: value
            for argument, value in model_kwargs.items()
            if not any(argument.startswith(p) for p in irrelevant_prefix)
        }
730
731
732
733
734
735
        encoder_signature = set(inspect.signature(encoder.forward).parameters)
        encoder_accepts_wildcard = "kwargs" in encoder_signature or "model_kwargs" in encoder_signature
        if not encoder_accepts_wildcard:
            encoder_kwargs = {
                argument: value for argument, value in encoder_kwargs.items() if argument in encoder_signature
            }
736
737
738
739
740
741
742
743
744
745
746
747

        # 3. make sure that encoder returns `ModelOutput`
        model_input_name = model_input_name if model_input_name is not None else self.main_input_name
        encoder_kwargs["return_dict"] = True
        encoder_kwargs[model_input_name] = inputs_tensor
        model_kwargs["encoder_outputs"]: ModelOutput = encoder(**encoder_kwargs)

        return model_kwargs

    def _prepare_decoder_input_ids_for_generation(
        self,
        batch_size: int,
748
749
        model_input_name: str,
        model_kwargs: Dict[str, torch.Tensor],
750
751
752
        decoder_start_token_id: int = None,
        bos_token_id: int = None,
        device: torch.device = None,
753
754
755
756
    ) -> Tuple[torch.LongTensor, Dict[str, torch.Tensor]]:
        """Prepares `decoder_input_ids` for generation with encoder-decoder models"""
        # 1. Check whether the user has defined `decoder_input_ids` manually. To facilitate in terms of input naming,
        # we also allow the user to pass it under `input_ids`, if the encoder does not use it as the main input.
757
        if model_kwargs is not None and "decoder_input_ids" in model_kwargs:
758
759
760
            decoder_input_ids = model_kwargs.pop("decoder_input_ids")
        elif "input_ids" in model_kwargs and model_input_name != "input_ids":
            decoder_input_ids = model_kwargs.pop("input_ids")
761
        else:
762
763
764
765
766
767
768
769
770
771
772
            decoder_input_ids = None

        # 2. Encoder-decoder models expect the `decoder_input_ids` to start with a special token. Let's ensure that.
        decoder_start_token_id = self._get_decoder_start_token_id(decoder_start_token_id, bos_token_id)
        if device is None:
            device = self.device
        decoder_input_ids_start = torch.ones((batch_size, 1), dtype=torch.long, device=device) * decoder_start_token_id

        # no user input -> use decoder_start_token_id as decoder_input_ids
        if decoder_input_ids is None:
            decoder_input_ids = decoder_input_ids_start
773
774
775
        # exception: Donut checkpoints have task-specific decoder starts and don't expect a BOS token
        elif self.config.model_type == "vision-encoder-decoder" and "donut" in self.name_or_path.lower():
            pass
776
777
778
779
780
781
782
783
784
785
786
787
788
        # user input but doesn't start with decoder_start_token_id -> prepend decoder_start_token_id (and adjust
        # decoder_attention_mask if provided)
        elif (decoder_input_ids[:, 0] != decoder_start_token_id).all().item():
            decoder_input_ids = torch.cat([decoder_input_ids_start, decoder_input_ids], dim=-1)
            if "decoder_attention_mask" in model_kwargs:
                decoder_attention_mask = model_kwargs["decoder_attention_mask"]
                decoder_attention_mask = torch.cat(
                    (torch.ones_like(decoder_attention_mask)[:, :1], decoder_attention_mask),
                    dim=-1,
                )
                model_kwargs["decoder_attention_mask"] = decoder_attention_mask

        return decoder_input_ids, model_kwargs
789
790
791

    def _get_decoder_start_token_id(self, decoder_start_token_id: int = None, bos_token_id: int = None) -> int:
        decoder_start_token_id = (
792
793
794
            decoder_start_token_id
            if decoder_start_token_id is not None
            else self.generation_config.decoder_start_token_id
795
        )
796
        bos_token_id = bos_token_id if bos_token_id is not None else self.generation_config.bos_token_id
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813

        if decoder_start_token_id is not None:
            return decoder_start_token_id
        elif bos_token_id is not None:
            return bos_token_id
        raise ValueError(
            "`decoder_start_token_id` or `bos_token_id` has to be defined for encoder-decoder generation."
        )

    @staticmethod
    def _expand_inputs_for_generation(
        expand_size: int = 1,
        is_encoder_decoder: bool = False,
        input_ids: Optional[torch.LongTensor] = None,
        **model_kwargs,
    ) -> Tuple[torch.LongTensor, Dict[str, Any]]:
        """Expands tensors from [batch_size, ...] to [batch_size * expand_size, ...]"""
814
815
816
817
818
819
820

        def _expand_dict_for_generation(dict_to_expand):
            for key in dict_to_expand:
                if dict_to_expand[key] is not None and isinstance(dict_to_expand[key], torch.Tensor):
                    dict_to_expand[key] = dict_to_expand[key].repeat_interleave(expand_size, dim=0)
            return dict_to_expand

821
822
823
        if input_ids is not None:
            input_ids = input_ids.repeat_interleave(expand_size, dim=0)

824
        model_kwargs = _expand_dict_for_generation(model_kwargs)
825
826

        if is_encoder_decoder:
827
            if model_kwargs.get("encoder_outputs") is None:
828
                raise ValueError("If `is_encoder_decoder` is True, make sure that `encoder_outputs` is defined.")
829
            model_kwargs["encoder_outputs"] = _expand_dict_for_generation(model_kwargs["encoder_outputs"])
830
831
832

        return input_ids, model_kwargs

833
    def _extract_past_from_model_output(self, outputs: ModelOutput, standardize_cache_format: bool = False):
834
        past_key_values = None
835
        if "past_key_values" in outputs:
836
            past_key_values = outputs.past_key_values
837
        elif "mems" in outputs:
838
            past_key_values = outputs.mems
839
        elif "past_buckets_states" in outputs:
840
            past_key_values = outputs.past_buckets_states
841
842
843
844

        # Bloom fix: standardizes the cache format when requested
        if standardize_cache_format and hasattr(self, "_convert_to_standard_cache"):
            batch_size = outputs.logits.shape[0]
845
846
            past_key_values = self._convert_to_standard_cache(past_key_values, batch_size=batch_size)
        return past_key_values
847
848

    def _update_model_kwargs_for_generation(
849
850
851
852
853
        self,
        outputs: ModelOutput,
        model_kwargs: Dict[str, Any],
        is_encoder_decoder: bool = False,
        standardize_cache_format: bool = False,
854
    ) -> Dict[str, Any]:
855
856
        # update past_key_values
        model_kwargs["past_key_values"] = self._extract_past_from_model_output(
857
858
            outputs, standardize_cache_format=standardize_cache_format
        )
Sylvain Gugger's avatar
Sylvain Gugger committed
859
860
        if getattr(outputs, "state", None) is not None:
            model_kwargs["state"] = outputs.state
861
862
863
864
865
866
867

        # update token_type_ids with last value
        if "token_type_ids" in model_kwargs:
            token_type_ids = model_kwargs["token_type_ids"]
            model_kwargs["token_type_ids"] = torch.cat([token_type_ids, token_type_ids[:, -1].unsqueeze(-1)], dim=-1)

        if not is_encoder_decoder:
868
            # update attention mask
869
870
871
872
873
            if "attention_mask" in model_kwargs:
                attention_mask = model_kwargs["attention_mask"]
                model_kwargs["attention_mask"] = torch.cat(
                    [attention_mask, attention_mask.new_ones((attention_mask.shape[0], 1))], dim=-1
                )
874
875
876
877
878
879
880
881
        else:
            # update decoder attention mask
            if "decoder_attention_mask" in model_kwargs:
                decoder_attention_mask = model_kwargs["decoder_attention_mask"]
                model_kwargs["decoder_attention_mask"] = torch.cat(
                    [decoder_attention_mask, decoder_attention_mask.new_ones((decoder_attention_mask.shape[0], 1))],
                    dim=-1,
                )
882
883
884

        return model_kwargs

885
    def _reorder_cache(self, past_key_values, beam_idx):
886
887
888
889
890
891
892
        raise NotImplementedError(
            f"Make sure that a `_reorder_cache` function is correctly implemented in {self.__class__.__module__} to"
            f" enable beam search for {self.__class__}"
        )

    def _get_logits_warper(
        self,
893
        generation_config: GenerationConfig,
894
895
896
897
898
899
900
901
902
    ) -> LogitsProcessorList:
        """
        This class returns a [`LogitsProcessorList`] list object that contains all relevant [`LogitsWarper`] instances
        used for multinomial sampling.
        """

        # instantiate warpers list
        warpers = LogitsProcessorList()

903
904
905
906
907
908
909
910
911
912
        # In beam methods, we need to keep at least one non-eos token to explore continuations that might have a
        # better score (i.e. keep len(list(generation_config.eos_token_id)) + 1)
        if generation_config.num_beams > 1:
            if isinstance(generation_config.eos_token_id, list):
                min_tokens_to_keep = len(generation_config.eos_token_id) + 1
            else:
                min_tokens_to_keep = 2
        else:
            min_tokens_to_keep = 1

913
914
        # the following idea is largely copied from this PR: https://github.com/huggingface/transformers/pull/5420/files
        # all samplers can be found in `generation_utils_samplers.py`
915
916
917
        if generation_config.temperature is not None and generation_config.temperature != 1.0:
            warpers.append(TemperatureLogitsWarper(generation_config.temperature))
        if generation_config.top_k is not None and generation_config.top_k != 0:
918
919
920
921
            warpers.append(TopKLogitsWarper(top_k=generation_config.top_k, min_tokens_to_keep=min_tokens_to_keep))
        if generation_config.top_p is not None and generation_config.top_p < 1.0:
            warpers.append(TopPLogitsWarper(top_p=generation_config.top_p, min_tokens_to_keep=min_tokens_to_keep))
        if generation_config.typical_p is not None and generation_config.typical_p < 1.0:
922
            warpers.append(
923
                TypicalLogitsWarper(mass=generation_config.typical_p, min_tokens_to_keep=min_tokens_to_keep)
924
            )
925
        if generation_config.epsilon_cutoff is not None and 0.0 < generation_config.epsilon_cutoff < 1.0:
926
            warpers.append(
927
                EpsilonLogitsWarper(epsilon=generation_config.epsilon_cutoff, min_tokens_to_keep=min_tokens_to_keep)
928
            )
929
        if generation_config.eta_cutoff is not None and 0.0 < generation_config.eta_cutoff < 1.0:
930
            warpers.append(
931
                EtaLogitsWarper(epsilon=generation_config.eta_cutoff, min_tokens_to_keep=min_tokens_to_keep)
932
            )
933
        # `LogitNormalization` should always be the last logit processor, when present
934
        if generation_config.renormalize_logits is True:
935
936
937
            warpers.append(LogitNormalization())
        return warpers

938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
    def _get_generation_mode(
        self, generation_config: GenerationConfig, assistant_model: Optional["PreTrainedModel"]
    ) -> GenerationMode:
        """
        Returns the generation mode triggered by a [`GenerationConfig`] instance.
        """
        if generation_config.constraints is not None or generation_config.force_words_ids is not None:
            generation_mode = GenerationMode.CONSTRAINED_BEAM_SEARCH
        elif generation_config.num_beams == 1:
            if generation_config.do_sample is False:
                if (
                    generation_config.top_k is not None
                    and generation_config.top_k > 1
                    and generation_config.penalty_alpha is not None
                    and generation_config.penalty_alpha > 0
                ):
                    generation_mode = GenerationMode.CONTRASTIVE_SEARCH
                else:
                    generation_mode = GenerationMode.GREEDY_SEARCH
            else:
                generation_mode = GenerationMode.SAMPLE
        else:
            if generation_config.num_beam_groups > 1:
                generation_mode = GenerationMode.GROUP_BEAM_SEARCH
            elif generation_config.do_sample is True:
                generation_mode = GenerationMode.BEAM_SAMPLE
            else:
                generation_mode = GenerationMode.BEAM_SEARCH

        # Assisted generation may extend some generation modes
        if assistant_model is not None:
            if generation_mode in ("greedy_search", "sample"):
                generation_mode = GenerationMode.ASSISTED_GENERATION
            else:
                raise ValueError(
                    "You've set `assistant_model`, which triggers assisted generate. Currently, assisted generate "
                    "is only supported with Greedy Search and Sample."
                )
        return generation_mode

978
979
    def _get_logits_processor(
        self,
980
        generation_config: GenerationConfig,
981
982
983
984
        input_ids_seq_length: int,
        encoder_input_ids: torch.LongTensor,
        prefix_allowed_tokens_fn: Callable[[int, torch.Tensor], List[int]],
        logits_processor: Optional[LogitsProcessorList],
985
986
987
        model_kwargs: Optional[Dict[str, Any]] = None,
        negative_prompt_ids: Optional[torch.Tensor] = None,
        negative_prompt_attention_mask: Optional[torch.Tensor] = None,
988
989
990
991
992
993
    ) -> LogitsProcessorList:
        """
        This class returns a [`LogitsProcessorList`] list object that contains all relevant [`LogitsProcessor`]
        instances used to modify the scores of the language model head.
        """
        # instantiate processors list
994
        processors = LogitsProcessorList()
995

996
        if generation_config.guidance_scale is not None and generation_config.guidance_scale != 1:
997
998
999
1000
1001
1002
1003
1004
1005
            processors.append(
                UnbatchedClassifierFreeGuidanceLogitsProcessor(
                    generation_config.guidance_scale,
                    self,
                    unconditional_ids=negative_prompt_ids,
                    unconditional_attention_mask=negative_prompt_attention_mask,
                    use_cache=model_kwargs["use_cache"],
                )
            )
1006
1007
1008
        if generation_config.sequence_bias is not None:
            processors.append(SequenceBiasLogitsProcessor(sequence_bias=generation_config.sequence_bias))

1009
        if generation_config.diversity_penalty is not None and generation_config.diversity_penalty > 0.0:
1010
1011
            processors.append(
                HammingDiversityLogitsProcessor(
1012
1013
1014
                    diversity_penalty=generation_config.diversity_penalty,
                    num_beams=generation_config.num_beams,
                    num_beam_groups=generation_config.num_beam_groups,
1015
1016
                )
            )
Karim Foda's avatar
Karim Foda committed
1017
1018
1019
1020
1021
1022
1023
1024
1025
        if (
            generation_config.encoder_repetition_penalty is not None
            and generation_config.encoder_repetition_penalty != 1.0
        ):
            processors.append(
                EncoderRepetitionPenaltyLogitsProcessor(
                    penalty=generation_config.encoder_repetition_penalty, encoder_input_ids=encoder_input_ids
                )
            )
1026
1027
1028
1029
1030
1031
1032
1033
        if generation_config.repetition_penalty is not None and generation_config.repetition_penalty != 1.0:
            processors.append(RepetitionPenaltyLogitsProcessor(penalty=generation_config.repetition_penalty))
        if generation_config.no_repeat_ngram_size is not None and generation_config.no_repeat_ngram_size > 0:
            processors.append(NoRepeatNGramLogitsProcessor(generation_config.no_repeat_ngram_size))
        if (
            generation_config.encoder_no_repeat_ngram_size is not None
            and generation_config.encoder_no_repeat_ngram_size > 0
        ):
1034
            if self.config.is_encoder_decoder:
1035
1036
1037
1038
1039
                processors.append(
                    EncoderNoRepeatNGramLogitsProcessor(
                        generation_config.encoder_no_repeat_ngram_size, encoder_input_ids
                    )
                )
1040
1041
1042
1043
            else:
                raise ValueError(
                    "It's impossible to use `encoder_no_repeat_ngram_size` with decoder-only architecture"
                )
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
        if generation_config.bad_words_ids is not None:
            processors.append(
                NoBadWordsLogitsProcessor(generation_config.bad_words_ids, generation_config.eos_token_id)
            )
        if (
            generation_config.min_length is not None
            and generation_config.eos_token_id is not None
            and generation_config.min_length > 0
        ):
            processors.append(MinLengthLogitsProcessor(generation_config.min_length, generation_config.eos_token_id))
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
        if (
            generation_config.min_new_tokens is not None
            and generation_config.eos_token_id is not None
            and generation_config.min_new_tokens > 0
        ):
            processors.append(
                MinNewTokensLengthLogitsProcessor(
                    input_ids_seq_length, generation_config.min_new_tokens, generation_config.eos_token_id
                )
            )
1064
        if prefix_allowed_tokens_fn is not None:
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
            processors.append(
                PrefixConstrainedLogitsProcessor(
                    prefix_allowed_tokens_fn, generation_config.num_beams // generation_config.num_beam_groups
                )
            )
        if generation_config.forced_bos_token_id is not None:
            processors.append(ForcedBOSTokenLogitsProcessor(generation_config.forced_bos_token_id))
        if generation_config.forced_eos_token_id is not None:
            processors.append(
                ForcedEOSTokenLogitsProcessor(generation_config.max_length, generation_config.forced_eos_token_id)
            )
        if generation_config.remove_invalid_values is True:
1077
            processors.append(InfNanRemoveLogitsProcessor())
1078
        if generation_config.exponential_decay_length_penalty is not None:
1079
            processors.append(
1080
1081
1082
                ExponentialDecayLengthPenalty(
                    generation_config.exponential_decay_length_penalty,
                    generation_config.eos_token_id,
1083
                    input_ids_seq_length,
1084
                )
1085
            )
1086
1087
1088
        if generation_config.suppress_tokens is not None:
            processors.append(SuppressTokensLogitsProcessor(generation_config.suppress_tokens))
        if generation_config.begin_suppress_tokens is not None:
1089
            begin_index = input_ids_seq_length
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
            begin_index = (
                begin_index
                if (input_ids_seq_length > 1 or generation_config.forced_bos_token_id is None)
                else begin_index + 1
            )
            if generation_config.forced_decoder_ids is not None:
                # generation starts after the last token that is forced
                begin_index += generation_config.forced_decoder_ids[-1][0]
            processors.append(
                SuppressTokensAtBeginLogitsProcessor(generation_config.begin_suppress_tokens, begin_index)
            )
        if generation_config.forced_decoder_ids is not None:
            processors.append(ForceTokensLogitsProcessor(generation_config.forced_decoder_ids))
1103
1104
        processors = self._merge_criteria_processor_list(processors, logits_processor)
        # `LogitNormalization` should always be the last logit processor, when present
1105
        if generation_config.renormalize_logits is True:
1106
1107
1108
1109
            processors.append(LogitNormalization())
        return processors

    def _get_stopping_criteria(
1110
        self, generation_config: GenerationConfig, stopping_criteria: Optional[StoppingCriteriaList]
1111
1112
    ) -> StoppingCriteriaList:
        criteria = StoppingCriteriaList()
1113
        if generation_config.max_length is not None:
1114
1115
1116
1117
1118
1119
1120
            max_position_embeddings = getattr(self.config, "max_position_embeddings", None)
            criteria.append(
                MaxLengthCriteria(
                    max_length=generation_config.max_length,
                    max_position_embeddings=max_position_embeddings,
                )
            )
1121
1122
        if generation_config.max_time is not None:
            criteria.append(MaxTimeCriteria(max_time=generation_config.max_time))
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
        criteria = self._merge_criteria_processor_list(criteria, stopping_criteria)
        return criteria

    def _merge_criteria_processor_list(
        self,
        default_list: Union[LogitsProcessorList, StoppingCriteriaList],
        custom_list: Union[LogitsProcessorList, StoppingCriteriaList],
    ) -> Union[LogitsProcessorList, StoppingCriteriaList]:
        if len(custom_list) == 0:
            return default_list
        for default in default_list:
            for custom in custom_list:
                if type(custom) is type(default):
                    object_type = "stopping criteria" if isinstance(custom, StoppingCriteria) else "logits processor"
                    raise ValueError(
                        f"A custom {object_type} of type {type(custom)} with values {custom} has been passed to"
1139
                        f" `.generate()`, but it has already been created with the values {default}. {default} has been"
1140
1141
                        " created by passing the corresponding arguments to generate or by the model's config default"
                        f" values. If you just want to change the default values of {object_type} consider passing"
1142
                        f" them as arguments to `.generate()` instead of using a custom {object_type}."
1143
1144
1145
1146
                    )
        default_list.extend(custom_list)
        return default_list

1147
    def compute_transition_scores(
1148
1149
1150
        self,
        sequences: torch.Tensor,
        scores: Tuple[torch.Tensor],
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
        beam_indices: Optional[torch.Tensor] = None,
        normalize_logits: bool = False,
    ) -> torch.Tensor:
        """
        Computes the transition scores of sequences given the generation scores (and beam indices, if beam search was
        used). This is a convenient method to quicky obtain the scores of the selected tokens at generation time.

        Parameters:
            sequences (`torch.LongTensor`):
                The generated sequences. The second dimension (sequence_length) is either equal to `max_length` or
                shorter if all batches finished early due to the `eos_token_id`.
            scores (`tuple(torch.FloatTensor)`):
                Transition scores for each vocabulary token at each generation step. Beam transition scores consisting
                of log probabilities of tokens conditioned on log softmax of previously generated tokens Tuple of
                `torch.FloatTensor` with up to `max_new_tokens` elements (one element for each generated token), with
                each tensor of shape `(batch_size*num_beams, config.vocab_size)`.
1167
            beam_indices (`torch.LongTensor`, *optional*):
1168
                Beam indices of generated token id at each generation step. `torch.LongTensor` of shape
1169
                `(batch_size*num_return_sequences, sequence_length)`. Only required if a `num_beams>1` at
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
                generate-time.
            normalize_logits (`bool`, *optional*, defaults to `False`):
                Whether to normalize the logits (which, for legacy reasons, may be unnormalized).

        Return:
            `torch.Tensor`: A `torch.Tensor` of shape `(batch_size*num_return_sequences, sequence_length)` containing
                the transition scores (logits)

        Examples:

        ```python
        >>> from transformers import GPT2Tokenizer, AutoModelForCausalLM
        >>> import numpy as np

        >>> tokenizer = GPT2Tokenizer.from_pretrained("gpt2")
        >>> model = AutoModelForCausalLM.from_pretrained("gpt2")
        >>> tokenizer.pad_token_id = tokenizer.eos_token_id
        >>> inputs = tokenizer(["Today is"], return_tensors="pt")

        >>> # Example 1: Print the scores for each token generated with Greedy Search
        >>> outputs = model.generate(**inputs, max_new_tokens=5, return_dict_in_generate=True, output_scores=True)
        >>> transition_scores = model.compute_transition_scores(
        ...     outputs.sequences, outputs.scores, normalize_logits=True
        ... )
1194
1195
1196
        >>> # input_length is the length of the input prompt for decoder-only models, like the GPT family, and 1 for
        >>> # encoder-decoder models, like BART or T5.
        >>> input_length = 1 if model.config.is_encoder_decoder else inputs.input_ids.shape[1]
1197
1198
1199
        >>> generated_tokens = outputs.sequences[:, input_length:]
        >>> for tok, score in zip(generated_tokens[0], transition_scores[0]):
        ...     # | token | token string | logits | probability
1200
1201
1202
1203
1204
1205
        ...     print(f"| {tok:5d} | {tokenizer.decode(tok):8s} | {score.numpy():.3f} | {np.exp(score.numpy()):.2%}")
        |   262 |  the     | -1.414 | 24.33%
        |  1110 |  day     | -2.609 | 7.36%
        |   618 |  when    | -2.010 | 13.40%
        |   356 |  we      | -1.859 | 15.58%
        |   460 |  can     | -2.508 | 8.14%
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219

        >>> # Example 2: Reconstruct the sequence scores from Beam Search
        >>> outputs = model.generate(
        ...     **inputs,
        ...     max_new_tokens=5,
        ...     num_beams=4,
        ...     num_return_sequences=4,
        ...     return_dict_in_generate=True,
        ...     output_scores=True,
        ... )
        >>> transition_scores = model.compute_transition_scores(
        ...     outputs.sequences, outputs.scores, outputs.beam_indices, normalize_logits=False
        ... )
        >>> # If you sum the generated tokens' scores and apply the length penalty, you'll get the sequence scores.
1220
        >>> # Tip 1: recomputing the scores is only guaranteed to match with `normalize_logits=False`. Depending on the
1221
        >>> # use case, you might want to recompute it with `normalize_logits=True`.
1222
1223
        >>> # Tip 2: the output length does NOT include the input length
        >>> output_length = np.sum(transition_scores.numpy() < 0, axis=1)
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
        >>> length_penalty = model.generation_config.length_penalty
        >>> reconstructed_scores = transition_scores.sum(axis=1) / (output_length**length_penalty)
        >>> print(np.allclose(outputs.sequences_scores, reconstructed_scores))
        True
        ```"""
        # 1. In absence of `beam_indices`, we can assume that we come from e.g. greedy search, which is equivalent
        # to a beam search approach were the first (and only) beam is always selected
        if beam_indices is None:
            beam_indices = torch.arange(scores[0].shape[0]).view(-1, 1).to(sequences.device)
            beam_indices = beam_indices.expand(-1, len(scores))

        # 2. reshape scores as [batch_size*vocab_size, # generation steps] with # generation steps being
1236
1237
1238
        # seq_len - input_length
        scores = torch.stack(scores).reshape(len(scores), -1).transpose(0, 1)

1239
1240
1241
1242
1243
1244
1245
        # 3. Optionally normalize the logits (across the vocab dimension)
        if normalize_logits:
            scores = scores.reshape(-1, self.config.vocab_size, scores.shape[-1])
            scores = torch.nn.functional.log_softmax(scores, dim=1)
            scores = scores.reshape(-1, scores.shape[-1])

        # 4. cut beam_indices to longest beam length
1246
1247
        beam_indices_mask = beam_indices < 0
        max_beam_length = (1 - beam_indices_mask.long()).sum(-1).max()
1248
        beam_indices = beam_indices.clone()[:, :max_beam_length]
1249
1250
        beam_indices_mask = beam_indices_mask[:, :max_beam_length]

1251
        # 5. Set indices of beams that finished early to 0; such indices will be masked correctly afterwards
1252
1253
        beam_indices[beam_indices_mask] = 0

1254
        # 6. multiply beam_indices with vocab size to gather correctly from scores
1255
1256
        beam_sequence_indices = beam_indices * self.config.vocab_size

1257
        # 7. Define which indices contributed to scores
1258
1259
1260
        cut_idx = sequences.shape[-1] - max_beam_length
        indices = sequences[:, cut_idx:] + beam_sequence_indices

1261
        # 8. Compute scores
1262
1263
        transition_scores = scores.gather(0, indices)

1264
        # 9. Mask out transition_scores of beams that stopped early
1265
1266
1267
1268
1269
1270
1271
1272
1273
        transition_scores[beam_indices_mask] = 0

        return transition_scores

    def _validate_model_class(self):
        """
        Confirms that the model class is compatible with generation. If not, raises an exception that points to the
        right class to use.
        """
1274
        if not self.can_generate():
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
            generate_compatible_mappings = [
                MODEL_FOR_CAUSAL_LM_MAPPING,
                MODEL_FOR_CAUSAL_IMAGE_MODELING_MAPPING,
                MODEL_FOR_VISION_2_SEQ_MAPPING,
                MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING,
                MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING,
            ]
            generate_compatible_classes = set()
            for model_mapping in generate_compatible_mappings:
                supported_models = model_mapping.get(type(self.config), default=None)
                if supported_models is not None:
                    generate_compatible_classes.add(supported_models.__name__)
            exception_message = (
                f"The current model class ({self.__class__.__name__}) is not compatible with `.generate()`, as "
                "it doesn't have a language model head."
            )
            if generate_compatible_classes:
                exception_message += f" Please use one of the following classes instead: {generate_compatible_classes}"
            raise TypeError(exception_message)

    def _validate_model_kwargs(self, model_kwargs: Dict[str, Any]):
        """Validates model kwargs for generation. Generate argument typos will also be caught here."""
        # Excludes arguments that are handled before calling any model function
        if self.config.is_encoder_decoder:
            for key in ["decoder_input_ids"]:
                model_kwargs.pop(key, None)

        unused_model_args = []
        model_args = set(inspect.signature(self.prepare_inputs_for_generation).parameters)
1304
1305
1306
        # `kwargs`/`model_kwargs` is often used to handle optional forward pass inputs like `attention_mask`. If
        # `prepare_inputs_for_generation` doesn't accept them, then a stricter check can be made ;)
        if "kwargs" in model_args or "model_kwargs" in model_args:
1307
            model_args |= set(inspect.signature(self.forward).parameters)
1308
1309
1310
1311
1312
1313
1314

        # Encoder-Decoder models may also need Encoder arguments from `model_kwargs`
        if self.config.is_encoder_decoder:
            base_model = getattr(self, self.base_model_prefix, None)

            # allow encoder kwargs
            encoder = getattr(self, "encoder", None)
1315
1316
1317
1318
1319
            # `MusicgenForConditionalGeneration` has `text_encoder` and `audio_encoder`.
            # Also, it has `base_model_prefix = "encoder_decoder"` but there is no `self.encoder_decoder`
            # TODO: A better way to handle this.
            if encoder is None and base_model is not None:
                encoder = getattr(base_model, "encoder", None)
1320

1321
1322
1323
            if encoder is not None:
                encoder_model_args = set(inspect.signature(encoder.forward).parameters)
                model_args |= encoder_model_args
1324
1325
1326

            # allow decoder kwargs
            decoder = getattr(self, "decoder", None)
1327
1328
            if decoder is None and base_model is not None:
                decoder = getattr(base_model, "decoder", None)
1329

1330
1331
1332
            if decoder is not None:
                decoder_model_args = set(inspect.signature(decoder.forward).parameters)
                model_args |= {f"decoder_{x}" for x in decoder_model_args}
1333

1334
1335
1336
1337
            # allow assistant_encoder_outputs to be passed if we're doing assisted generating
            if "assistant_encoder_outputs" in model_kwargs:
                model_args |= {"assistant_encoder_outputs"}

1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
        for key, value in model_kwargs.items():
            if value is not None and key not in model_args:
                unused_model_args.append(key)

        if unused_model_args:
            raise ValueError(
                f"The following `model_kwargs` are not used by the model: {unused_model_args} (note: typos in the"
                " generate arguments will also show up in this list)"
            )

1348
1349
1350
1351
    def _validate_generated_length(self, generation_config, input_ids_length, has_default_max_length):
        """Performs validation related to the resulting generated length"""

        # 1. Max length warnings related to poor parameterization
1352
        if has_default_max_length and generation_config.max_new_tokens is None and generation_config.max_length == 20:
1353
1354
            # 20 is the default max_length of the generation config
            warnings.warn(
1355
                f"Using the model-agnostic default `max_length` (={generation_config.max_length}) to control the "
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
                "generation length. We recommend setting `max_new_tokens` to control the maximum length of the "
                "generation.",
                UserWarning,
            )
        if input_ids_length >= generation_config.max_length:
            input_ids_string = "decoder_input_ids" if self.config.is_encoder_decoder else "input_ids"
            warnings.warn(
                f"Input length of {input_ids_string} is {input_ids_length}, but `max_length` is set to"
                f" {generation_config.max_length}. This can lead to unexpected behavior. You should consider"
                " increasing `max_new_tokens`.",
                UserWarning,
            )

        # 2. Min length warnings due to unfeasible parameter combinations
        min_length_error_suffix = (
            " Generation will stop at the defined maximum length. You should decrease the minimum length and/or "
            "increase the maximum length."
        )
        if has_default_max_length:
            min_length_error_suffix += (
                f" Note that `max_length` is set to {generation_config.max_length}, its default value."
            )
        if generation_config.min_length is not None and generation_config.min_length > generation_config.max_length:
            warnings.warn(
                f"Unfeasible length constraints: `min_length` ({generation_config.min_length}) is larger than"
                f" the maximum possible length ({generation_config.max_length})." + min_length_error_suffix,
                UserWarning,
            )
        if generation_config.min_new_tokens is not None:
            min_length = generation_config.min_new_tokens + input_ids_length
            if min_length > generation_config.max_length:
                warnings.warn(
                    f"Unfeasible length constraints: `min_new_tokens` ({generation_config.min_new_tokens}), when "
                    f"added to the prompt length ({input_ids_length}), is larger than"
                    f" the maximum possible length ({generation_config.max_length})." + min_length_error_suffix,
                    UserWarning,
                )

1394
1395
1396
1397
    @torch.no_grad()
    def generate(
        self,
        inputs: Optional[torch.Tensor] = None,
1398
        generation_config: Optional[GenerationConfig] = None,
1399
1400
        logits_processor: Optional[LogitsProcessorList] = None,
        stopping_criteria: Optional[StoppingCriteriaList] = None,
1401
        prefix_allowed_tokens_fn: Optional[Callable[[int, torch.Tensor], List[int]]] = None,
1402
        synced_gpus: Optional[bool] = None,
1403
        assistant_model: Optional["PreTrainedModel"] = None,
1404
        streamer: Optional["BaseStreamer"] = None,
1405
1406
        negative_prompt_ids: Optional[torch.Tensor] = None,
        negative_prompt_attention_mask: Optional[torch.Tensor] = None,
1407
        **kwargs,
1408
1409
1410
    ) -> Union[GenerateOutput, torch.LongTensor]:
        r"""

1411
        Generates sequences of token ids for models with a language modeling head.
1412
1413
1414

        <Tip warning={true}>

1415
1416
        Most generation-controlling parameters are set in `generation_config` which, if not passed, will be set to the
        model's default generation configuration. You can override any `generation_config` by passing the corresponding
1417
        parameters to generate(), e.g. `.generate(inputs, num_beams=4, do_sample=True)`.
1418

1419
        For an overview of generation strategies and code examples, check out the [following
1420
        guide](../generation_strategies).
1421

1422
        </Tip>
1423
1424
1425
1426
1427
1428
1429

        Parameters:
            inputs (`torch.Tensor` of varying shape depending on the modality, *optional*):
                The sequence used as a prompt for the generation or as model inputs to the encoder. If `None` the
                method initializes it with `bos_token_id` and a batch size of 1. For decoder-only models `inputs`
                should of in the format of `input_ids`. For encoder-decoder models *inputs* can represent any of
                `input_ids`, `input_values`, `input_features`, or `pixel_values`.
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
            generation_config (`~generation.GenerationConfig`, *optional*):
                The generation configuration to be used as base parametrization for the generation call. `**kwargs`
                passed to generate matching the attributes of `generation_config` will override them. If
                `generation_config` is not provided, the default will be used, which had the following loading
                priority: 1) from the `generation_config.json` model file, if it exists; 2) from the model
                configuration. Please note that unspecified parameters will inherit [`~generation.GenerationConfig`]'s
                default values, whose documentation should be checked to parameterize generation.
            logits_processor (`LogitsProcessorList`, *optional*):
                Custom logits processors that complement the default logits processors built from arguments and
                generation config. If a logit processor is passed that is already created with the arguments or a
                generation config an error is thrown. This feature is intended for advanced users.
            stopping_criteria (`StoppingCriteriaList`, *optional*):
                Custom stopping criteria that complement the default stopping criteria built from arguments and a
                generation config. If a stopping criteria is passed that is already created with the arguments or a
1444
1445
1446
                generation config an error is thrown. If your stopping criteria depends on the `scores` input, make
                sure you pass `return_dict_in_generate=True, output_scores=True` to `generate`. This feature is
                intended for advanced users.
1447
1448
1449
1450
1451
1452
1453
            prefix_allowed_tokens_fn (`Callable[[int, torch.Tensor], List[int]]`, *optional*):
                If provided, this function constraints the beam search to allowed tokens only at each step. If not
                provided no constraint is applied. This function takes 2 arguments: the batch ID `batch_id` and
                `input_ids`. It has to return a list with the allowed tokens for the next generation step conditioned
                on the batch ID `batch_id` and the previously generated tokens `inputs_ids`. This argument is useful
                for constrained generation conditioned on the prefix, as described in [Autoregressive Entity
                Retrieval](https://arxiv.org/abs/2010.00904).
1454
1455
1456
1457
            synced_gpus (`bool`, *optional*):
                Whether to continue running the while loop until max_length. Unless overridden this flag will be set to
                `True` under DeepSpeed ZeRO Stage 3 multiple GPUs environment to avoid hanging if one GPU finished
                generating before other GPUs. Otherwise it'll be set to `False`.
1458
1459
1460
1461
1462
            assistant_model (`PreTrainedModel`, *optional*):
                An assistant model that can be used to accelerate generation. The assistant model must have the exact
                same tokenizer. The acceleration is achieved when forecasting candidate tokens with the assistent model
                is much faster than running generation with the model you're calling generate from. As such, the
                assistant model should be much smaller.
1463
1464
1465
            streamer (`BaseStreamer`, *optional*):
                Streamer object that will be used to stream the generated sequences. Generated tokens are passed
                through `streamer.put(token_ids)` and the streamer is responsible for any further processing.
1466
1467
1468
1469
1470
            negative_prompt_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
                The negative prompt needed for some processors such as CFG. The batch size must match the input batch
                size. This is an experimental feature, subject to breaking API changes in future versions.
            negative_prompt_attention_mask (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
                Attention_mask for `negative_prompt_ids`.
1471
            kwargs (`Dict[str, Any]`, *optional*):
1472
1473
1474
                Ad hoc parametrization of `generate_config` and/or additional model-specific kwargs that will be
                forwarded to the `forward` function of the model. If the model is an encoder-decoder model, encoder
                specific kwargs should not be prefixed and decoder specific kwargs should be prefixed with *decoder_*.
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494

        Return:
            [`~utils.ModelOutput`] or `torch.LongTensor`: A [`~utils.ModelOutput`] (if `return_dict_in_generate=True`
            or when `config.return_dict_in_generate=True`) or a `torch.FloatTensor`.

                If the model is *not* an encoder-decoder model (`model.config.is_encoder_decoder=False`), the possible
                [`~utils.ModelOutput`] types are:

                    - [`~generation.GreedySearchDecoderOnlyOutput`],
                    - [`~generation.SampleDecoderOnlyOutput`],
                    - [`~generation.BeamSearchDecoderOnlyOutput`],
                    - [`~generation.BeamSampleDecoderOnlyOutput`]

                If the model is an encoder-decoder model (`model.config.is_encoder_decoder=True`), the possible
                [`~utils.ModelOutput`] types are:

                    - [`~generation.GreedySearchEncoderDecoderOutput`],
                    - [`~generation.SampleEncoderDecoderOutput`],
                    - [`~generation.BeamSearchEncoderDecoderOutput`],
                    - [`~generation.BeamSampleEncoderDecoderOutput`]
1495
        """
1496
1497

        if synced_gpus is None:
1498
            if is_deepspeed_zero3_enabled() and dist.get_world_size() > 1:
1499
1500
1501
1502
                synced_gpus = True
            else:
                synced_gpus = False

1503
        # 1. Handle `generation_config` and kwargs that might update it, and validate the `.generate()` call
1504
        self._validate_model_class()
1505
1506
1507

        # priority: `generation_config` argument > `model.generation_config` (the default generation config)
        if generation_config is None:
1508
1509
1510
1511
1512
1513
1514
            # legacy: users may modify the model configuration to control generation. To trigger this legacy behavior,
            # two conditions must be met
            # 1) the generation config must have been created from the model config (`_from_model_config` field);
            # 2) the generation config must have seen no modification since its creation (the hash is the same).
            if self.generation_config._from_model_config and self.generation_config._original_object_hash == hash(
                self.generation_config
            ):
1515
1516
1517
1518
1519
                new_generation_config = GenerationConfig.from_model_config(self.config)
                if new_generation_config != self.generation_config:
                    warnings.warn(
                        "You have modified the pretrained model configuration to control generation. This is a"
                        " deprecated strategy to control generation and will be removed soon, in a future version."
1520
1521
                        " Please use and modify the model generation configuration (see"
                        " https://huggingface.co/docs/transformers/generation_strategies#default-text-generation-configuration )"
1522
1523
1524
1525
1526
1527
                    )
                    self.generation_config = new_generation_config
            generation_config = self.generation_config

        generation_config = copy.deepcopy(generation_config)
        model_kwargs = generation_config.update(**kwargs)  # All unused kwargs must be model kwargs
1528
        generation_config.validate()
1529
1530
        self._validate_model_kwargs(model_kwargs.copy())

1531
        # 2. Set generation parameters if not already defined
1532
1533
1534
        logits_processor = logits_processor if logits_processor is not None else LogitsProcessorList()
        stopping_criteria = stopping_criteria if stopping_criteria is not None else StoppingCriteriaList()

1535
        if generation_config.pad_token_id is None and generation_config.eos_token_id is not None:
1536
1537
1538
1539
1540
            if model_kwargs.get("attention_mask", None) is None:
                logger.warning(
                    "The attention mask and the pad token id were not set. As a consequence, you may observe "
                    "unexpected behavior. Please pass your input's `attention_mask` to obtain reliable results."
                )
1541
1542
1543
1544
1545
            eos_token_id = generation_config.eos_token_id
            if isinstance(eos_token_id, list):
                eos_token_id = eos_token_id[0]
            logger.warning(f"Setting `pad_token_id` to `eos_token_id`:{eos_token_id} for open-end generation.")
            generation_config.pad_token_id = eos_token_id
1546

1547
        # 3. Define model inputs
1548
1549
1550
1551
        # inputs_tensor has to be defined
        # model_input_name is defined if model-specific keyword input is passed
        # otherwise model_input_name is None
        # all model-specific keyword inputs are removed from `model_kwargs`
1552
1553
1554
        inputs_tensor, model_input_name, model_kwargs = self._prepare_model_inputs(
            inputs, generation_config.bos_token_id, model_kwargs
        )
1555
1556
        batch_size = inputs_tensor.shape[0]

1557
1558
1559
        # 4. Define other model kwargs
        model_kwargs["output_attentions"] = generation_config.output_attentions
        model_kwargs["output_hidden_states"] = generation_config.output_hidden_states
1560
1561
1562
1563
1564
1565
        # decoder-only models with inputs_embeds forwarding must use caching (otherwise we can't detect whether we are
        # generating the first new token or not, and we only want to use the embeddings for the first new token)
        if not self.config.is_encoder_decoder and model_input_name == "inputs_embeds":
            model_kwargs["use_cache"] = True
        else:
            model_kwargs["use_cache"] = generation_config.use_cache
1566
1567
1568
1569
1570
1571

        accepts_attention_mask = "attention_mask" in set(inspect.signature(self.forward).parameters.keys())
        requires_attention_mask = "encoder_outputs" not in model_kwargs

        if model_kwargs.get("attention_mask", None) is None and requires_attention_mask and accepts_attention_mask:
            model_kwargs["attention_mask"] = self._prepare_attention_mask_for_generation(
1572
                inputs_tensor, generation_config.pad_token_id, generation_config.eos_token_id
1573
1574
1575
1576
            )

        # decoder-only models should use left-padding for generation
        if not self.config.is_encoder_decoder:
1577
1578
            # If `input_ids` was given, check if the last id in any sequence is `pad_token_id`
            # Note: If using, `inputs_embeds` this check does not work, because we want to be more hands-off.
1579
1580
            if (
                generation_config.pad_token_id is not None
1581
                and len(inputs_tensor.shape) == 2
1582
1583
                and torch.sum(inputs_tensor[:, -1] == generation_config.pad_token_id) > 0
            ):
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
                logger.warning(
                    "A decoder-only architecture is being used, but right-padding was detected! For correct "
                    "generation results, please set `padding_side='left'` when initializing the tokenizer."
                )

        if self.config.is_encoder_decoder and "encoder_outputs" not in model_kwargs:
            # if model is encoder decoder encoder_outputs are created
            # and added to `model_kwargs`
            model_kwargs = self._prepare_encoder_decoder_kwargs_for_generation(
                inputs_tensor, model_kwargs, model_input_name
            )

1596
        # 5. Prepare `input_ids` which will be used for auto-regressive generation
1597
        if self.config.is_encoder_decoder:
1598
1599
1600
1601
            input_ids, model_kwargs = self._prepare_decoder_input_ids_for_generation(
                batch_size=batch_size,
                model_input_name=model_input_name,
                model_kwargs=model_kwargs,
1602
1603
                decoder_start_token_id=generation_config.decoder_start_token_id,
                bos_token_id=generation_config.bos_token_id,
1604
1605
1606
                device=inputs_tensor.device,
            )
        else:
1607
            input_ids = inputs_tensor if model_input_name == "input_ids" else model_kwargs.pop("input_ids")
1608

1609
1610
1611
        if streamer is not None:
            streamer.put(input_ids.cpu())

1612
        # 6. Prepare `max_length` depending on other stopping criteria.
1613
        input_ids_length = input_ids.shape[-1]
1614
        has_default_max_length = kwargs.get("max_length") is None and generation_config.max_length is not None
1615
        if generation_config.max_new_tokens is not None:
1616
            if not has_default_max_length and generation_config.max_length is not None:
1617
                logger.warning(
1618
1619
1620
                    f"Both `max_new_tokens` (={generation_config.max_new_tokens}) and `max_length`(="
                    f"{generation_config.max_length}) seem to have been set. `max_new_tokens` will take precedence. "
                    "Please refer to the documentation for more information. "
1621
                    "(https://huggingface.co/docs/transformers/main/en/main_classes/text_generation)"
1622
                )
1623
1624
            generation_config.max_length = generation_config.max_new_tokens + input_ids_length
        self._validate_generated_length(generation_config, input_ids_length, has_default_max_length)
1625

1626
        # 7. determine generation mode
1627
        generation_mode = self._get_generation_mode(generation_config, assistant_model)
1628

1629
1630
1631
1632
1633
        if streamer is not None and (generation_config.num_beams > 1):
            raise ValueError(
                "`streamer` cannot be used with beam search (yet!). Make sure that `num_beams` is set to 1."
            )

1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
        if self.device.type != input_ids.device.type:
            warnings.warn(
                "You are calling .generate() with the `input_ids` being on a device type different"
                f" than your model's device. `input_ids` is on {input_ids.device.type}, whereas the model"
                f" is on {self.device.type}. You may experience unexpected behaviors or slower generation."
                " Please make sure that you have put `input_ids` to the"
                f" correct device by calling for example input_ids = input_ids.to('{self.device.type}') before"
                " running `.generate()`.",
                UserWarning,
            )

1645
        # 8. prepare distribution pre_processing samplers
1646
        logits_processor = self._get_logits_processor(
1647
            generation_config=generation_config,
1648
            input_ids_seq_length=input_ids_length,
1649
1650
1651
            encoder_input_ids=inputs_tensor,
            prefix_allowed_tokens_fn=prefix_allowed_tokens_fn,
            logits_processor=logits_processor,
1652
1653
1654
            model_kwargs=model_kwargs,
            negative_prompt_ids=negative_prompt_ids,
            negative_prompt_attention_mask=negative_prompt_attention_mask,
1655
1656
        )

1657
        # 9. prepare stopping criteria
1658
        stopping_criteria = self._get_stopping_criteria(
1659
            generation_config=generation_config, stopping_criteria=stopping_criteria
1660
        )
1661
        # 10. go into different generation modes
1662
        if generation_mode == GenerationMode.ASSISTED_GENERATION:
1663
1664
            if generation_config.num_return_sequences > 1:
                raise ValueError(
1665
                    "num_return_sequences has to be 1 when doing assisted generate, "
1666
1667
1668
                    f"but is {generation_config.num_return_sequences}."
                )
            if batch_size > 1:
1669
                raise ValueError("assisted generate is only supported for batch_size = 1")
1670
            if not model_kwargs["use_cache"]:
1671
                raise ValueError("assisted generate requires `use_cache=True`")
1672

1673
1674
1675
1676
            assistant_accepts_encoder_outputs = "encoder_outputs" in set(
                inspect.signature(assistant_model.forward).parameters.keys()
            )

1677
            # 11. If the assistant model is an encoder-decoder, prepare its encoder outputs
1678
            if assistant_model.config.is_encoder_decoder and "assistant_encoder_outputs" not in model_kwargs:
1679
1680
1681
1682
1683
1684
1685
1686
1687
                assistant_model_kwargs = copy.deepcopy(model_kwargs)
                inputs_tensor, model_input_name, assistant_model_kwargs = assistant_model._prepare_model_inputs(
                    inputs_tensor, assistant_model.generation_config.bos_token_id, assistant_model_kwargs
                )
                assistant_model_kwargs = assistant_model._prepare_encoder_decoder_kwargs_for_generation(
                    inputs_tensor, assistant_model_kwargs, model_input_name
                )
                model_kwargs["assistant_encoder_outputs"] = assistant_model_kwargs["encoder_outputs"]

1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
            if (
                not assistant_model.config.is_encoder_decoder
                and assistant_accepts_encoder_outputs
                and "encoder_outputs" in model_kwargs
            ):
                # some assistants might be assymetric (many more enc layers than dec layers)
                # encoder-decoder models that share the exact same encoder as the teacher
                # in this case the assistant only needs to load the light-weight decoder,
                # but still requires `encoder_outputs` to be passed
                model_kwargs["assistant_encoder_outputs"] = model_kwargs["encoder_outputs"]

1699
1700
            # 12. run assisted generate
            return self.assisted_decoding(
1701
1702
                input_ids,
                assistant_model=assistant_model,
1703
                do_sample=generation_config.do_sample,
1704
                logits_processor=logits_processor,
1705
                logits_warper=self._get_logits_warper(generation_config) if generation_config.do_sample else None,
1706
1707
1708
1709
1710
1711
1712
1713
1714
                stopping_criteria=stopping_criteria,
                pad_token_id=generation_config.pad_token_id,
                eos_token_id=generation_config.eos_token_id,
                output_scores=generation_config.output_scores,
                return_dict_in_generate=generation_config.return_dict_in_generate,
                synced_gpus=synced_gpus,
                streamer=streamer,
                **model_kwargs,
            )
1715
        if generation_mode == GenerationMode.GREEDY_SEARCH:
1716
            # 11. run greedy search
1717
1718
1719
1720
            return self.greedy_search(
                input_ids,
                logits_processor=logits_processor,
                stopping_criteria=stopping_criteria,
1721
1722
1723
1724
                pad_token_id=generation_config.pad_token_id,
                eos_token_id=generation_config.eos_token_id,
                output_scores=generation_config.output_scores,
                return_dict_in_generate=generation_config.return_dict_in_generate,
1725
                synced_gpus=synced_gpus,
1726
                streamer=streamer,
1727
1728
1729
                **model_kwargs,
            )

1730
        elif generation_mode == GenerationMode.CONTRASTIVE_SEARCH:
1731
1732
            if not model_kwargs["use_cache"]:
                raise ValueError("Contrastive search requires `use_cache=True`")
1733
1734
1735

            return self.contrastive_search(
                input_ids,
1736
1737
                top_k=generation_config.top_k,
                penalty_alpha=generation_config.penalty_alpha,
1738
1739
                logits_processor=logits_processor,
                stopping_criteria=stopping_criteria,
1740
1741
1742
1743
                pad_token_id=generation_config.pad_token_id,
                eos_token_id=generation_config.eos_token_id,
                output_scores=generation_config.output_scores,
                return_dict_in_generate=generation_config.return_dict_in_generate,
1744
                synced_gpus=synced_gpus,
1745
                streamer=streamer,
1746
                sequential=generation_config.low_memory,
1747
1748
1749
                **model_kwargs,
            )

1750
        elif generation_mode == GenerationMode.SAMPLE:
1751
1752
            # 11. prepare logits warper
            logits_warper = self._get_logits_warper(generation_config)
1753

1754
            # 12. expand input_ids with `num_return_sequences` additional sequences per batch
1755
1756
            input_ids, model_kwargs = self._expand_inputs_for_generation(
                input_ids=input_ids,
1757
                expand_size=generation_config.num_return_sequences,
1758
1759
1760
1761
                is_encoder_decoder=self.config.is_encoder_decoder,
                **model_kwargs,
            )

1762
            # 13. run sample
1763
1764
1765
1766
1767
            return self.sample(
                input_ids,
                logits_processor=logits_processor,
                logits_warper=logits_warper,
                stopping_criteria=stopping_criteria,
1768
1769
1770
1771
                pad_token_id=generation_config.pad_token_id,
                eos_token_id=generation_config.eos_token_id,
                output_scores=generation_config.output_scores,
                return_dict_in_generate=generation_config.return_dict_in_generate,
1772
                synced_gpus=synced_gpus,
1773
                streamer=streamer,
1774
1775
1776
                **model_kwargs,
            )

1777
        elif generation_mode == GenerationMode.BEAM_SEARCH:
1778
            # 11. prepare beam search scorer
1779
1780
            beam_scorer = BeamSearchScorer(
                batch_size=batch_size,
1781
                num_beams=generation_config.num_beams,
1782
                device=inputs_tensor.device,
1783
1784
1785
                length_penalty=generation_config.length_penalty,
                do_early_stopping=generation_config.early_stopping,
                num_beam_hyps_to_keep=generation_config.num_return_sequences,
1786
                max_length=generation_config.max_length,
1787
            )
1788
            # 12. interleave input_ids with `num_beams` additional sequences per batch
1789
1790
            input_ids, model_kwargs = self._expand_inputs_for_generation(
                input_ids=input_ids,
1791
                expand_size=generation_config.num_beams,
1792
1793
1794
                is_encoder_decoder=self.config.is_encoder_decoder,
                **model_kwargs,
            )
1795
            # 13. run beam search
1796
1797
1798
1799
1800
            return self.beam_search(
                input_ids,
                beam_scorer,
                logits_processor=logits_processor,
                stopping_criteria=stopping_criteria,
1801
1802
1803
1804
                pad_token_id=generation_config.pad_token_id,
                eos_token_id=generation_config.eos_token_id,
                output_scores=generation_config.output_scores,
                return_dict_in_generate=generation_config.return_dict_in_generate,
1805
1806
1807
1808
                synced_gpus=synced_gpus,
                **model_kwargs,
            )

1809
        elif generation_mode == GenerationMode.BEAM_SAMPLE:
1810
1811
            # 11. prepare logits warper
            logits_warper = self._get_logits_warper(generation_config)
1812

1813
            # 12. prepare beam search scorer
1814
            beam_scorer = BeamSearchScorer(
1815
                batch_size=batch_size,
1816
                num_beams=generation_config.num_beams,
1817
                device=inputs_tensor.device,
1818
1819
                length_penalty=generation_config.length_penalty,
                do_early_stopping=generation_config.early_stopping,
1820
                num_beam_hyps_to_keep=generation_config.num_return_sequences,
1821
                max_length=generation_config.max_length,
1822
1823
            )

1824
            # 13. interleave input_ids with `num_beams` additional sequences per batch
1825
1826
            input_ids, model_kwargs = self._expand_inputs_for_generation(
                input_ids=input_ids,
1827
                expand_size=generation_config.num_beams,
1828
1829
1830
1831
                is_encoder_decoder=self.config.is_encoder_decoder,
                **model_kwargs,
            )

1832
            # 14. run beam sample
1833
1834
1835
1836
1837
1838
            return self.beam_sample(
                input_ids,
                beam_scorer,
                logits_processor=logits_processor,
                logits_warper=logits_warper,
                stopping_criteria=stopping_criteria,
1839
1840
1841
1842
                pad_token_id=generation_config.pad_token_id,
                eos_token_id=generation_config.eos_token_id,
                output_scores=generation_config.output_scores,
                return_dict_in_generate=generation_config.return_dict_in_generate,
1843
1844
1845
1846
                synced_gpus=synced_gpus,
                **model_kwargs,
            )

1847
        elif generation_mode == GenerationMode.GROUP_BEAM_SEARCH:
1848
            # 11. prepare beam search scorer
1849
1850
            beam_scorer = BeamSearchScorer(
                batch_size=batch_size,
1851
                num_beams=generation_config.num_beams,
1852
                device=inputs_tensor.device,
1853
1854
1855
1856
                length_penalty=generation_config.length_penalty,
                do_early_stopping=generation_config.early_stopping,
                num_beam_hyps_to_keep=generation_config.num_return_sequences,
                num_beam_groups=generation_config.num_beam_groups,
1857
                max_length=generation_config.max_length,
1858
            )
1859
            # 12. interleave input_ids with `num_beams` additional sequences per batch
1860
1861
            input_ids, model_kwargs = self._expand_inputs_for_generation(
                input_ids=input_ids,
1862
                expand_size=generation_config.num_beams,
1863
1864
1865
                is_encoder_decoder=self.config.is_encoder_decoder,
                **model_kwargs,
            )
1866
            # 13. run beam search
1867
1868
1869
1870
1871
            return self.group_beam_search(
                input_ids,
                beam_scorer,
                logits_processor=logits_processor,
                stopping_criteria=stopping_criteria,
1872
1873
1874
1875
                pad_token_id=generation_config.pad_token_id,
                eos_token_id=generation_config.eos_token_id,
                output_scores=generation_config.output_scores,
                return_dict_in_generate=generation_config.return_dict_in_generate,
1876
1877
1878
1879
                synced_gpus=synced_gpus,
                **model_kwargs,
            )

1880
        elif generation_mode == GenerationMode.CONSTRAINED_BEAM_SEARCH:
1881
            final_constraints = []
1882
1883
            if generation_config.constraints is not None:
                final_constraints = generation_config.constraints
1884

1885
            if generation_config.force_words_ids is not None:
1886
1887
1888

                def typeerror():
                    raise ValueError(
1889
                        "`force_words_ids` has to either be a `List[List[List[int]]]` or `List[List[int]]` "
1890
                        f"of positive integers, but is {generation_config.force_words_ids}."
1891
1892
                    )

1893
1894
1895
1896
                if (
                    not isinstance(generation_config.force_words_ids, list)
                    or len(generation_config.force_words_ids) == 0
                ):
1897
1898
                    typeerror()

1899
                for word_ids in generation_config.force_words_ids:
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
                    if isinstance(word_ids[0], list):
                        if not isinstance(word_ids, list) or len(word_ids) == 0:
                            typeerror()
                        if any(not isinstance(token_ids, list) for token_ids in word_ids):
                            typeerror()
                        if any(
                            any((not isinstance(token_id, int) or token_id < 0) for token_id in token_ids)
                            for token_ids in word_ids
                        ):
                            typeerror()

                        constraint = DisjunctiveConstraint(word_ids)
                    else:
                        if not isinstance(word_ids, list) or len(word_ids) == 0:
                            typeerror()
                        if any((not isinstance(token_id, int) or token_id < 0) for token_id in word_ids):
                            typeerror()

                        constraint = PhrasalConstraint(word_ids)
                    final_constraints.append(constraint)

1921
            # 11. prepare beam search scorer
1922
1923
1924
            constrained_beam_scorer = ConstrainedBeamSearchScorer(
                constraints=final_constraints,
                batch_size=batch_size,
1925
                num_beams=generation_config.num_beams,
1926
                device=inputs_tensor.device,
1927
1928
1929
                length_penalty=generation_config.length_penalty,
                do_early_stopping=generation_config.early_stopping,
                num_beam_hyps_to_keep=generation_config.num_return_sequences,
1930
                max_length=generation_config.max_length,
1931
            )
1932
            # 12. interleave input_ids with `num_beams` additional sequences per batch
1933
1934
            input_ids, model_kwargs = self._expand_inputs_for_generation(
                input_ids=input_ids,
1935
                expand_size=generation_config.num_beams,
1936
1937
1938
                is_encoder_decoder=self.config.is_encoder_decoder,
                **model_kwargs,
            )
1939
            # 13. run beam search
1940
1941
1942
1943
1944
            return self.constrained_beam_search(
                input_ids,
                constrained_beam_scorer=constrained_beam_scorer,
                logits_processor=logits_processor,
                stopping_criteria=stopping_criteria,
1945
1946
1947
1948
                pad_token_id=generation_config.pad_token_id,
                eos_token_id=generation_config.eos_token_id,
                output_scores=generation_config.output_scores,
                return_dict_in_generate=generation_config.return_dict_in_generate,
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
                synced_gpus=synced_gpus,
                **model_kwargs,
            )

    @torch.no_grad()
    def contrastive_search(
        self,
        input_ids: torch.LongTensor,
        top_k: Optional[int] = 1,
        penalty_alpha: Optional[float] = 0,
        logits_processor: Optional[LogitsProcessorList] = None,
        logits_warper: Optional[LogitsProcessorList] = None,
        stopping_criteria: Optional[StoppingCriteriaList] = None,
        pad_token_id: Optional[int] = None,
1963
        eos_token_id: Optional[Union[int, List[int]]] = None,
1964
1965
1966
1967
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        output_scores: Optional[bool] = None,
        return_dict_in_generate: Optional[bool] = None,
1968
        synced_gpus: bool = False,
1969
        streamer: Optional["BaseStreamer"] = None,
1970
        sequential: Optional[bool] = None,
1971
1972
1973
1974
1975
1976
        **model_kwargs,
    ) -> Union[ContrastiveSearchOutput, torch.LongTensor]:
        r"""
        Generates sequences of token ids for models with a language modeling head using **contrastive search** and can
        be used for text-decoder, text-to-text, speech-to-text, and vision-to-text models.

1977
1978
1979
1980
        <Tip warning={true}>

        In most cases, you do not need to call [`~generation.GenerationMixin.contrastive_search`] directly. Use
        generate() instead. For an overview of generation strategies and code examples, check the [following
1981
        guide](../generation_strategies).
1982
1983
1984

        </Tip>

1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
        Parameters:
            input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
                The sequence used as a prompt for the generation.
            top_k (`int`, *optional*, defaults to 1):
                The size of the candidate set that is used to re-rank for contrastive search
            penalty_alpha (`float`, *optional*, defaults to 0):
                The degeneration penalty for contrastive search; activate when it is larger than 0
            logits_processor (`LogitsProcessorList`, *optional*):
                An instance of [`LogitsProcessorList`]. List of instances of class derived from [`LogitsProcessor`]
                used to modify the prediction scores of the language modeling head applied at each generation step.
            logits_warper (`LogitsProcessorList`, *optional*):
                An instance of [`LogitsProcessorList`]. List of instances of class derived from [`LogitsWarper`] used
                to warp the prediction score distribution of the language modeling head applied before multinomial
                sampling at each generation step.
            stopping_criteria (`StoppingCriteriaList`, *optional*):
                An instance of [`StoppingCriteriaList`]. List of instances of class derived from [`StoppingCriteria`]
                used to tell if the generation loop should stop.
            pad_token_id (`int`, *optional*):
                The id of the *padding* token.
2004
2005
            eos_token_id (`Union[int, List[int]]`, *optional*):
                The id of the *end-of-sequence* token. Optionally, use a list to set multiple *end-of-sequence* tokens.
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
            output_attentions (`bool`, *optional*, defaults to `False`):
                Whether or not to return the attentions tensors of all attention layers. See `attentions` under
                returned tensors for more details.
            output_hidden_states (`bool`, *optional*, defaults to `False`):
                Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
                for more details.
            output_scores (`bool`, *optional*, defaults to `False`):
                Whether or not to return the prediction scores. See `scores` under returned tensors for more details.
            return_dict_in_generate (`bool`, *optional*, defaults to `False`):
                Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
            synced_gpus (`bool`, *optional*, defaults to `False`):
                Whether to continue running the while loop until max_length (needed for ZeRO stage 3)
2018
2019
2020
            streamer (`BaseStreamer`, *optional*):
                Streamer object that will be used to stream the generated sequences. Generated tokens are passed
                through `streamer.put(token_ids)` and the streamer is responsible for any further processing.
2021
2022
            sequential (`bool`, *optional*):
                Switches topk hidden state computation from parallel to sequential to reduce memory if True.
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
            model_kwargs:
                Additional model specific keyword arguments will be forwarded to the `forward` function of the model.
                If model is an encoder-decoder model the kwargs should include `encoder_outputs`.

        Return:
            [`~generation.ContrastiveSearchDecoderOnlyOutput`], [`~generation.ContrastiveSearchEncoderDecoderOutput`]
            or `torch.LongTensor`: A `torch.LongTensor` containing the generated tokens (default behaviour) or a
            [`~generation.ContrastiveSearchDecoderOnlyOutput`] if `model.config.is_encoder_decoder=False` and
            `return_dict_in_generate=True` or a [`~generation.ContrastiveSearchEncoderDecoderOutput`] if
            `model.config.is_encoder_decoder=True`.

        Examples:
        ```python
        >>> from transformers import (
        ...     AutoTokenizer,
        ...     AutoModelForCausalLM,
        ...     StoppingCriteriaList,
        ...     MaxLengthCriteria,
        ... )

        >>> tokenizer = AutoTokenizer.from_pretrained("facebook/opt-125m")
        >>> model = AutoModelForCausalLM.from_pretrained("facebook/opt-125m")
        >>> # set pad_token_id to eos_token_id because OPT does not have a PAD token
        >>> model.config.pad_token_id = model.config.eos_token_id
        >>> input_prompt = "DeepMind Company is"
        >>> input_ids = tokenizer(input_prompt, return_tensors="pt")
        >>> stopping_criteria = StoppingCriteriaList([MaxLengthCriteria(max_length=64)])
        >>> outputs = model.contrastive_search(
        ...     **input_ids, penalty_alpha=0.6, top_k=4, stopping_criteria=stopping_criteria
        ... )
        >>> tokenizer.batch_decode(outputs, skip_special_tokens=True)
        ['DeepMind Company is a company that focuses on the development and commercialization of artificial intelligence (AI). DeepMind’s mission is to help people understand and solve problems that are difficult to solve in the world today.\n\nIn this post, we talk about the benefits of deep learning in business and how it']
        ```"""
        # init values
        logits_processor = logits_processor if logits_processor is not None else LogitsProcessorList()
        logits_warper = logits_warper if logits_warper is not None else LogitsProcessorList()
        stopping_criteria = stopping_criteria if stopping_criteria is not None else StoppingCriteriaList()
2060
2061
        pad_token_id = pad_token_id if pad_token_id is not None else self.generation_config.pad_token_id
        eos_token_id = eos_token_id if eos_token_id is not None else self.generation_config.eos_token_id
2062
        sequential = sequential if sequential is not None else self.generation_config.low_memory
2063
2064
        if isinstance(eos_token_id, int):
            eos_token_id = [eos_token_id]
2065
        eos_token_id_tensor = torch.tensor(eos_token_id).to(input_ids.device) if eos_token_id is not None else None
2066
2067
2068
2069
        output_scores = output_scores if output_scores is not None else self.generation_config.output_scores
        output_attentions = (
            output_attentions if output_attentions is not None else self.generation_config.output_attentions
        )
2070
        output_hidden_states = (
2071
            output_hidden_states if output_hidden_states is not None else self.generation_config.output_hidden_states
2072
2073
        )
        return_dict_in_generate = (
2074
2075
2076
            return_dict_in_generate
            if return_dict_in_generate is not None
            else self.generation_config.return_dict_in_generate
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
        )

        # init attention / hidden states / scores tuples
        scores = () if (return_dict_in_generate and output_scores) else None
        decoder_attentions = () if (return_dict_in_generate and output_attentions) else None
        cross_attentions = () if (return_dict_in_generate and output_attentions) else None
        decoder_hidden_states = () if (return_dict_in_generate and output_hidden_states) else None

        # if model is an encoder-decoder, retrieve encoder attention weights and hidden states
        if return_dict_in_generate and self.config.is_encoder_decoder:
            encoder_attentions = model_kwargs["encoder_outputs"].get("attentions") if output_attentions else None
            encoder_hidden_states = (
                model_kwargs["encoder_outputs"].get("hidden_states") if output_hidden_states else None
            )

        # keep track of which sequences are already finished
2093
        unfinished_sequences = torch.ones(input_ids.shape[0], dtype=torch.long, device=input_ids.device)
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110

        this_peer_finished = False  # used by synced_gpus only
        batch_size = input_ids.shape[0]

        while True:
            if synced_gpus:
                # Under synced_gpus the `forward` call must continue until all gpus complete their sequence.
                # The following logic allows an early break if all peers finished generating their sequence
                this_peer_finished_flag = torch.tensor(0.0 if this_peer_finished else 1.0).to(input_ids.device)
                # send 0.0 if we finished, 1.0 otherwise
                dist.all_reduce(this_peer_finished_flag, op=dist.ReduceOp.SUM)
                # did all peers finish? the reduced sum will be 0.0 then
                if this_peer_finished_flag.item() == 0.0:
                    break

            # if the first step in the loop, encode all the prefix and obtain: (1) past_key_values;
            # (2) last_hidden_states; (3) logit_for_next_step; (4) update model kwargs for the next step
2111
            if model_kwargs.get("past_key_values") is None:
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
                # prepare inputs
                model_kwargs["use_cache"] = True
                model_inputs = self.prepare_inputs_for_generation(input_ids, **model_kwargs)

                # encode the given prefix and prepare model inputs; encoder-decoder model process the prefix and save
                # the `encoder_outputs`
                outputs = self(
                    **model_inputs, return_dict=True, output_hidden_states=True, output_attentions=output_attentions
                )

                # last decoder hidden states will be used to compute the degeneration penalty (cosine similarity with
                # previous tokens)
                if self.config.is_encoder_decoder:
                    last_hidden_states = outputs.decoder_hidden_states[-1]
                else:
                    last_hidden_states = outputs.hidden_states[-1]
2128

2129
2130
2131
2132
                # next logit for contrastive search to select top-k candidate tokens
                logit_for_next_step = outputs.logits[:, -1, :]

                model_kwargs = self._update_model_kwargs_for_generation(
2133
2134
2135
2136
                    outputs,
                    model_kwargs,
                    is_encoder_decoder=self.config.is_encoder_decoder,
                    standardize_cache_format=True,
2137
                )
2138
2139
2140
2141
2142
                if not sequential:
                    # Expands model inputs top_k times, for batched forward passes (akin to beam search).
                    _, model_kwargs = self._expand_inputs_for_generation(
                        expand_size=top_k, is_encoder_decoder=self.config.is_encoder_decoder, **model_kwargs
                    )
2143

2144
2145
                past_key_values = model_kwargs.get("past_key_values")
                if past_key_values is None:
2146
2147
2148
2149
                    raise ValueError(
                        f"{self.__class__.__name__} does not support caching and therefore **can't** be used "
                        "for contrastive search."
                    )
2150
2151
2152
2153
                elif (
                    not isinstance(past_key_values[0], (tuple, torch.Tensor))
                    or past_key_values[0][0].shape[0] != batch_size
                ):
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
                    raise ValueError(
                        f"{self.__class__.__name__} does not have a standard cache format and therefore **can't** be "
                        "used for contrastive search without further modifications."
                    )

            # contrastive_search main logic start:
            # contrastive search decoding consists of two steps: (1) candidate tokens recall; (2) candidate re-rank by
            # degeneration penalty
            logit_for_next_step = logits_processor(input_ids, logit_for_next_step)
            logit_for_next_step = logits_warper(input_ids, logit_for_next_step)
            next_probs = nn.functional.softmax(logit_for_next_step, dim=-1)
            top_k_probs, top_k_ids = torch.topk(next_probs, dim=-1, k=top_k)

            # Store scores, attentions and hidden_states when required
            if return_dict_in_generate:
                if output_scores:
                    scores += (logit_for_next_step,)
                if output_attentions:
                    decoder_attentions += (
                        (outputs.decoder_attentions,) if self.config.is_encoder_decoder else (outputs.attentions,)
                    )
                    if self.config.is_encoder_decoder:
                        cross_attentions += (outputs.cross_attentions,)

                if output_hidden_states:
                    decoder_hidden_states += (
                        (outputs.decoder_hidden_states,)
                        if self.config.is_encoder_decoder
                        else (outputs.hidden_states,)
                    )

            # Replicates the new past_key_values to match the `top_k` candidates
            new_key_values = []
2187
            for layer in model_kwargs["past_key_values"]:
2188
2189
2190
                items = []
                # item is either the key or the value matrix
                for item in layer:
2191
2192
2193
2194
                    if sequential:
                        items.append(item.repeat_interleave(1, dim=0))
                    else:
                        items.append(item.repeat_interleave(top_k, dim=0))
2195
2196
                new_key_values.append(tuple(items))
            model_kwargs["past_key_values"] = tuple(new_key_values)
2197

2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
            if sequential:
                all_outputs = {key: [] for key in outputs}  # defined in first loop iteration
                all_last_hstates, all_hstates, all_logits = [], [], []
                for i in range(top_k):
                    # compute the candidate tokens by the language model and collect their hidden_states
                    next_model_inputs = self.prepare_inputs_for_generation(top_k_ids[:, i].view(-1, 1), **model_kwargs)

                    outputs = self(
                        **next_model_inputs,
                        return_dict=True,
                        output_hidden_states=True,
                        output_attentions=output_attentions,
                    )
                    for key in all_outputs:
                        all_outputs[key].append(outputs[key])

                    if self.config.is_encoder_decoder:
                        next_hidden = outputs.decoder_hidden_states[-1]
                        full_hidden_states = outputs.decoder_hidden_states

                    else:
                        next_hidden = outputs.hidden_states[-1]
                        full_hidden_states = outputs.hidden_states

                    all_last_hstates.append(torch.squeeze(next_hidden, 0))
                    all_hstates.append(full_hidden_states)
                    all_logits.append(outputs.logits[:, -1, :])

                # stack hidden states
                next_hidden = torch.stack([all_last_hstates[i] for i in range(top_k)], dim=0)
                final_full_hstates = [0 for i in range(len(full_hidden_states))]
                for layer in range(len(full_hidden_states)):
                    final_full_hstates[layer] = torch.stack(
                        [torch.squeeze(all_hstates[i][layer], 0) for i in range(top_k)], dim=0
                    )
                full_hidden_states = tuple(final_full_hstates)

                # stack logits
                logits = torch.cat(all_logits, dim=0)
2237
2238

            else:
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
                # compute the candidate tokens by the language model and collect their hidden_states
                # assembles top_k_ids into batch of size k
                next_model_inputs = self.prepare_inputs_for_generation(top_k_ids.view(-1, 1), **model_kwargs)

                outputs = self(
                    **next_model_inputs,
                    return_dict=True,
                    output_hidden_states=True,
                    output_attentions=output_attentions,
                )
                # name is different for encoder-decoder and decoder-only models
                if self.config.is_encoder_decoder:
                    next_hidden = outputs.decoder_hidden_states[-1]
                    full_hidden_states = outputs.decoder_hidden_states
                else:
                    next_hidden = outputs.hidden_states[-1]
                    full_hidden_states = outputs.hidden_states

                logits = outputs.logits[:, -1, :]

2259
2260
2261
            context_hidden = last_hidden_states.repeat_interleave(top_k, dim=0)

            # compute the degeneration penalty and re-rank the candidates based on the degeneration penalty and the
2262
2263
            # model confidence. Keeping `selected_idx` on CPU enables multi-device contrastive search and doesn't
            # introduce (noticeable) slowdowns on single-device runs.
2264
            selected_idx = _ranking_fast(context_hidden, next_hidden, top_k_probs, penalty_alpha, top_k)
2265
            selected_idx = selected_idx.to("cpu")
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279

            # prepare for the next step: (1) next token_id; (2) past_key_values; (3) last_hidden_states for computing
            # the degeneration penalty; (4) logits for selecting next top-k candidates; (5) selected tokens scores
            # (model confidence minus degeneration penalty); (6) decoder hidden_states
            next_tokens = top_k_ids[range(len(top_k_ids)), selected_idx]
            next_hidden = torch.stack(torch.split(next_hidden.squeeze(dim=1), top_k))
            next_hidden = next_hidden[range(batch_size), selected_idx, :]
            last_hidden_states = torch.cat([last_hidden_states, next_hidden.unsqueeze(1)], dim=1)

            next_decoder_hidden_states = ()
            for layer in full_hidden_states:
                layer = torch.stack(torch.split(layer, top_k))[range(batch_size), selected_idx, :]
                next_decoder_hidden_states += (layer,)

2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
            # generate past_key_values cache of only the selected token
            if sequential:
                next_model_input = self.prepare_inputs_for_generation(
                    top_k_ids[:, selected_idx].view(-1, 1), **model_kwargs
                )

                selected_outputs = self(
                    **next_model_input,
                    return_dict=True,
                    output_hidden_states=False,
                    output_attentions=False,
                )
                next_past_key_values = selected_outputs["past_key_values"]

            else:
                next_past_key_values = self._extract_past_from_model_output(outputs, standardize_cache_format=True)
                new_key_values = ()
                for layer in next_past_key_values:
                    items = ()
                    # item is either the key or the value matrix
                    for item in layer:
                        item = torch.stack(torch.split(item, top_k, dim=0))  # [B, K, num_head, seq_len, esz]
                        item = item[range(batch_size), selected_idx, ...]  # [B, num_head, seq_len, esz]
                        items += (item,)
                    new_key_values += (items,)
                next_past_key_values = new_key_values
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349

            logit_for_next_step = torch.stack(torch.split(logits, top_k))[range(batch_size), selected_idx, :]

            # Rebuilds the relevant parts of the model output for the selected token, for use in the next iteration
            if self.config.is_encoder_decoder:
                next_step_cross_attentions = ()
                next_step_decoder_attentions = ()
                if output_attentions:
                    for layer in outputs.cross_attentions:
                        layer = torch.stack(torch.split(layer, top_k, dim=0))[range(batch_size), selected_idx, ...]
                        next_step_cross_attentions += (layer,)
                    for layer in outputs.decoder_attentions:
                        layer = torch.stack(torch.split(layer, top_k, dim=0))[range(batch_size), selected_idx, ...]
                        next_step_decoder_attentions += (layer,)
                outputs = Seq2SeqLMOutput(
                    past_key_values=next_past_key_values,
                    decoder_hidden_states=next_decoder_hidden_states,
                    decoder_attentions=next_step_decoder_attentions or None,
                    cross_attentions=next_step_cross_attentions or None,
                )
            else:
                next_step_attentions = ()
                if output_attentions:
                    for layer in outputs.attentions:
                        layer = torch.stack(torch.split(layer, top_k, dim=0))[range(batch_size), selected_idx, ...]
                        next_step_attentions += (layer,)
                outputs = CausalLMOutputWithPast(
                    past_key_values=next_past_key_values,
                    hidden_states=next_decoder_hidden_states,
                    attentions=next_step_attentions or None,
                )
            # contrastive_search main logic end

            if synced_gpus and this_peer_finished:
                continue  # don't waste resources running the code we don't need

            # finished sentences should have their next token be a padding token
            if eos_token_id is not None:
                if pad_token_id is None:
                    raise ValueError("If `eos_token_id` is defined, make sure that `pad_token_id` is defined.")
                next_tokens = next_tokens * unfinished_sequences + pad_token_id * (1 - unfinished_sequences)

            # update generated ids, model inputs, and length for next step
            input_ids = torch.cat([input_ids, next_tokens[:, None]], dim=-1)
2350
2351
            if streamer is not None:
                streamer.put(next_tokens.cpu())
2352
2353
2354
2355
2356
            model_kwargs = self._update_model_kwargs_for_generation(
                outputs, model_kwargs, is_encoder_decoder=self.config.is_encoder_decoder
            )

            # if eos_token was found in one sentence, set sentence to finished
2357
            if eos_token_id_tensor is not None:
2358
                unfinished_sequences = unfinished_sequences.mul(
2359
2360
                    next_tokens.tile(eos_token_id_tensor.shape[0], 1).ne(eos_token_id_tensor.unsqueeze(1)).prod(dim=0)
                )
2361

2362
2363
                # stop when each sentence is finished
                if unfinished_sequences.max() == 0:
2364
2365
                    this_peer_finished = True

2366
2367
2368
2369
2370
2371
2372
            # stop if we exceed the maximum length
            if stopping_criteria(input_ids, scores):
                this_peer_finished = True

            if this_peer_finished and not synced_gpus:
                break

2373
2374
2375
        if streamer is not None:
            streamer.end()

2376
        if return_dict_in_generate:
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
            # Contrastive search works by forward looking at the next token, so we need to exclude it from
            # `past_key_values` to be consistent with the other decoding methods
            if model_kwargs.get("past_key_values") is not None:
                past_key_values = []
                for layer in model_kwargs["past_key_values"]:
                    layer_past_key_values = []
                    for item in layer:
                        layer_past_key_values.append(item[..., :-1, :])
                    past_key_values.append(tuple(layer_past_key_values))
                model_kwargs["past_key_values"] = tuple(past_key_values)

2388
2389
2390
2391
2392
2393
2394
2395
2396
            if self.config.is_encoder_decoder:
                return ContrastiveSearchEncoderDecoderOutput(
                    sequences=input_ids,
                    scores=scores,
                    encoder_attentions=encoder_attentions,
                    encoder_hidden_states=encoder_hidden_states,
                    decoder_attentions=decoder_attentions,
                    cross_attentions=cross_attentions,
                    decoder_hidden_states=decoder_hidden_states,
2397
                    past_key_values=model_kwargs.get("past_key_values"),
2398
2399
2400
2401
2402
2403
2404
                )
            else:
                return ContrastiveSearchDecoderOnlyOutput(
                    sequences=input_ids,
                    scores=scores,
                    attentions=decoder_attentions,
                    hidden_states=decoder_hidden_states,
2405
                    past_key_values=model_kwargs.get("past_key_values"),
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
                )
        else:
            return input_ids

    def greedy_search(
        self,
        input_ids: torch.LongTensor,
        logits_processor: Optional[LogitsProcessorList] = None,
        stopping_criteria: Optional[StoppingCriteriaList] = None,
        max_length: Optional[int] = None,
        pad_token_id: Optional[int] = None,
2417
        eos_token_id: Optional[Union[int, List[int]]] = None,
2418
2419
2420
2421
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        output_scores: Optional[bool] = None,
        return_dict_in_generate: Optional[bool] = None,
2422
        synced_gpus: bool = False,
2423
        streamer: Optional["BaseStreamer"] = None,
2424
2425
2426
2427
2428
2429
        **model_kwargs,
    ) -> Union[GreedySearchOutput, torch.LongTensor]:
        r"""
        Generates sequences of token ids for models with a language modeling head using **greedy decoding** and can be
        used for text-decoder, text-to-text, speech-to-text, and vision-to-text models.

2430
2431
2432
2433
        <Tip warning={true}>

        In most cases, you do not need to call [`~generation.GenerationMixin.greedy_search`] directly. Use generate()
        instead. For an overview of generation strategies and code examples, check the [following
2434
        guide](../generation_strategies).
2435
2436
2437
2438

        </Tip>


2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
        Parameters:
            input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
                The sequence used as a prompt for the generation.
            logits_processor (`LogitsProcessorList`, *optional*):
                An instance of [`LogitsProcessorList`]. List of instances of class derived from [`LogitsProcessor`]
                used to modify the prediction scores of the language modeling head applied at each generation step.
            stopping_criteria (`StoppingCriteriaList`, *optional*):
                An instance of [`StoppingCriteriaList`]. List of instances of class derived from [`StoppingCriteria`]
                used to tell if the generation loop should stop.

            max_length (`int`, *optional*, defaults to 20):
                **DEPRECATED**. Use `logits_processor` or `stopping_criteria` directly to cap the number of generated
                tokens. The maximum length of the sequence to be generated.
            pad_token_id (`int`, *optional*):
                The id of the *padding* token.
2454
2455
            eos_token_id (`Union[int, List[int]]`, *optional*):
                The id of the *end-of-sequence* token. Optionally, use a list to set multiple *end-of-sequence* tokens.
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
            output_attentions (`bool`, *optional*, defaults to `False`):
                Whether or not to return the attentions tensors of all attention layers. See `attentions` under
                returned tensors for more details.
            output_hidden_states (`bool`, *optional*, defaults to `False`):
                Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
                for more details.
            output_scores (`bool`, *optional*, defaults to `False`):
                Whether or not to return the prediction scores. See `scores` under returned tensors for more details.
            return_dict_in_generate (`bool`, *optional*, defaults to `False`):
                Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
            synced_gpus (`bool`, *optional*, defaults to `False`):
                Whether to continue running the while loop until max_length (needed for ZeRO stage 3)
2468
2469
2470
            streamer (`BaseStreamer`, *optional*):
                Streamer object that will be used to stream the generated sequences. Generated tokens are passed
                through `streamer.put(token_ids)` and the streamer is responsible for any further processing.
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
            model_kwargs:
                Additional model specific keyword arguments will be forwarded to the `forward` function of the model.
                If model is an encoder-decoder model the kwargs should include `encoder_outputs`.

        Return:
            [`~generation.GreedySearchDecoderOnlyOutput`], [`~generation.GreedySearchEncoderDecoderOutput`] or
            `torch.LongTensor`: A `torch.LongTensor` containing the generated tokens (default behaviour) or a
            [`~generation.GreedySearchDecoderOnlyOutput`] if `model.config.is_encoder_decoder=False` and
            `return_dict_in_generate=True` or a [`~generation.GreedySearchEncoderDecoderOutput`] if
            `model.config.is_encoder_decoder=True`.

        Examples:

        ```python
        >>> from transformers import (
        ...     AutoTokenizer,
        ...     AutoModelForCausalLM,
        ...     LogitsProcessorList,
        ...     MinLengthLogitsProcessor,
        ...     StoppingCriteriaList,
        ...     MaxLengthCriteria,
        ... )

        >>> tokenizer = AutoTokenizer.from_pretrained("gpt2")
        >>> model = AutoModelForCausalLM.from_pretrained("gpt2")

        >>> # set pad_token_id to eos_token_id because GPT2 does not have a PAD token
2498
        >>> model.generation_config.pad_token_id = model.generation_config.eos_token_id
2499
2500
2501
2502
2503
2504
2505

        >>> input_prompt = "It might be possible to"
        >>> input_ids = tokenizer(input_prompt, return_tensors="pt").input_ids

        >>> # instantiate logits processors
        >>> logits_processor = LogitsProcessorList(
        ...     [
2506
        ...         MinLengthLogitsProcessor(10, eos_token_id=model.generation_config.eos_token_id),
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
        ...     ]
        ... )
        >>> stopping_criteria = StoppingCriteriaList([MaxLengthCriteria(max_length=20)])

        >>> outputs = model.greedy_search(
        ...     input_ids, logits_processor=logits_processor, stopping_criteria=stopping_criteria
        ... )

        >>> tokenizer.batch_decode(outputs, skip_special_tokens=True)
        ["It might be possible to get a better understanding of the nature of the problem, but it's not"]
        ```"""
        # init values
        logits_processor = logits_processor if logits_processor is not None else LogitsProcessorList()
        stopping_criteria = stopping_criteria if stopping_criteria is not None else StoppingCriteriaList()
        if max_length is not None:
            warnings.warn(
                "`max_length` is deprecated in this function, use"
                " `stopping_criteria=StoppingCriteriaList([MaxLengthCriteria(max_length=max_length)])` instead.",
                UserWarning,
            )
            stopping_criteria = validate_stopping_criteria(stopping_criteria, max_length)
2528
2529
        pad_token_id = pad_token_id if pad_token_id is not None else self.generation_config.pad_token_id
        eos_token_id = eos_token_id if eos_token_id is not None else self.generation_config.eos_token_id
2530
2531
        if isinstance(eos_token_id, int):
            eos_token_id = [eos_token_id]
2532
        eos_token_id_tensor = torch.tensor(eos_token_id).to(input_ids.device) if eos_token_id is not None else None
2533
2534
2535
2536
        output_scores = output_scores if output_scores is not None else self.generation_config.output_scores
        output_attentions = (
            output_attentions if output_attentions is not None else self.generation_config.output_attentions
        )
2537
        output_hidden_states = (
2538
            output_hidden_states if output_hidden_states is not None else self.generation_config.output_hidden_states
2539
2540
        )
        return_dict_in_generate = (
2541
2542
2543
            return_dict_in_generate
            if return_dict_in_generate is not None
            else self.generation_config.return_dict_in_generate
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
        )

        # init attention / hidden states / scores tuples
        scores = () if (return_dict_in_generate and output_scores) else None
        decoder_attentions = () if (return_dict_in_generate and output_attentions) else None
        cross_attentions = () if (return_dict_in_generate and output_attentions) else None
        decoder_hidden_states = () if (return_dict_in_generate and output_hidden_states) else None

        # if model is an encoder-decoder, retrieve encoder attention weights and hidden states
        if return_dict_in_generate and self.config.is_encoder_decoder:
            encoder_attentions = model_kwargs["encoder_outputs"].get("attentions") if output_attentions else None
            encoder_hidden_states = (
                model_kwargs["encoder_outputs"].get("hidden_states") if output_hidden_states else None
            )

        # keep track of which sequences are already finished
2560
        unfinished_sequences = torch.ones(input_ids.shape[0], dtype=torch.long, device=input_ids.device)
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621

        this_peer_finished = False  # used by synced_gpus only
        while True:
            if synced_gpus:
                # Under synced_gpus the `forward` call must continue until all gpus complete their sequence.
                # The following logic allows an early break if all peers finished generating their sequence
                this_peer_finished_flag = torch.tensor(0.0 if this_peer_finished else 1.0).to(input_ids.device)
                # send 0.0 if we finished, 1.0 otherwise
                dist.all_reduce(this_peer_finished_flag, op=dist.ReduceOp.SUM)
                # did all peers finish? the reduced sum will be 0.0 then
                if this_peer_finished_flag.item() == 0.0:
                    break

            # prepare model inputs
            model_inputs = self.prepare_inputs_for_generation(input_ids, **model_kwargs)

            # forward pass to get next token
            outputs = self(
                **model_inputs,
                return_dict=True,
                output_attentions=output_attentions,
                output_hidden_states=output_hidden_states,
            )

            if synced_gpus and this_peer_finished:
                continue  # don't waste resources running the code we don't need

            next_token_logits = outputs.logits[:, -1, :]

            # pre-process distribution
            next_tokens_scores = logits_processor(input_ids, next_token_logits)

            # Store scores, attentions and hidden_states when required
            if return_dict_in_generate:
                if output_scores:
                    scores += (next_tokens_scores,)
                if output_attentions:
                    decoder_attentions += (
                        (outputs.decoder_attentions,) if self.config.is_encoder_decoder else (outputs.attentions,)
                    )
                    if self.config.is_encoder_decoder:
                        cross_attentions += (outputs.cross_attentions,)

                if output_hidden_states:
                    decoder_hidden_states += (
                        (outputs.decoder_hidden_states,)
                        if self.config.is_encoder_decoder
                        else (outputs.hidden_states,)
                    )

            # argmax
            next_tokens = torch.argmax(next_tokens_scores, dim=-1)

            # finished sentences should have their next token be a padding token
            if eos_token_id is not None:
                if pad_token_id is None:
                    raise ValueError("If `eos_token_id` is defined, make sure that `pad_token_id` is defined.")
                next_tokens = next_tokens * unfinished_sequences + pad_token_id * (1 - unfinished_sequences)

            # update generated ids, model inputs, and length for next step
            input_ids = torch.cat([input_ids, next_tokens[:, None]], dim=-1)
2622
2623
            if streamer is not None:
                streamer.put(next_tokens.cpu())
2624
2625
2626
2627
2628
            model_kwargs = self._update_model_kwargs_for_generation(
                outputs, model_kwargs, is_encoder_decoder=self.config.is_encoder_decoder
            )

            # if eos_token was found in one sentence, set sentence to finished
2629
            if eos_token_id_tensor is not None:
2630
                unfinished_sequences = unfinished_sequences.mul(
2631
2632
                    next_tokens.tile(eos_token_id_tensor.shape[0], 1).ne(eos_token_id_tensor.unsqueeze(1)).prod(dim=0)
                )
2633

2634
2635
                # stop when each sentence is finished
                if unfinished_sequences.max() == 0:
2636
2637
                    this_peer_finished = True

2638
2639
2640
2641
2642
2643
2644
            # stop if we exceed the maximum length
            if stopping_criteria(input_ids, scores):
                this_peer_finished = True

            if this_peer_finished and not synced_gpus:
                break

2645
2646
2647
        if streamer is not None:
            streamer.end()

2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
        if return_dict_in_generate:
            if self.config.is_encoder_decoder:
                return GreedySearchEncoderDecoderOutput(
                    sequences=input_ids,
                    scores=scores,
                    encoder_attentions=encoder_attentions,
                    encoder_hidden_states=encoder_hidden_states,
                    decoder_attentions=decoder_attentions,
                    cross_attentions=cross_attentions,
                    decoder_hidden_states=decoder_hidden_states,
2658
                    past_key_values=model_kwargs.get("past_key_values"),
2659
2660
2661
2662
2663
2664
2665
                )
            else:
                return GreedySearchDecoderOnlyOutput(
                    sequences=input_ids,
                    scores=scores,
                    attentions=decoder_attentions,
                    hidden_states=decoder_hidden_states,
2666
                    past_key_values=model_kwargs.get("past_key_values"),
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
                )
        else:
            return input_ids

    def sample(
        self,
        input_ids: torch.LongTensor,
        logits_processor: Optional[LogitsProcessorList] = None,
        stopping_criteria: Optional[StoppingCriteriaList] = None,
        logits_warper: Optional[LogitsProcessorList] = None,
        max_length: Optional[int] = None,
        pad_token_id: Optional[int] = None,
2679
        eos_token_id: Optional[Union[int, List[int]]] = None,
2680
2681
2682
2683
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        output_scores: Optional[bool] = None,
        return_dict_in_generate: Optional[bool] = None,
2684
        synced_gpus: bool = False,
2685
        streamer: Optional["BaseStreamer"] = None,
2686
2687
2688
2689
2690
2691
        **model_kwargs,
    ) -> Union[SampleOutput, torch.LongTensor]:
        r"""
        Generates sequences of token ids for models with a language modeling head using **multinomial sampling** and
        can be used for text-decoder, text-to-text, speech-to-text, and vision-to-text models.

2692
2693
2694
2695
        <Tip warning={true}>

        In most cases, you do not need to call [`~generation.GenerationMixin.sample`] directly. Use generate() instead.
        For an overview of generation strategies and code examples, check the [following
2696
        guide](../generation_strategies).
2697
2698
2699

        </Tip>

2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
        Parameters:
            input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
                The sequence used as a prompt for the generation.
            logits_processor (`LogitsProcessorList`, *optional*):
                An instance of [`LogitsProcessorList`]. List of instances of class derived from [`LogitsProcessor`]
                used to modify the prediction scores of the language modeling head applied at each generation step.
            stopping_criteria (`StoppingCriteriaList`, *optional*):
                An instance of [`StoppingCriteriaList`]. List of instances of class derived from [`StoppingCriteria`]
                used to tell if the generation loop should stop.
            logits_warper (`LogitsProcessorList`, *optional*):
                An instance of [`LogitsProcessorList`]. List of instances of class derived from [`LogitsWarper`] used
                to warp the prediction score distribution of the language modeling head applied before multinomial
                sampling at each generation step.
            max_length (`int`, *optional*, defaults to 20):
                **DEPRECATED**. Use `logits_processor` or `stopping_criteria` directly to cap the number of generated
                tokens. The maximum length of the sequence to be generated.
            pad_token_id (`int`, *optional*):
                The id of the *padding* token.
2718
2719
            eos_token_id (`Union[int, List[int]]`, *optional*):
                The id of the *end-of-sequence* token. Optionally, use a list to set multiple *end-of-sequence* tokens.
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
            output_attentions (`bool`, *optional*, defaults to `False`):
                Whether or not to return the attentions tensors of all attention layers. See `attentions` under
                returned tensors for more details.
            output_hidden_states (`bool`, *optional*, defaults to `False`):
                Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
                for more details.
            output_scores (`bool`, *optional*, defaults to `False`):
                Whether or not to return the prediction scores. See `scores` under returned tensors for more details.
            return_dict_in_generate (`bool`, *optional*, defaults to `False`):
                Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
            synced_gpus (`bool`, *optional*, defaults to `False`):
                Whether to continue running the while loop until max_length (needed for ZeRO stage 3)
2732
2733
2734
            streamer (`BaseStreamer`, *optional*):
                Streamer object that will be used to stream the generated sequences. Generated tokens are passed
                through `streamer.put(token_ids)` and the streamer is responsible for any further processing.
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
            model_kwargs:
                Additional model specific kwargs will be forwarded to the `forward` function of the model. If model is
                an encoder-decoder model the kwargs should include `encoder_outputs`.

        Return:
            [`~generation.SampleDecoderOnlyOutput`], [`~generation.SampleEncoderDecoderOutput`] or `torch.LongTensor`:
            A `torch.LongTensor` containing the generated tokens (default behaviour) or a
            [`~generation.SampleDecoderOnlyOutput`] if `model.config.is_encoder_decoder=False` and
            `return_dict_in_generate=True` or a [`~generation.SampleEncoderDecoderOutput`] if
            `model.config.is_encoder_decoder=True`.

        Examples:

        ```python
        >>> from transformers import (
        ...     AutoTokenizer,
        ...     AutoModelForCausalLM,
        ...     LogitsProcessorList,
        ...     MinLengthLogitsProcessor,
        ...     TopKLogitsWarper,
        ...     TemperatureLogitsWarper,
        ...     StoppingCriteriaList,
        ...     MaxLengthCriteria,
        ... )
        >>> import torch

        >>> tokenizer = AutoTokenizer.from_pretrained("gpt2")
        >>> model = AutoModelForCausalLM.from_pretrained("gpt2")

        >>> # set pad_token_id to eos_token_id because GPT2 does not have a EOS token
        >>> model.config.pad_token_id = model.config.eos_token_id
Arthur's avatar
Arthur committed
2766
        >>> model.generation_config.pad_token_id = model.config.eos_token_id
2767
2768
2769
2770
2771
2772
2773

        >>> input_prompt = "Today is a beautiful day, and"
        >>> input_ids = tokenizer(input_prompt, return_tensors="pt").input_ids

        >>> # instantiate logits processors
        >>> logits_processor = LogitsProcessorList(
        ...     [
2774
        ...         MinLengthLogitsProcessor(15, eos_token_id=model.generation_config.eos_token_id),
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
        ...     ]
        ... )
        >>> # instantiate logits processors
        >>> logits_warper = LogitsProcessorList(
        ...     [
        ...         TopKLogitsWarper(50),
        ...         TemperatureLogitsWarper(0.7),
        ...     ]
        ... )

        >>> stopping_criteria = StoppingCriteriaList([MaxLengthCriteria(max_length=20)])

        >>> torch.manual_seed(0)  # doctest: +IGNORE_RESULT
        >>> outputs = model.sample(
        ...     input_ids,
        ...     logits_processor=logits_processor,
        ...     logits_warper=logits_warper,
        ...     stopping_criteria=stopping_criteria,
        ... )

        >>> tokenizer.batch_decode(outputs, skip_special_tokens=True)
2796
        ['Today is a beautiful day, and we must do everything possible to make it a day of celebration.']
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
        ```"""
        # init values
        logits_processor = logits_processor if logits_processor is not None else LogitsProcessorList()
        stopping_criteria = stopping_criteria if stopping_criteria is not None else StoppingCriteriaList()
        if max_length is not None:
            warnings.warn(
                "`max_length` is deprecated in this function, use"
                " `stopping_criteria=StoppingCriteriaList(MaxLengthCriteria(max_length=max_length))` instead.",
                UserWarning,
            )
            stopping_criteria = validate_stopping_criteria(stopping_criteria, max_length)
        logits_warper = logits_warper if logits_warper is not None else LogitsProcessorList()
2809
2810
        pad_token_id = pad_token_id if pad_token_id is not None else self.generation_config.pad_token_id
        eos_token_id = eos_token_id if eos_token_id is not None else self.generation_config.eos_token_id
2811
2812
        if isinstance(eos_token_id, int):
            eos_token_id = [eos_token_id]
2813
        eos_token_id_tensor = torch.tensor(eos_token_id).to(input_ids.device) if eos_token_id is not None else None
2814
2815
2816
2817
        output_scores = output_scores if output_scores is not None else self.generation_config.output_scores
        output_attentions = (
            output_attentions if output_attentions is not None else self.generation_config.output_attentions
        )
2818
        output_hidden_states = (
2819
            output_hidden_states if output_hidden_states is not None else self.generation_config.output_hidden_states
2820
2821
        )
        return_dict_in_generate = (
2822
2823
2824
            return_dict_in_generate
            if return_dict_in_generate is not None
            else self.generation_config.return_dict_in_generate
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
        )

        # init attention / hidden states / scores tuples
        scores = () if (return_dict_in_generate and output_scores) else None
        decoder_attentions = () if (return_dict_in_generate and output_attentions) else None
        cross_attentions = () if (return_dict_in_generate and output_attentions) else None
        decoder_hidden_states = () if (return_dict_in_generate and output_hidden_states) else None

        # if model is an encoder-decoder, retrieve encoder attention weights and hidden states
        if return_dict_in_generate and self.config.is_encoder_decoder:
            encoder_attentions = model_kwargs["encoder_outputs"].get("attentions") if output_attentions else None
            encoder_hidden_states = (
                model_kwargs["encoder_outputs"].get("hidden_states") if output_hidden_states else None
            )

        # keep track of which sequences are already finished
2841
        unfinished_sequences = torch.ones(input_ids.shape[0], dtype=torch.long, device=input_ids.device)
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905

        this_peer_finished = False  # used by synced_gpus only
        # auto-regressive generation
        while True:
            if synced_gpus:
                # Under synced_gpus the `forward` call must continue until all gpus complete their sequence.
                # The following logic allows an early break if all peers finished generating their sequence
                this_peer_finished_flag = torch.tensor(0.0 if this_peer_finished else 1.0).to(input_ids.device)
                # send 0.0 if we finished, 1.0 otherwise
                dist.all_reduce(this_peer_finished_flag, op=dist.ReduceOp.SUM)
                # did all peers finish? the reduced sum will be 0.0 then
                if this_peer_finished_flag.item() == 0.0:
                    break

            # prepare model inputs
            model_inputs = self.prepare_inputs_for_generation(input_ids, **model_kwargs)

            # forward pass to get next token
            outputs = self(
                **model_inputs,
                return_dict=True,
                output_attentions=output_attentions,
                output_hidden_states=output_hidden_states,
            )

            if synced_gpus and this_peer_finished:
                continue  # don't waste resources running the code we don't need

            next_token_logits = outputs.logits[:, -1, :]

            # pre-process distribution
            next_token_scores = logits_processor(input_ids, next_token_logits)
            next_token_scores = logits_warper(input_ids, next_token_scores)

            # Store scores, attentions and hidden_states when required
            if return_dict_in_generate:
                if output_scores:
                    scores += (next_token_scores,)
                if output_attentions:
                    decoder_attentions += (
                        (outputs.decoder_attentions,) if self.config.is_encoder_decoder else (outputs.attentions,)
                    )
                    if self.config.is_encoder_decoder:
                        cross_attentions += (outputs.cross_attentions,)

                if output_hidden_states:
                    decoder_hidden_states += (
                        (outputs.decoder_hidden_states,)
                        if self.config.is_encoder_decoder
                        else (outputs.hidden_states,)
                    )

            # sample
            probs = nn.functional.softmax(next_token_scores, dim=-1)
            next_tokens = torch.multinomial(probs, num_samples=1).squeeze(1)

            # finished sentences should have their next token be a padding token
            if eos_token_id is not None:
                if pad_token_id is None:
                    raise ValueError("If `eos_token_id` is defined, make sure that `pad_token_id` is defined.")
                next_tokens = next_tokens * unfinished_sequences + pad_token_id * (1 - unfinished_sequences)

            # update generated ids, model inputs, and length for next step
            input_ids = torch.cat([input_ids, next_tokens[:, None]], dim=-1)
2906
2907
            if streamer is not None:
                streamer.put(next_tokens.cpu())
2908
2909
2910
2911
2912
            model_kwargs = self._update_model_kwargs_for_generation(
                outputs, model_kwargs, is_encoder_decoder=self.config.is_encoder_decoder
            )

            # if eos_token was found in one sentence, set sentence to finished
2913
            if eos_token_id_tensor is not None:
2914
                unfinished_sequences = unfinished_sequences.mul(
2915
2916
                    next_tokens.tile(eos_token_id_tensor.shape[0], 1).ne(eos_token_id_tensor.unsqueeze(1)).prod(dim=0)
                )
2917

2918
2919
                # stop when each sentence is finished
                if unfinished_sequences.max() == 0:
2920
2921
                    this_peer_finished = True

2922
2923
2924
2925
2926
2927
2928
            # stop if we exceed the maximum length
            if stopping_criteria(input_ids, scores):
                this_peer_finished = True

            if this_peer_finished and not synced_gpus:
                break

2929
2930
2931
        if streamer is not None:
            streamer.end()

2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
        if return_dict_in_generate:
            if self.config.is_encoder_decoder:
                return SampleEncoderDecoderOutput(
                    sequences=input_ids,
                    scores=scores,
                    encoder_attentions=encoder_attentions,
                    encoder_hidden_states=encoder_hidden_states,
                    decoder_attentions=decoder_attentions,
                    cross_attentions=cross_attentions,
                    decoder_hidden_states=decoder_hidden_states,
2942
                    past_key_values=model_kwargs.get("past_key_values"),
2943
2944
2945
2946
2947
2948
2949
                )
            else:
                return SampleDecoderOnlyOutput(
                    sequences=input_ids,
                    scores=scores,
                    attentions=decoder_attentions,
                    hidden_states=decoder_hidden_states,
2950
                    past_key_values=model_kwargs.get("past_key_values"),
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
                )
        else:
            return input_ids

    def beam_search(
        self,
        input_ids: torch.LongTensor,
        beam_scorer: BeamScorer,
        logits_processor: Optional[LogitsProcessorList] = None,
        stopping_criteria: Optional[StoppingCriteriaList] = None,
        max_length: Optional[int] = None,
        pad_token_id: Optional[int] = None,
2963
        eos_token_id: Optional[Union[int, List[int]]] = None,
2964
2965
2966
2967
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        output_scores: Optional[bool] = None,
        return_dict_in_generate: Optional[bool] = None,
2968
        synced_gpus: bool = False,
2969
2970
2971
2972
2973
2974
        **model_kwargs,
    ) -> Union[BeamSearchOutput, torch.LongTensor]:
        r"""
        Generates sequences of token ids for models with a language modeling head using **beam search decoding** and
        can be used for text-decoder, text-to-text, speech-to-text, and vision-to-text models.

2975
2976
2977
2978
        <Tip warning={true}>

        In most cases, you do not need to call [`~generation.GenerationMixin.beam_search`] directly. Use generate()
        instead. For an overview of generation strategies and code examples, check the [following
2979
        guide](../generation_strategies).
2980
2981
2982

        </Tip>

2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
        Parameters:
            input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
                The sequence used as a prompt for the generation.
            beam_scorer (`BeamScorer`):
                An derived instance of [`BeamScorer`] that defines how beam hypotheses are constructed, stored and
                sorted during generation. For more information, the documentation of [`BeamScorer`] should be read.
            logits_processor (`LogitsProcessorList`, *optional*):
                An instance of [`LogitsProcessorList`]. List of instances of class derived from [`LogitsProcessor`]
                used to modify the prediction scores of the language modeling head applied at each generation step.
            stopping_criteria (`StoppingCriteriaList`, *optional*):
                An instance of [`StoppingCriteriaList`]. List of instances of class derived from [`StoppingCriteria`]
                used to tell if the generation loop should stop.
            max_length (`int`, *optional*, defaults to 20):
                **DEPRECATED**. Use `logits_processor` or `stopping_criteria` directly to cap the number of generated
                tokens. The maximum length of the sequence to be generated.
            pad_token_id (`int`, *optional*):
                The id of the *padding* token.
3000
3001
            eos_token_id (`Union[int, List[int]]`, *optional*):
                The id of the *end-of-sequence* token. Optionally, use a list to set multiple *end-of-sequence* tokens.
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
            output_attentions (`bool`, *optional*, defaults to `False`):
                Whether or not to return the attentions tensors of all attention layers. See `attentions` under
                returned tensors for more details.
            output_hidden_states (`bool`, *optional*, defaults to `False`):
                Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
                for more details.
            output_scores (`bool`, *optional*, defaults to `False`):
                Whether or not to return the prediction scores. See `scores` under returned tensors for more details.
            return_dict_in_generate (`bool`, *optional*, defaults to `False`):
                Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
            synced_gpus (`bool`, *optional*, defaults to `False`):
                Whether to continue running the while loop until max_length (needed for ZeRO stage 3)
            model_kwargs:
                Additional model specific kwargs will be forwarded to the `forward` function of the model. If model is
                an encoder-decoder model the kwargs should include `encoder_outputs`.

        Return:
            [`generation.BeamSearchDecoderOnlyOutput`], [`~generation.BeamSearchEncoderDecoderOutput`] or
            `torch.LongTensor`: A `torch.LongTensor` containing the generated tokens (default behaviour) or a
            [`~generation.BeamSearchDecoderOnlyOutput`] if `model.config.is_encoder_decoder=False` and
            `return_dict_in_generate=True` or a [`~generation.BeamSearchEncoderDecoderOutput`] if
            `model.config.is_encoder_decoder=True`.


        Examples:

        ```python
        >>> from transformers import (
        ...     AutoTokenizer,
        ...     AutoModelForSeq2SeqLM,
        ...     LogitsProcessorList,
        ...     MinLengthLogitsProcessor,
        ...     BeamSearchScorer,
        ... )
        >>> import torch

        >>> tokenizer = AutoTokenizer.from_pretrained("t5-base")
        >>> model = AutoModelForSeq2SeqLM.from_pretrained("t5-base")

        >>> encoder_input_str = "translate English to German: How old are you?"
        >>> encoder_input_ids = tokenizer(encoder_input_str, return_tensors="pt").input_ids


        >>> # lets run beam search using 3 beams
        >>> num_beams = 3
        >>> # define decoder start token ids
        >>> input_ids = torch.ones((num_beams, 1), device=model.device, dtype=torch.long)
        >>> input_ids = input_ids * model.config.decoder_start_token_id

        >>> # add encoder_outputs to model keyword arguments
        >>> model_kwargs = {
        ...     "encoder_outputs": model.get_encoder()(
        ...         encoder_input_ids.repeat_interleave(num_beams, dim=0), return_dict=True
        ...     )
        ... }

        >>> # instantiate beam scorer
        >>> beam_scorer = BeamSearchScorer(
        ...     batch_size=1,
        ...     num_beams=num_beams,
        ...     device=model.device,
        ... )

        >>> # instantiate logits processors
        >>> logits_processor = LogitsProcessorList(
        ...     [
        ...         MinLengthLogitsProcessor(5, eos_token_id=model.config.eos_token_id),
        ...     ]
        ... )

        >>> outputs = model.beam_search(input_ids, beam_scorer, logits_processor=logits_processor, **model_kwargs)

        >>> tokenizer.batch_decode(outputs, skip_special_tokens=True)
        ['Wie alt bist du?']
        ```"""
        # init values
        logits_processor = logits_processor if logits_processor is not None else LogitsProcessorList()
        stopping_criteria = stopping_criteria if stopping_criteria is not None else StoppingCriteriaList()
        if max_length is not None:
            warnings.warn(
                "`max_length` is deprecated in this function, use"
                " `stopping_criteria=StoppingCriteriaList(MaxLengthCriteria(max_length=max_length))` instead.",
                UserWarning,
            )
            stopping_criteria = validate_stopping_criteria(stopping_criteria, max_length)
        if len(stopping_criteria) == 0:
            warnings.warn("You don't have defined any stopping_criteria, this will likely loop forever", UserWarning)
3089
3090
        pad_token_id = pad_token_id if pad_token_id is not None else self.generation_config.pad_token_id
        eos_token_id = eos_token_id if eos_token_id is not None else self.generation_config.eos_token_id
3091
3092
        if isinstance(eos_token_id, int):
            eos_token_id = [eos_token_id]
3093
3094
3095
3096
        output_scores = output_scores if output_scores is not None else self.generation_config.output_scores
        output_attentions = (
            output_attentions if output_attentions is not None else self.generation_config.output_attentions
        )
3097
        output_hidden_states = (
3098
            output_hidden_states if output_hidden_states is not None else self.generation_config.output_hidden_states
3099
3100
        )
        return_dict_in_generate = (
3101
3102
3103
            return_dict_in_generate
            if return_dict_in_generate is not None
            else self.generation_config.return_dict_in_generate
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
        )

        batch_size = len(beam_scorer._beam_hyps)
        num_beams = beam_scorer.num_beams

        batch_beam_size, cur_len = input_ids.shape

        if num_beams * batch_size != batch_beam_size:
            raise ValueError(
                f"Batch dimension of `input_ids` should be {num_beams * batch_size}, but is {batch_beam_size}."
            )

        # init attention / hidden states / scores tuples
        scores = () if (return_dict_in_generate and output_scores) else None
        beam_indices = (
            tuple(() for _ in range(batch_beam_size)) if (return_dict_in_generate and output_scores) else None
        )
        decoder_attentions = () if (return_dict_in_generate and output_attentions) else None
        cross_attentions = () if (return_dict_in_generate and output_attentions) else None
        decoder_hidden_states = () if (return_dict_in_generate and output_hidden_states) else None

        # if model is an encoder-decoder, retrieve encoder attention weights and hidden states
        if return_dict_in_generate and self.config.is_encoder_decoder:
            encoder_attentions = model_kwargs["encoder_outputs"].get("attentions") if output_attentions else None
            encoder_hidden_states = (
                model_kwargs["encoder_outputs"].get("hidden_states") if output_hidden_states else None
            )

        # initialise score of first beam with 0 and the rest with -1e9. This makes sure that only tokens
        # of the first beam are considered to avoid sampling the exact same tokens across all beams.
        beam_scores = torch.zeros((batch_size, num_beams), dtype=torch.float, device=input_ids.device)
        beam_scores[:, 1:] = -1e9
        beam_scores = beam_scores.view((batch_size * num_beams,))

        this_peer_finished = False  # used by synced_gpus only
3139
3140

        decoder_prompt_len = input_ids.shape[-1]  # record the prompt length of decoder
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
        while True:
            if synced_gpus:
                # Under synced_gpus the `forward` call must continue until all gpus complete their sequence.
                # The following logic allows an early break if all peers finished generating their sequence
                this_peer_finished_flag = torch.tensor(0.0 if this_peer_finished else 1.0).to(input_ids.device)
                # send 0.0 if we finished, 1.0 otherwise
                dist.all_reduce(this_peer_finished_flag, op=dist.ReduceOp.SUM)
                # did all peers finish? the reduced sum will be 0.0 then
                if this_peer_finished_flag.item() == 0.0:
                    break

            model_inputs = self.prepare_inputs_for_generation(input_ids, **model_kwargs)

            outputs = self(
                **model_inputs,
                return_dict=True,
                output_attentions=output_attentions,
                output_hidden_states=output_hidden_states,
            )

            if synced_gpus and this_peer_finished:
                cur_len = cur_len + 1
                continue  # don't waste resources running the code we don't need

            next_token_logits = outputs.logits[:, -1, :]
            next_token_scores = nn.functional.log_softmax(
                next_token_logits, dim=-1
            )  # (batch_size * num_beams, vocab_size)

            next_token_scores_processed = logits_processor(input_ids, next_token_scores)
3171
3172
3173
            next_token_scores = next_token_scores_processed + beam_scores[:, None].expand_as(
                next_token_scores_processed
            )
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196

            # Store scores, attentions and hidden_states when required
            if return_dict_in_generate:
                if output_scores:
                    scores += (next_token_scores_processed,)
                if output_attentions:
                    decoder_attentions += (
                        (outputs.decoder_attentions,) if self.config.is_encoder_decoder else (outputs.attentions,)
                    )
                    if self.config.is_encoder_decoder:
                        cross_attentions += (outputs.cross_attentions,)

                if output_hidden_states:
                    decoder_hidden_states += (
                        (outputs.decoder_hidden_states,)
                        if self.config.is_encoder_decoder
                        else (outputs.hidden_states,)
                    )

            # reshape for beam search
            vocab_size = next_token_scores.shape[-1]
            next_token_scores = next_token_scores.view(batch_size, num_beams * vocab_size)

3197
3198
            # Sample 1 + len(eos_token_id) next tokens for each beam so we have at least 1 non eos token per beam.
            n_eos_tokens = len(eos_token_id) if eos_token_id else 0
3199
            next_token_scores, next_tokens = torch.topk(
3200
                next_token_scores, max(2, 1 + n_eos_tokens) * num_beams, dim=1, largest=True, sorted=True
3201
3202
            )

3203
            next_indices = torch.div(next_tokens, vocab_size, rounding_mode="floor")
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
            next_tokens = next_tokens % vocab_size

            # stateless
            beam_outputs = beam_scorer.process(
                input_ids,
                next_token_scores,
                next_tokens,
                next_indices,
                pad_token_id=pad_token_id,
                eos_token_id=eos_token_id,
                beam_indices=beam_indices,
3215
                decoder_prompt_len=decoder_prompt_len,
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
            )

            beam_scores = beam_outputs["next_beam_scores"]
            beam_next_tokens = beam_outputs["next_beam_tokens"]
            beam_idx = beam_outputs["next_beam_indices"]

            input_ids = torch.cat([input_ids[beam_idx, :], beam_next_tokens.unsqueeze(-1)], dim=-1)

            model_kwargs = self._update_model_kwargs_for_generation(
                outputs, model_kwargs, is_encoder_decoder=self.config.is_encoder_decoder
            )
3227
3228
            if model_kwargs["past_key_values"] is not None:
                model_kwargs["past_key_values"] = self._reorder_cache(model_kwargs["past_key_values"], beam_idx)
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250

            if return_dict_in_generate and output_scores:
                beam_indices = tuple((beam_indices[beam_idx[i]] + (beam_idx[i],) for i in range(len(beam_indices))))

            # increase cur_len
            cur_len = cur_len + 1

            if beam_scorer.is_done or stopping_criteria(input_ids, scores):
                if not synced_gpus:
                    break
                else:
                    this_peer_finished = True

        sequence_outputs = beam_scorer.finalize(
            input_ids,
            beam_scores,
            next_tokens,
            next_indices,
            pad_token_id=pad_token_id,
            eos_token_id=eos_token_id,
            max_length=stopping_criteria.max_length,
            beam_indices=beam_indices,
3251
            decoder_prompt_len=decoder_prompt_len,
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
        )

        if return_dict_in_generate:
            if not output_scores:
                sequence_outputs["sequence_scores"] = None

            if self.config.is_encoder_decoder:
                return BeamSearchEncoderDecoderOutput(
                    sequences=sequence_outputs["sequences"],
                    sequences_scores=sequence_outputs["sequence_scores"],
                    scores=scores,
                    beam_indices=sequence_outputs["beam_indices"],
                    encoder_attentions=encoder_attentions,
                    encoder_hidden_states=encoder_hidden_states,
                    decoder_attentions=decoder_attentions,
                    cross_attentions=cross_attentions,
                    decoder_hidden_states=decoder_hidden_states,
3269
                    past_key_values=model_kwargs.get("past_key_values"),
3270
3271
3272
3273
3274
3275
3276
3277
3278
                )
            else:
                return BeamSearchDecoderOnlyOutput(
                    sequences=sequence_outputs["sequences"],
                    sequences_scores=sequence_outputs["sequence_scores"],
                    scores=scores,
                    beam_indices=sequence_outputs["beam_indices"],
                    attentions=decoder_attentions,
                    hidden_states=decoder_hidden_states,
3279
                    past_key_values=model_kwargs.get("past_key_values"),
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
                )
        else:
            return sequence_outputs["sequences"]

    def beam_sample(
        self,
        input_ids: torch.LongTensor,
        beam_scorer: BeamScorer,
        logits_processor: Optional[LogitsProcessorList] = None,
        stopping_criteria: Optional[StoppingCriteriaList] = None,
        logits_warper: Optional[LogitsProcessorList] = None,
        max_length: Optional[int] = None,
        pad_token_id: Optional[int] = None,
3293
        eos_token_id: Optional[Union[int, List[int]]] = None,
3294
3295
3296
3297
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        output_scores: Optional[bool] = None,
        return_dict_in_generate: Optional[bool] = None,
3298
        synced_gpus: bool = False,
3299
3300
3301
3302
3303
3304
        **model_kwargs,
    ) -> Union[BeamSampleOutput, torch.LongTensor]:
        r"""
        Generates sequences of token ids for models with a language modeling head using **beam search multinomial
        sampling** and can be used for text-decoder, text-to-text, speech-to-text, and vision-to-text models.

3305
3306
3307
3308
        <Tip warning={true}>

        In most cases, you do not need to call [`~generation.GenerationMixin.beam_sample`] directly. Use generate()
        instead. For an overview of generation strategies and code examples, check the [following
3309
        guide](../generation_strategies).
3310
3311
3312

        </Tip>

3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
        Parameters:
            input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
                The sequence used as a prompt for the generation.
            beam_scorer (`BeamScorer`):
                A derived instance of [`BeamScorer`] that defines how beam hypotheses are constructed, stored and
                sorted during generation. For more information, the documentation of [`BeamScorer`] should be read.
            logits_processor (`LogitsProcessorList`, *optional*):
                An instance of [`LogitsProcessorList`]. List of instances of class derived from [`LogitsProcessor`]
                used to modify the prediction scores of the language modeling head applied at each generation step.
            stopping_criteria (`StoppingCriteriaList`, *optional*):
                An instance of [`StoppingCriteriaList`]. List of instances of class derived from [`StoppingCriteria`]
                used to tell if the generation loop should stop.
            logits_warper (`LogitsProcessorList`, *optional*):
                An instance of [`LogitsProcessorList`]. List of instances of class derived from [`LogitsWarper`] used
                to warp the prediction score distribution of the language modeling head applied before multinomial
                sampling at each generation step.
            max_length (`int`, *optional*, defaults to 20):
                **DEPRECATED**. Use `logits_processor` or `stopping_criteria` directly to cap the number of generated
                tokens. The maximum length of the sequence to be generated.
            pad_token_id (`int`, *optional*):
                The id of the *padding* token.
3334
3335
            eos_token_id (`Union[int, List[int]]`, *optional*):
                The id of the *end-of-sequence* token. Optionally, use a list to set multiple *end-of-sequence* tokens.
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
            output_attentions (`bool`, *optional*, defaults to `False`):
                Whether or not to return the attentions tensors of all attention layers. See `attentions` under
                returned tensors for more details.
            output_hidden_states (`bool`, *optional*, defaults to `False`):
                Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
                for more details.
            output_scores (`bool`, *optional*, defaults to `False`):
                Whether or not to return the prediction scores. See `scores` under returned tensors for more details.
            return_dict_in_generate (`bool`, *optional*, defaults to `False`):
                Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
            synced_gpus (`bool`, *optional*, defaults to `False`):
                Whether to continue running the while loop until max_length (needed for ZeRO stage 3)
            model_kwargs:
                Additional model specific kwargs will be forwarded to the `forward` function of the model. If model is
                an encoder-decoder model the kwargs should include `encoder_outputs`.

        Return:
            [`~generation.BeamSampleDecoderOnlyOutput`], [`~generation.BeamSampleEncoderDecoderOutput`] or
            `torch.LongTensor`: A `torch.LongTensor` containing the generated tokens (default behaviour) or a
            [`~generation.BeamSampleDecoderOnlyOutput`] if `model.config.is_encoder_decoder=False` and
            `return_dict_in_generate=True` or a [`~generation.BeamSampleEncoderDecoderOutput`] if
            `model.config.is_encoder_decoder=True`.

        Examples:

        ```python
        >>> from transformers import (
        ...     AutoTokenizer,
        ...     AutoModelForSeq2SeqLM,
        ...     LogitsProcessorList,
        ...     MinLengthLogitsProcessor,
        ...     TopKLogitsWarper,
        ...     TemperatureLogitsWarper,
        ...     BeamSearchScorer,
        ... )
        >>> import torch

        >>> tokenizer = AutoTokenizer.from_pretrained("t5-base")
        >>> model = AutoModelForSeq2SeqLM.from_pretrained("t5-base")

        >>> encoder_input_str = "translate English to German: How old are you?"
        >>> encoder_input_ids = tokenizer(encoder_input_str, return_tensors="pt").input_ids

        >>> # lets run beam search using 3 beams
        >>> num_beams = 3
        >>> # define decoder start token ids
        >>> input_ids = torch.ones((num_beams, 1), device=model.device, dtype=torch.long)
        >>> input_ids = input_ids * model.config.decoder_start_token_id

        >>> # add encoder_outputs to model keyword arguments
        >>> model_kwargs = {
        ...     "encoder_outputs": model.get_encoder()(
        ...         encoder_input_ids.repeat_interleave(num_beams, dim=0), return_dict=True
        ...     )
        ... }

        >>> # instantiate beam scorer
        >>> beam_scorer = BeamSearchScorer(
        ...     batch_size=1,
        ...     max_length=model.config.max_length,
        ...     num_beams=num_beams,
        ...     device=model.device,
        ... )

        >>> # instantiate logits processors
        >>> logits_processor = LogitsProcessorList(
        ...     [MinLengthLogitsProcessor(5, eos_token_id=model.config.eos_token_id)]
        ... )
        >>> # instantiate logits processors
        >>> logits_warper = LogitsProcessorList(
        ...     [
        ...         TopKLogitsWarper(50),
        ...         TemperatureLogitsWarper(0.7),
        ...     ]
        ... )

        >>> outputs = model.beam_sample(
        ...     input_ids, beam_scorer, logits_processor=logits_processor, logits_warper=logits_warper, **model_kwargs
        ... )

        >>> tokenizer.batch_decode(outputs, skip_special_tokens=True)
        ['Wie alt bist du?']
        ```"""
        # init values
        logits_processor = logits_processor if logits_processor is not None else LogitsProcessorList()
        stopping_criteria = stopping_criteria if stopping_criteria is not None else StoppingCriteriaList()
        if max_length is not None:
            warnings.warn(
                "`max_length` is deprecated in this function, use"
                " `stopping_criteria=StoppingCriteriaList(MaxLengthCriteria(max_length=max_length))` instead.",
                UserWarning,
            )
            stopping_criteria = validate_stopping_criteria(stopping_criteria, max_length)
3429
3430
        pad_token_id = pad_token_id if pad_token_id is not None else self.generation_config.pad_token_id
        eos_token_id = eos_token_id if eos_token_id is not None else self.generation_config.eos_token_id
3431
3432
        if isinstance(eos_token_id, int):
            eos_token_id = [eos_token_id]
3433
3434
3435
3436
        output_scores = output_scores if output_scores is not None else self.generation_config.output_scores
        output_attentions = (
            output_attentions if output_attentions is not None else self.generation_config.output_attentions
        )
3437
        output_hidden_states = (
3438
            output_hidden_states if output_hidden_states is not None else self.generation_config.output_hidden_states
3439
3440
        )
        return_dict_in_generate = (
3441
3442
3443
            return_dict_in_generate
            if return_dict_in_generate is not None
            else self.generation_config.return_dict_in_generate
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
        )

        batch_size = len(beam_scorer._beam_hyps)
        num_beams = beam_scorer.num_beams

        batch_beam_size, cur_len = input_ids.shape

        # init attention / hidden states / scores tuples
        scores = () if (return_dict_in_generate and output_scores) else None
        beam_indices = (
            tuple(() for _ in range(batch_beam_size)) if (return_dict_in_generate and output_scores) else None
        )
        decoder_attentions = () if (return_dict_in_generate and output_attentions) else None
        cross_attentions = () if (return_dict_in_generate and output_attentions) else None
        decoder_hidden_states = () if (return_dict_in_generate and output_hidden_states) else None

        # if model is an encoder-decoder, retrieve encoder attention weights and hidden states
        if return_dict_in_generate and self.config.is_encoder_decoder:
            encoder_attentions = model_kwargs["encoder_outputs"].get("attentions") if output_attentions else None
            encoder_hidden_states = (
                model_kwargs["encoder_outputs"].get("hidden_states") if output_hidden_states else None
            )

        beam_scores = torch.zeros((batch_size, num_beams), dtype=torch.float, device=input_ids.device)
        beam_scores = beam_scores.view((batch_size * num_beams,))

        this_peer_finished = False  # used by synced_gpus only
3471
3472

        decoder_prompt_len = input_ids.shape[-1]  # record the prompt length of decoder
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
        while True:
            if synced_gpus:
                # Under synced_gpus the `forward` call must continue until all gpus complete their sequence.
                # The following logic allows an early break if all peers finished generating their sequence
                this_peer_finished_flag = torch.tensor(0.0 if this_peer_finished else 1.0).to(input_ids.device)
                # send 0.0 if we finished, 1.0 otherwise
                dist.all_reduce(this_peer_finished_flag, op=dist.ReduceOp.SUM)
                # did all peers finish? the reduced sum will be 0.0 then
                if this_peer_finished_flag.item() == 0.0:
                    break

            model_inputs = self.prepare_inputs_for_generation(input_ids, **model_kwargs)

            outputs = self(
                **model_inputs,
                return_dict=True,
                output_attentions=output_attentions,
                output_hidden_states=output_hidden_states,
            )

            if synced_gpus and this_peer_finished:
                cur_len = cur_len + 1
                continue  # don't waste resources running the code we don't need

            next_token_logits = outputs.logits[:, -1, :]

            next_token_scores = nn.functional.log_softmax(
                next_token_logits, dim=-1
            )  # (batch_size * num_beams, vocab_size)

            next_token_scores_processed = logits_processor(input_ids, next_token_scores)
3504
            next_token_scores_processed = logits_warper(input_ids, next_token_scores_processed)
3505
3506
3507
            next_token_scores = next_token_scores_processed + beam_scores[:, None].expand_as(
                next_token_scores_processed
            )
3508
3509
3510
3511

            # Store scores, attentions and hidden_states when required
            if return_dict_in_generate:
                if output_scores:
3512
                    scores += (next_token_scores_processed,)
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
                if output_attentions:
                    decoder_attentions += (
                        (outputs.decoder_attentions,) if self.config.is_encoder_decoder else (outputs.attentions,)
                    )
                    if self.config.is_encoder_decoder:
                        cross_attentions += (outputs.cross_attentions,)

                if output_hidden_states:
                    decoder_hidden_states += (
                        (outputs.decoder_hidden_states,)
                        if self.config.is_encoder_decoder
                        else (outputs.hidden_states,)
                    )

            # reshape for beam search
            vocab_size = next_token_scores.shape[-1]
            next_token_scores = next_token_scores.view(batch_size, num_beams * vocab_size)

            probs = nn.functional.softmax(next_token_scores, dim=-1)

            next_tokens = torch.multinomial(probs, num_samples=2 * num_beams)
            next_token_scores = torch.gather(next_token_scores, -1, next_tokens)

            next_token_scores, _indices = torch.sort(next_token_scores, descending=True, dim=1)
            next_tokens = torch.gather(next_tokens, -1, _indices)

3539
            next_indices = torch.div(next_tokens, vocab_size, rounding_mode="floor")
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
            next_tokens = next_tokens % vocab_size

            # stateless
            beam_outputs = beam_scorer.process(
                input_ids,
                next_token_scores,
                next_tokens,
                next_indices,
                pad_token_id=pad_token_id,
                eos_token_id=eos_token_id,
                beam_indices=beam_indices,
3551
                decoder_prompt_len=decoder_prompt_len,
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
            )
            beam_scores = beam_outputs["next_beam_scores"]
            beam_next_tokens = beam_outputs["next_beam_tokens"]
            beam_idx = beam_outputs["next_beam_indices"]

            input_ids = torch.cat([input_ids[beam_idx, :], beam_next_tokens.unsqueeze(-1)], dim=-1)

            model_kwargs = self._update_model_kwargs_for_generation(
                outputs, model_kwargs, is_encoder_decoder=self.config.is_encoder_decoder
            )
3562
3563
            if model_kwargs["past_key_values"] is not None:
                model_kwargs["past_key_values"] = self._reorder_cache(model_kwargs["past_key_values"], beam_idx)
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585

            if return_dict_in_generate and output_scores:
                beam_indices = tuple((beam_indices[beam_idx[i]] + (beam_idx[i],) for i in range(len(beam_indices))))

            # increase cur_len
            cur_len = cur_len + 1

            if beam_scorer.is_done or stopping_criteria(input_ids, scores):
                if not synced_gpus:
                    break
                else:
                    this_peer_finished = True

        sequence_outputs = beam_scorer.finalize(
            input_ids,
            beam_scores,
            next_tokens,
            next_indices,
            pad_token_id=pad_token_id,
            eos_token_id=eos_token_id,
            max_length=stopping_criteria.max_length,
            beam_indices=beam_indices,
3586
            decoder_prompt_len=decoder_prompt_len,
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
        )

        if return_dict_in_generate:
            if not output_scores:
                sequence_outputs["sequence_scores"] = None

            if self.config.is_encoder_decoder:
                return BeamSampleEncoderDecoderOutput(
                    sequences=sequence_outputs["sequences"],
                    sequences_scores=sequence_outputs["sequence_scores"],
                    scores=scores,
                    beam_indices=sequence_outputs["beam_indices"],
                    encoder_attentions=encoder_attentions,
                    encoder_hidden_states=encoder_hidden_states,
                    decoder_attentions=decoder_attentions,
                    cross_attentions=cross_attentions,
                    decoder_hidden_states=decoder_hidden_states,
3604
                    past_key_values=model_kwargs.get("past_key_values"),
3605
3606
3607
3608
3609
3610
3611
3612
3613
                )
            else:
                return BeamSampleDecoderOnlyOutput(
                    sequences=sequence_outputs["sequences"],
                    sequences_scores=sequence_outputs["sequence_scores"],
                    scores=scores,
                    beam_indices=sequence_outputs["beam_indices"],
                    attentions=decoder_attentions,
                    hidden_states=decoder_hidden_states,
3614
                    past_key_values=model_kwargs.get("past_key_values"),
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
                )
        else:
            return sequence_outputs["sequences"]

    def group_beam_search(
        self,
        input_ids: torch.LongTensor,
        beam_scorer: BeamScorer,
        logits_processor: Optional[LogitsProcessorList] = None,
        stopping_criteria: Optional[StoppingCriteriaList] = None,
        max_length: Optional[int] = None,
        pad_token_id: Optional[int] = None,
3627
        eos_token_id: Optional[Union[int, List[int]]] = None,
3628
3629
3630
3631
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        output_scores: Optional[bool] = None,
        return_dict_in_generate: Optional[bool] = None,
3632
        synced_gpus: bool = False,
3633
3634
3635
3636
3637
3638
        **model_kwargs,
    ):
        r"""
        Generates sequences of token ids for models with a language modeling head using **diverse beam search
        decoding** and can be used for text-decoder, text-to-text, speech-to-text, and vision-to-text models.

3639
3640
3641
3642
        <Tip warning={true}>

        In most cases, you do not need to call [`~generation.GenerationMixin.group_beam_search`] directly. Use
        generate() instead. For an overview of generation strategies and code examples, check the [following
3643
        guide](../generation_strategies).
3644
3645
3646

        </Tip>

3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
        Parameters:
            input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
                The sequence used as a prompt for the generation.
            beam_scorer (`BeamScorer`):
                An derived instance of [`BeamScorer`] that defines how beam hypotheses are constructed, stored and
                sorted during generation. For more information, the documentation of [`BeamScorer`] should be read.
            logits_processor (`LogitsProcessorList`, *optional*):
                An instance of [`LogitsProcessorList`]. List of instances of class derived from [`LogitsProcessor`]
                used to modify the prediction scores of the language modeling head applied at each generation step.
            stopping_criteria (`StoppingCriteriaList`, *optional*):
                An instance of [`StoppingCriteriaList`]. List of instances of class derived from [`StoppingCriteria`]
                used to tell if the generation loop should stop.
            max_length (`int`, *optional*, defaults to 20):
                **DEPRECATED**. Use `logits_processor` or `stopping_criteria` directly to cap the number of generated
                tokens. The maximum length of the sequence to be generated.
            pad_token_id (`int`, *optional*):
                The id of the *padding* token.
3664
3665
            eos_token_id (`Union[int, List[int]]`, *optional*):
                The id of the *end-of-sequence* token. Optionally, use a list to set multiple *end-of-sequence* tokens.
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
            output_attentions (`bool`, *optional*, defaults to `False`):
                Whether or not to return the attentions tensors of all attention layers. See `attentions` under
                returned tensors for more details.
            output_hidden_states (`bool`, *optional*, defaults to `False`):
                Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
                for more details.
            output_scores (`bool`, *optional*, defaults to `False`):
                Whether or not to return the prediction scores. See `scores` under returned tensors for more details.
            return_dict_in_generate (`bool`, *optional*, defaults to `False`):
                Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
            synced_gpus (`bool`, *optional*, defaults to `False`):
                Whether to continue running the while loop until max_length (needed for ZeRO stage 3)

            model_kwargs:
                Additional model specific kwargs that will be forwarded to the `forward` function of the model. If
                model is an encoder-decoder model the kwargs should include `encoder_outputs`.

        Return:
            [`~generation.BeamSearchDecoderOnlyOutput`], [`~generation.BeamSearchEncoderDecoderOutput`] or
            `torch.LongTensor`: A `torch.LongTensor` containing the generated tokens (default behaviour) or a
            [`~generation.BeamSearchDecoderOnlyOutput`] if [`~generation.BeamSearchDecoderOnlyOutput`] if
            `model.config.is_encoder_decoder=False` and `return_dict_in_generate=True` or a
            [`~generation.BeamSearchEncoderDecoderOutput`] if `model.config.is_encoder_decoder=True`.

        Examples:

        ```python
        >>> from transformers import (
        ...     AutoTokenizer,
        ...     AutoModelForSeq2SeqLM,
        ...     LogitsProcessorList,
        ...     MinLengthLogitsProcessor,
        ...     HammingDiversityLogitsProcessor,
        ...     BeamSearchScorer,
        ... )
        >>> import torch

        >>> tokenizer = AutoTokenizer.from_pretrained("t5-base")
        >>> model = AutoModelForSeq2SeqLM.from_pretrained("t5-base")

        >>> encoder_input_str = "translate English to German: How old are you?"
        >>> encoder_input_ids = tokenizer(encoder_input_str, return_tensors="pt").input_ids


        >>> # lets run diverse beam search using 6 beams
        >>> num_beams = 6
        >>> # define decoder start token ids
        >>> input_ids = torch.ones((num_beams, 1), device=model.device, dtype=torch.long)
        >>> input_ids = input_ids * model.config.decoder_start_token_id

        >>> # add encoder_outputs to model keyword arguments
        >>> model_kwargs = {
        ...     "encoder_outputs": model.get_encoder()(
        ...         encoder_input_ids.repeat_interleave(num_beams, dim=0), return_dict=True
        ...     )
        ... }

        >>> # instantiate beam scorer
        >>> beam_scorer = BeamSearchScorer(
        ...     batch_size=1,
        ...     max_length=model.config.max_length,
        ...     num_beams=num_beams,
        ...     device=model.device,
        ...     num_beam_groups=3,
        ... )

        >>> # instantiate logits processors
        >>> logits_processor = LogitsProcessorList(
        ...     [
        ...         HammingDiversityLogitsProcessor(5.5, num_beams=6, num_beam_groups=3),
        ...         MinLengthLogitsProcessor(5, eos_token_id=model.config.eos_token_id),
        ...     ]
        ... )

        >>> outputs = model.group_beam_search(
        ...     input_ids, beam_scorer, logits_processor=logits_processor, **model_kwargs
        ... )

        >>> tokenizer.batch_decode(outputs, skip_special_tokens=True)
        ['Wie alt bist du?']
        ```"""
        # init values
        logits_processor = logits_processor if logits_processor is not None else LogitsProcessorList()
        stopping_criteria = stopping_criteria if stopping_criteria is not None else StoppingCriteriaList()
        if max_length is not None:
            warnings.warn(
                "`max_length` is deprecated in this function, use"
                " `stopping_criteria=StoppingCriteriaList(MaxLengthCriteria(max_length=max_length))` instead.",
                UserWarning,
            )
            stopping_criteria = validate_stopping_criteria(stopping_criteria, max_length)
3757
3758
        pad_token_id = pad_token_id if pad_token_id is not None else self.generation_config.pad_token_id
        eos_token_id = eos_token_id if eos_token_id is not None else self.generation_config.eos_token_id
3759
3760
        if isinstance(eos_token_id, int):
            eos_token_id = [eos_token_id]
3761
3762
3763
3764
        output_scores = output_scores if output_scores is not None else self.generation_config.output_scores
        output_attentions = (
            output_attentions if output_attentions is not None else self.generation_config.output_attentions
        )
3765
        output_hidden_states = (
3766
            output_hidden_states if output_hidden_states is not None else self.generation_config.output_hidden_states
3767
3768
        )
        return_dict_in_generate = (
3769
3770
3771
            return_dict_in_generate
            if return_dict_in_generate is not None
            else self.generation_config.return_dict_in_generate
3772
3773
3774
3775
3776
        )

        num_beams = beam_scorer.num_beams
        num_beam_groups = beam_scorer.num_beam_groups
        num_sub_beams = num_beams // num_beam_groups
3777
        batch_size = len(beam_scorer._beam_hyps) // num_beam_groups
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
        device = input_ids.device

        batch_beam_size, cur_len = input_ids.shape

        if return_dict_in_generate and output_scores:
            beam_indices = [tuple(() for _ in range(num_sub_beams * batch_size)) for _ in range(num_beam_groups)]
        else:
            beam_indices = None

        if num_beams * batch_size != batch_beam_size:
            raise ValueError(
                f"Batch dimension of `input_ids` should be {num_beams * batch_size}, but is {batch_beam_size}."
            )

        # init attention / hidden states / scores tuples
        scores = () if (return_dict_in_generate and output_scores) else None
        decoder_attentions = () if (return_dict_in_generate and output_attentions) else None
        cross_attentions = () if (return_dict_in_generate and output_attentions) else None
        decoder_hidden_states = () if (return_dict_in_generate and output_hidden_states) else None

        # if model is an encoder-decoder, retrieve encoder attention weights and hidden states
        if return_dict_in_generate and self.config.is_encoder_decoder:
            encoder_attentions = model_kwargs["encoder_outputs"].get("attentions") if output_attentions else None
            encoder_hidden_states = (
                model_kwargs["encoder_outputs"].get("hidden_states") if output_hidden_states else None
            )

        # initialise score of first beam of each group with 0 and the rest with -1e9. This ensures that the beams in
        # the same group don't produce same tokens everytime.
        beam_scores = torch.full((batch_size, num_beams), -1e9, dtype=torch.float, device=device)
        beam_scores[:, ::num_sub_beams] = 0
        beam_scores = beam_scores.view((batch_size * num_beams,))

        this_peer_finished = False  # used by synced_gpus only
3812
3813

        decoder_prompt_len = input_ids.shape[-1]  # record the prompt length of decoder
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
        while True:
            if synced_gpus:
                # Under synced_gpus the `forward` call must continue until all gpus complete their sequence.
                # The following logic allows an early break if all peers finished generating their sequence
                this_peer_finished_flag = torch.tensor(0.0 if this_peer_finished else 1.0).to(input_ids.device)
                # send 0.0 if we finished, 1.0 otherwise
                dist.all_reduce(this_peer_finished_flag, op=dist.ReduceOp.SUM)
                # did all peers finish? the reduced sum will be 0.0 then
                if this_peer_finished_flag.item() == 0.0:
                    break

            # predicted tokens in cur_len step
            current_tokens = torch.zeros(batch_size * num_beams, dtype=input_ids.dtype, device=device)

            # indices which will form the beams in the next time step
            reordering_indices = torch.zeros(batch_size * num_beams, dtype=torch.long, device=device)

            # do one decoder step on all beams of all sentences in batch
            model_inputs = self.prepare_inputs_for_generation(input_ids, **model_kwargs)
            outputs = self(
                **model_inputs,
                return_dict=True,
                output_attentions=output_attentions,
                output_hidden_states=output_hidden_states,
            )

            if synced_gpus and this_peer_finished:
                cur_len = cur_len + 1
                continue  # don't waste resources running the code we don't need

            if output_scores:
                processed_score = torch.zeros_like(outputs.logits[:, -1, :])

            for beam_group_idx in range(num_beam_groups):
                group_start_idx = beam_group_idx * num_sub_beams
                group_end_idx = min(group_start_idx + num_sub_beams, num_beams)
                group_size = group_end_idx - group_start_idx

                # indices of beams of current group among all sentences in batch
                batch_group_indices = []

                for batch_idx in range(batch_size):
                    batch_group_indices.extend(
                        [batch_idx * num_beams + idx for idx in range(group_start_idx, group_end_idx)]
                    )
                group_input_ids = input_ids[batch_group_indices]

                # select outputs of beams of current group only
                next_token_logits = outputs.logits[batch_group_indices, -1, :]

                next_token_scores = nn.functional.log_softmax(
                    next_token_logits, dim=-1
                )  # (batch_size * group_size, vocab_size)
                vocab_size = next_token_scores.shape[-1]

                next_token_scores_processed = logits_processor(
                    group_input_ids, next_token_scores, current_tokens=current_tokens, beam_group_idx=beam_group_idx
                )
                next_token_scores = next_token_scores_processed + beam_scores[batch_group_indices].unsqueeze(-1)
                next_token_scores = next_token_scores.expand_as(next_token_scores_processed)

                if output_scores:
                    processed_score[batch_group_indices] = next_token_scores_processed

                # reshape for beam search
                next_token_scores = next_token_scores.view(batch_size, group_size * vocab_size)

3881
3882
                # Sample 1 + len(eos_token_id) next tokens for each beam so we have at least 1 non eos token per beam.
                n_eos_tokens = len(eos_token_id) if eos_token_id else 0
3883
                next_token_scores, next_tokens = torch.topk(
3884
                    next_token_scores, max(2, 1 + n_eos_tokens) * group_size, dim=1, largest=True, sorted=True
3885
3886
                )

3887
                next_indices = torch.div(next_tokens, vocab_size, rounding_mode="floor")
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
                next_tokens = next_tokens % vocab_size

                # stateless
                process_beam_indices = sum(beam_indices, ()) if beam_indices is not None else None
                beam_outputs = beam_scorer.process(
                    group_input_ids,
                    next_token_scores,
                    next_tokens,
                    next_indices,
                    pad_token_id=pad_token_id,
                    eos_token_id=eos_token_id,
                    beam_indices=process_beam_indices,
3900
                    group_index=beam_group_idx,
3901
                    decoder_prompt_len=decoder_prompt_len,
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
                )
                beam_scores[batch_group_indices] = beam_outputs["next_beam_scores"]
                beam_next_tokens = beam_outputs["next_beam_tokens"]
                beam_idx = beam_outputs["next_beam_indices"]

                if return_dict_in_generate and output_scores:
                    beam_indices[beam_group_idx] = tuple(
                        beam_indices[beam_group_idx][beam_idx[i]] + (beam_idx[i],) for i in range(len(beam_indices[0]))
                    )

                input_ids[batch_group_indices] = group_input_ids[beam_idx]
                group_input_ids = torch.cat([group_input_ids[beam_idx, :], beam_next_tokens.unsqueeze(-1)], dim=-1)
                current_tokens[batch_group_indices] = group_input_ids[:, -1]

                # (beam_idx // group_size) -> batch_idx
                # (beam_idx % group_size) -> offset of idx inside the group
                reordering_indices[batch_group_indices] = (
3919
3920
3921
                    num_beams * torch.div(beam_idx, group_size, rounding_mode="floor")
                    + group_start_idx
                    + (beam_idx % group_size)
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
                )

            # Store scores, attentions and hidden_states when required
            if return_dict_in_generate:
                if output_scores:
                    scores += (processed_score,)
                if output_attentions:
                    decoder_attentions += (
                        (outputs.decoder_attentions,) if self.config.is_encoder_decoder else (outputs.attentions,)
                    )
                    if self.config.is_encoder_decoder:
                        cross_attentions += (outputs.cross_attentions,)

                if output_hidden_states:
                    decoder_hidden_states += (
                        (outputs.decoder_hidden_states,)
                        if self.config.is_encoder_decoder
                        else (outputs.hidden_states,)
                    )

            input_ids = torch.cat([input_ids, current_tokens.unsqueeze(-1)], dim=-1)

            model_kwargs = self._update_model_kwargs_for_generation(
                outputs, model_kwargs, is_encoder_decoder=self.config.is_encoder_decoder
            )
3947
3948
3949
3950
            if model_kwargs["past_key_values"] is not None:
                model_kwargs["past_key_values"] = self._reorder_cache(
                    model_kwargs["past_key_values"], reordering_indices
                )
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970

            # increase cur_len
            cur_len = cur_len + 1

            if beam_scorer.is_done or stopping_criteria(input_ids, scores):
                if not synced_gpus:
                    break
                else:
                    this_peer_finished = True

        final_beam_indices = sum(beam_indices, ()) if beam_indices is not None else None
        sequence_outputs = beam_scorer.finalize(
            input_ids,
            beam_scores,
            next_tokens,
            next_indices,
            pad_token_id=pad_token_id,
            eos_token_id=eos_token_id,
            max_length=stopping_criteria.max_length,
            beam_indices=final_beam_indices,
3971
            decoder_prompt_len=decoder_prompt_len,
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
        )

        if return_dict_in_generate:
            if not output_scores:
                sequence_outputs["sequence_scores"] = None

            if self.config.is_encoder_decoder:
                return BeamSearchEncoderDecoderOutput(
                    sequences=sequence_outputs["sequences"],
                    sequences_scores=sequence_outputs["sequence_scores"],
                    scores=scores,
                    beam_indices=sequence_outputs["beam_indices"],
                    encoder_attentions=encoder_attentions,
                    encoder_hidden_states=encoder_hidden_states,
                    decoder_attentions=decoder_attentions,
                    cross_attentions=cross_attentions,
                    decoder_hidden_states=decoder_hidden_states,
3989
                    past_key_values=model_kwargs.get("past_key_values"),
3990
3991
3992
3993
3994
3995
3996
3997
3998
                )
            else:
                return BeamSearchDecoderOnlyOutput(
                    sequences=sequence_outputs["sequences"],
                    sequences_scores=sequence_outputs["sequence_scores"],
                    scores=scores,
                    beam_indices=sequence_outputs["beam_indices"],
                    attentions=decoder_attentions,
                    hidden_states=decoder_hidden_states,
3999
                    past_key_values=model_kwargs.get("past_key_values"),
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
                )
        else:
            return sequence_outputs["sequences"]

    def constrained_beam_search(
        self,
        input_ids: torch.LongTensor,
        constrained_beam_scorer: ConstrainedBeamSearchScorer,
        logits_processor: Optional[LogitsProcessorList] = None,
        stopping_criteria: Optional[StoppingCriteriaList] = None,
        max_length: Optional[int] = None,
        pad_token_id: Optional[int] = None,
4012
        eos_token_id: Optional[Union[int, List[int]]] = None,
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        output_scores: Optional[bool] = None,
        return_dict_in_generate: Optional[bool] = None,
        synced_gpus: Optional[bool] = None,
        **model_kwargs,
    ) -> Union[BeamSearchOutput, torch.LongTensor]:
        r"""
        Generates sequences of token ids for models with a language modeling head using **constrained beam search
        decoding** and can be used for text-decoder, text-to-text, speech-to-text, and vision-to-text models.

4024
4025
4026
4027
        <Tip warning={true}>

        In most cases, you do not need to call [`~generation.GenerationMixin.constrained_beam_search`] directly. Use
        generate() instead. For an overview of generation strategies and code examples, check the [following
4028
        guide](../generation_strategies).
4029
4030
4031

        </Tip>

4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
        Parameters:
            input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
                The sequence used as a prompt for the generation.
            constrained_beam_scorer (`ConstrainedBeamSearchScorer`):
                A derived instance of [`BeamScorer`] that defines how beam hypotheses are constructed, stored and
                sorted during generation, while satisfying a list of positive constraints. For more information, the
                documentation of [`ConstrainedBeamSearchScorer`] should be read.
            logits_processor (`LogitsProcessorList`, *optional*):
                An instance of [`LogitsProcessorList`]. List of instances of class derived from [`LogitsProcessor`]
                used to modify the prediction scores of the language modeling head applied at each generation step.
            stopping_criteria (`StoppingCriteriaList`, *optional*):
                An instance of [`StoppingCriteriaList`]. List of instances of class derived from [`StoppingCriteria`]
                used to tell if the generation loop should stop.
            logits_warper (`LogitsProcessorList`, *optional*):
                An instance of [`LogitsProcessorList`]. List of instances of class derived from [`LogitsWarper`] used
                to warp the prediction score distribution of the language modeling head applied before multinomial
                sampling at each generation step.
            max_length (`int`, *optional*, defaults to 20):
                **DEPRECATED**. Use `logits_processor` or `stopping_criteria` directly to cap the number of generated
                tokens. The maximum length of the sequence to be generated.
            pad_token_id (`int`, *optional*):
                The id of the *padding* token.
4054
4055
            eos_token_id (`Union[int, List[int]]`, *optional*):
                The id of the *end-of-sequence* token. Optionally, use a list to set multiple *end-of-sequence* tokens.
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
            output_attentions (`bool`, *optional*, defaults to `False`):
                Whether or not to return the attentions tensors of all attention layers. See `attentions` under
                returned tensors for more details.
            output_hidden_states (`bool`, *optional*, defaults to `False`):
                Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
                for more details.
            output_scores (`bool`, *optional*, defaults to `False`):
                Whether or not to return the prediction scores. See `scores` under returned tensors for more details.
            return_dict_in_generate (`bool`, *optional*, defaults to `False`):
                Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
            synced_gpus (`bool`, *optional*, defaults to `False`):
                Whether to continue running the while loop until max_length (needed for ZeRO stage 3)
            model_kwargs:
                Additional model specific kwargs will be forwarded to the `forward` function of the model. If model is
                an encoder-decoder model the kwargs should include `encoder_outputs`.

        Return:
            [`generation.BeamSearchDecoderOnlyOutput`], [`~generation.BeamSearchEncoderDecoderOutput`] or
            `torch.LongTensor`: A `torch.LongTensor` containing the generated tokens (default behaviour) or a
            [`~generation.BeamSearchDecoderOnlyOutput`] if `model.config.is_encoder_decoder=False` and
            `return_dict_in_generate=True` or a [`~generation.BeamSearchEncoderDecoderOutput`] if
            `model.config.is_encoder_decoder=True`.


        Examples:

        ```python
        >>> from transformers import (
        ...     AutoTokenizer,
        ...     AutoModelForSeq2SeqLM,
        ...     LogitsProcessorList,
        ...     MinLengthLogitsProcessor,
        ...     ConstrainedBeamSearchScorer,
        ...     PhrasalConstraint,
        ... )
        >>> import torch

        >>> tokenizer = AutoTokenizer.from_pretrained("t5-base")
        >>> model = AutoModelForSeq2SeqLM.from_pretrained("t5-base")

        >>> encoder_input_str = "translate English to German: How old are you?"
        >>> encoder_input_ids = tokenizer(encoder_input_str, return_tensors="pt").input_ids


        >>> # lets run beam search using 3 beams
        >>> num_beams = 3
        >>> # define decoder start token ids
        >>> input_ids = torch.ones((num_beams, 1), device=model.device, dtype=torch.long)
        >>> input_ids = input_ids * model.config.decoder_start_token_id

        >>> # add encoder_outputs to model keyword arguments
        >>> model_kwargs = {
        ...     "encoder_outputs": model.get_encoder()(
        ...         encoder_input_ids.repeat_interleave(num_beams, dim=0), return_dict=True
        ...     )
        ... }

        >>> constraint_str = "Sie"
        >>> constraint_token_ids = tokenizer.encode(constraint_str)[:-1]  # slice to remove eos token
        >>> constraints = [PhrasalConstraint(token_ids=constraint_token_ids)]


        >>> # instantiate beam scorer
        >>> beam_scorer = ConstrainedBeamSearchScorer(
        ...     batch_size=1, num_beams=num_beams, device=model.device, constraints=constraints
        ... )

        >>> # instantiate logits processors
        >>> logits_processor = LogitsProcessorList(
        ...     [
        ...         MinLengthLogitsProcessor(5, eos_token_id=model.config.eos_token_id),
        ...     ]
        ... )

        >>> outputs = model.constrained_beam_search(
        ...     input_ids, beam_scorer, constraints=constraints, logits_processor=logits_processor, **model_kwargs
        ... )

        >>> tokenizer.batch_decode(outputs, skip_special_tokens=True)
        ['Wie alt sind Sie?']
        ```"""
        # init values
        logits_processor = logits_processor if logits_processor is not None else LogitsProcessorList()
        stopping_criteria = stopping_criteria if stopping_criteria is not None else StoppingCriteriaList()
        if max_length is not None:
            warnings.warn(
                "`max_length` is deprecated in this function, use"
                " `stopping_criteria=StoppingCriteriaList(MaxLengthCriteria(max_length=max_length))` instead.",
                UserWarning,
            )
            stopping_criteria = validate_stopping_criteria(stopping_criteria, max_length)
        if len(stopping_criteria) == 0:
            warnings.warn("You don't have defined any stopping_criteria, this will likely loop forever", UserWarning)
4149
4150
        pad_token_id = pad_token_id if pad_token_id is not None else self.generation_config.pad_token_id
        eos_token_id = eos_token_id if eos_token_id is not None else self.generation_config.eos_token_id
4151
4152
        if isinstance(eos_token_id, int):
            eos_token_id = [eos_token_id]
4153
4154
4155
4156
        output_scores = output_scores if output_scores is not None else self.generation_config.output_scores
        output_attentions = (
            output_attentions if output_attentions is not None else self.generation_config.output_attentions
        )
4157
        output_hidden_states = (
4158
            output_hidden_states if output_hidden_states is not None else self.generation_config.output_hidden_states
4159
4160
        )
        return_dict_in_generate = (
4161
4162
4163
            return_dict_in_generate
            if return_dict_in_generate is not None
            else self.generation_config.return_dict_in_generate
4164
4165
        )

4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
        batch_size = len(constrained_beam_scorer._beam_hyps)
        num_beams = constrained_beam_scorer.num_beams

        batch_beam_size, cur_len = input_ids.shape

        if num_beams * batch_size != batch_beam_size:
            raise ValueError(
                f"Batch dimension of `input_ids` should be {num_beams * batch_size}, but is {batch_beam_size}."
            )

4176
4177
        # init attention / hidden states / scores tuples
        scores = () if (return_dict_in_generate and output_scores) else None
4178
4179
4180
        beam_indices = (
            tuple(() for _ in range(batch_beam_size)) if (return_dict_in_generate and output_scores) else None
        )
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
        decoder_attentions = () if (return_dict_in_generate and output_attentions) else None
        cross_attentions = () if (return_dict_in_generate and output_attentions) else None
        decoder_hidden_states = () if (return_dict_in_generate and output_hidden_states) else None

        # if model is an encoder-decoder, retrieve encoder attention weights and hidden states
        if return_dict_in_generate and self.config.is_encoder_decoder:
            encoder_attentions = model_kwargs["encoder_outputs"].get("attentions") if output_attentions else None
            encoder_hidden_states = (
                model_kwargs["encoder_outputs"].get("hidden_states") if output_hidden_states else None
            )

        # initialise score of first beam with 0 and the rest with -1e9. This makes sure that only tokens
        # of the first beam are considered to avoid sampling the exact same tokens across all beams.
        beam_scores = torch.zeros((batch_size, num_beams), dtype=torch.float, device=input_ids.device)
        beam_scores[:, 1:] = -1e9
        beam_scores = beam_scores.view((batch_size * num_beams,))

        this_peer_finished = False  # used by synced_gpus only
4199
4200

        decoder_prompt_len = input_ids.shape[-1]  # record the prompt length of decoder
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
        while True:
            if synced_gpus:
                # Under synced_gpus the `forward` call must continue until all gpus complete their sequence.
                # The following logic allows an early break if all peers finished generating their sequence
                this_peer_finished_flag = torch.tensor(0.0 if this_peer_finished else 1.0).to(input_ids.device)
                # send 0.0 if we finished, 1.0 otherwise
                dist.all_reduce(this_peer_finished_flag, op=dist.ReduceOp.SUM)
                # did all peers finish? the reduced sum will be 0.0 then
                if this_peer_finished_flag.item() == 0.0:
                    break

            model_inputs = self.prepare_inputs_for_generation(input_ids, **model_kwargs)

            outputs = self(
                **model_inputs,
                return_dict=True,
                output_attentions=output_attentions,
                output_hidden_states=output_hidden_states,
            )

            if synced_gpus and this_peer_finished:
                cur_len = cur_len + 1
                continue  # don't waste resources running the code we don't need

            next_token_logits = outputs.logits[:, -1, :]
            next_token_scores = nn.functional.log_softmax(
                next_token_logits, dim=-1
            )  # (batch_size * num_beams, vocab_size)

            next_token_scores_processed = logits_processor(input_ids, next_token_scores)

4232
4233
4234
            next_token_scores = next_token_scores_processed + beam_scores[:, None].expand_as(
                next_token_scores_processed
            )
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259

            scores_for_all_vocab = next_token_scores.clone()

            # Store scores, attentions and hidden_states when required
            if return_dict_in_generate:
                if output_scores:
                    scores += (next_token_scores,)
                if output_attentions:
                    decoder_attentions += (
                        (outputs.decoder_attentions,) if self.config.is_encoder_decoder else (outputs.attentions,)
                    )
                    if self.config.is_encoder_decoder:
                        cross_attentions += (outputs.cross_attentions,)

                if output_hidden_states:
                    decoder_hidden_states += (
                        (outputs.decoder_hidden_states,)
                        if self.config.is_encoder_decoder
                        else (outputs.hidden_states,)
                    )

            # reshape for beam search
            vocab_size = next_token_scores.shape[-1]
            next_token_scores = next_token_scores.view(batch_size, num_beams * vocab_size)

4260
4261
            # Sample 1 + len(eos_token_id) next tokens for each beam so we have at least 1 non eos token per beam.
            n_eos_tokens = len(eos_token_id) if eos_token_id else 0
4262
            next_token_scores, next_tokens = torch.topk(
4263
                next_token_scores, max(2, 1 + n_eos_tokens) * num_beams, dim=1, largest=True, sorted=True
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
            )

            next_indices = (next_tokens / vocab_size).long()
            next_tokens = next_tokens % vocab_size

            # stateless
            beam_outputs = constrained_beam_scorer.process(
                input_ids,
                next_token_scores,
                next_tokens,
                next_indices,
                scores_for_all_vocab,
                pad_token_id=pad_token_id,
                eos_token_id=eos_token_id,
4278
                beam_indices=beam_indices,
4279
                decoder_prompt_len=decoder_prompt_len,
4280
4281
4282
4283
4284
4285
4286
4287
4288
            )
            beam_scores = beam_outputs["next_beam_scores"]
            beam_next_tokens = beam_outputs["next_beam_tokens"]
            beam_idx = beam_outputs["next_beam_indices"]

            input_ids = torch.cat([input_ids[beam_idx, :], beam_next_tokens.unsqueeze(-1)], dim=-1)
            model_kwargs = self._update_model_kwargs_for_generation(
                outputs, model_kwargs, is_encoder_decoder=self.config.is_encoder_decoder
            )
4289
4290
            if model_kwargs["past_key_values"] is not None:
                model_kwargs["past_key_values"] = self._reorder_cache(model_kwargs["past_key_values"], beam_idx)
4291

4292
4293
4294
            if return_dict_in_generate and output_scores:
                beam_indices = tuple((beam_indices[beam_idx[i]] + (beam_idx[i],) for i in range(len(beam_indices))))

4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
            # increase cur_len
            cur_len = cur_len + 1

            if constrained_beam_scorer.is_done or stopping_criteria(input_ids, scores):
                if not synced_gpus:
                    break
                else:
                    this_peer_finished = True

        sequence_outputs = constrained_beam_scorer.finalize(
            input_ids,
            beam_scores,
            next_tokens,
            next_indices,
            pad_token_id=pad_token_id,
            eos_token_id=eos_token_id,
            max_length=stopping_criteria.max_length,
4312
            beam_indices=beam_indices,
4313
            decoder_prompt_len=decoder_prompt_len,
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
        )

        if return_dict_in_generate:
            if not output_scores:
                sequence_outputs["sequence_scores"] = None
            if self.config.is_encoder_decoder:
                return BeamSearchEncoderDecoderOutput(
                    sequences=sequence_outputs["sequences"],
                    sequences_scores=sequence_outputs["sequence_scores"],
                    scores=scores,
4324
                    beam_indices=sequence_outputs["beam_indices"],
4325
4326
4327
4328
4329
                    encoder_attentions=encoder_attentions,
                    encoder_hidden_states=encoder_hidden_states,
                    decoder_attentions=decoder_attentions,
                    cross_attentions=cross_attentions,
                    decoder_hidden_states=decoder_hidden_states,
4330
                    past_key_values=model_kwargs.get("past_key_values"),
4331
4332
4333
4334
4335
4336
                )
            else:
                return BeamSearchDecoderOnlyOutput(
                    sequences=sequence_outputs["sequences"],
                    sequences_scores=sequence_outputs["sequence_scores"],
                    scores=scores,
4337
                    beam_indices=sequence_outputs["beam_indices"],
4338
4339
                    attentions=decoder_attentions,
                    hidden_states=decoder_hidden_states,
4340
                    past_key_values=model_kwargs.get("past_key_values"),
4341
4342
4343
4344
                )
        else:
            return sequence_outputs["sequences"]

4345
    def assisted_decoding(
4346
4347
4348
        self,
        input_ids: torch.LongTensor,
        assistant_model: "PreTrainedModel",
4349
        do_sample: bool = False,
4350
        logits_processor: Optional[LogitsProcessorList] = None,
4351
        logits_warper: Optional[LogitsProcessorList] = None,
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
        stopping_criteria: Optional[StoppingCriteriaList] = None,
        pad_token_id: Optional[int] = None,
        eos_token_id: Optional[Union[int, List[int]]] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        output_scores: Optional[bool] = None,
        return_dict_in_generate: Optional[bool] = None,
        synced_gpus: bool = False,
        streamer: Optional["BaseStreamer"] = None,
        **model_kwargs,
    ):
        r"""
4364
4365
4366
        Generates sequences of token ids for models with a language modeling head using **greedy decoding** or
        **sample** (depending on `do_sample`), assisted by a smaller model. Can be used for text-decoder, text-to-text,
        speech-to-text, and vision-to-text models.
4367
4368
4369

        <Tip warning={true}>

4370
        In most cases, you do not need to call [`~generation.GenerationMixin.assisted_decoding`] directly. Use
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
        generate() instead. For an overview of generation strategies and code examples, check the [following
        guide](../generation_strategies).

        </Tip>

        Parameters:
            input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
                The sequence used as a prompt for the generation.
            assistant_model (`PreTrainedModel`, *optional*):
                An assistant model that can be used to accelerate generation. The assistant model must have the exact
                same tokenizer. The acceleration is achieved when forecasting candidate tokens with the assistent model
                is much faster than running generation with the model you're calling generate from. As such, the
                assistant model should be much smaller.
4384
4385
            do_sample (`bool`, *optional*, defaults to `False`):
                Whether or not to use sampling ; use greedy decoding otherwise.
4386
4387
4388
            logits_processor (`LogitsProcessorList`, *optional*):
                An instance of [`LogitsProcessorList`]. List of instances of class derived from [`LogitsProcessor`]
                used to modify the prediction scores of the language modeling head applied at each generation step.
4389
4390
4391
4392
            logits_warper (`LogitsProcessorList`, *optional*):
                An instance of [`LogitsProcessorList`]. List of instances of class derived from [`LogitsWarper`] used
                to warp the prediction score distribution of the language modeling head applied before multinomial
                sampling at each generation step.
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
            stopping_criteria (`StoppingCriteriaList`, *optional*):
                An instance of [`StoppingCriteriaList`]. List of instances of class derived from [`StoppingCriteria`]
                used to tell if the generation loop should stop.
            pad_token_id (`int`, *optional*):
                The id of the *padding* token.
            eos_token_id (`Union[int, List[int]]`, *optional*):
                The id of the *end-of-sequence* token. Optionally, use a list to set multiple *end-of-sequence* tokens.
            output_attentions (`bool`, *optional*, defaults to `False`):
                Whether or not to return the attentions tensors of all attention layers. See `attentions` under
                returned tensors for more details.
            output_hidden_states (`bool`, *optional*, defaults to `False`):
                Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
                for more details.
            output_scores (`bool`, *optional*, defaults to `False`):
                Whether or not to return the prediction scores. See `scores` under returned tensors for more details.
            return_dict_in_generate (`bool`, *optional*, defaults to `False`):
                Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
            synced_gpus (`bool`, *optional*, defaults to `False`):
                Whether to continue running the while loop until max_length (needed for ZeRO stage 3)
            streamer (`BaseStreamer`, *optional*):
                Streamer object that will be used to stream the generated sequences. Generated tokens are passed
                through `streamer.put(token_ids)` and the streamer is responsible for any further processing.
            model_kwargs:
                Additional model specific keyword arguments will be forwarded to the `forward` function of the model.
                If model is an encoder-decoder model the kwargs should include `encoder_outputs`.

        Return:
            [`~generation.GreedySearchDecoderOnlyOutput`], [`~generation.GreedySearchEncoderDecoderOutput`] or
            `torch.LongTensor`: A `torch.LongTensor` containing the generated tokens (default behaviour) or a
            [`~generation.GreedySearchDecoderOnlyOutput`] if `model.config.is_encoder_decoder=False` and
            `return_dict_in_generate=True` or a [`~generation.GreedySearchEncoderDecoderOutput`] if
            `model.config.is_encoder_decoder=True`.

        Examples:

        ```python
        >>> from transformers import (
        ...     AutoTokenizer,
        ...     AutoModelForCausalLM,
        ...     LogitsProcessorList,
        ...     MinLengthLogitsProcessor,
        ...     StoppingCriteriaList,
        ...     MaxLengthCriteria,
        ... )

        >>> tokenizer = AutoTokenizer.from_pretrained("gpt2")
        >>> model = AutoModelForCausalLM.from_pretrained("gpt2")
        >>> assistant_model = AutoModelForCausalLM.from_pretrained("distilgpt2")
        >>> # set pad_token_id to eos_token_id because GPT2 does not have a PAD token
        >>> model.generation_config.pad_token_id = model.generation_config.eos_token_id
        >>> input_prompt = "It might be possible to"
        >>> input_ids = tokenizer(input_prompt, return_tensors="pt").input_ids
        >>> # instantiate logits processors
        >>> logits_processor = LogitsProcessorList(
        ...     [
        ...         MinLengthLogitsProcessor(10, eos_token_id=model.generation_config.eos_token_id),
        ...     ]
        ... )
        >>> stopping_criteria = StoppingCriteriaList([MaxLengthCriteria(max_length=20)])
4452
        >>> outputs = model.assisted_decoding(
4453
4454
4455
4456
4457
4458
4459
4460
4461
        ...     input_ids,
        ...     assistant_model=assistant_model,
        ...     logits_processor=logits_processor,
        ...     stopping_criteria=stopping_criteria,
        ... )
        >>> tokenizer.batch_decode(outputs, skip_special_tokens=True)
        ["It might be possible to get a better understanding of the nature of the problem, but it's not"]
        ```"""
        # Assistant: initialize assistant-related variables
4462
4463
4464
4465
4466
4467
4468
4469
        if hasattr(assistant_model, "num_assistant_tokens"):
            warnings.warn(
                "Setting `num_assistant_tokens` via `assistant_model.num_assistant_tokens` is deprecated and will be removed in v.37. Make sure to set `num_assistant_tokens` via the generation_config instead.",
                FutureWarning,
            )
            num_assistant_tokens = assistant_model.num_assistant_tokens
        else:
            num_assistant_tokens = assistant_model.generation_config.num_assistant_tokens
4470
4471
4472

        # init values
        logits_processor = logits_processor if logits_processor is not None else LogitsProcessorList()
4473
        logits_warper = logits_warper if logits_warper is not None else LogitsProcessorList()
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
        stopping_criteria = stopping_criteria if stopping_criteria is not None else StoppingCriteriaList()
        pad_token_id = pad_token_id if pad_token_id is not None else self.generation_config.pad_token_id
        eos_token_id = eos_token_id if eos_token_id is not None else self.generation_config.eos_token_id
        if eos_token_id is not None and pad_token_id is None:
            raise ValueError("If `eos_token_id` is defined, make sure that `pad_token_id` is defined.")
        if isinstance(eos_token_id, int):
            eos_token_id = [eos_token_id]
        eos_token_id_tensor = torch.tensor(eos_token_id).to(input_ids.device) if eos_token_id is not None else None
        output_scores = output_scores if output_scores is not None else self.generation_config.output_scores
        output_attentions = (
            output_attentions if output_attentions is not None else self.generation_config.output_attentions
        )
        output_hidden_states = (
            output_hidden_states if output_hidden_states is not None else self.generation_config.output_hidden_states
        )
        return_dict_in_generate = (
            return_dict_in_generate
            if return_dict_in_generate is not None
            else self.generation_config.return_dict_in_generate
        )

        # init attention / hidden states / scores tuples
        scores = () if (return_dict_in_generate and output_scores) else None
        decoder_attentions = () if (return_dict_in_generate and output_attentions) else None
        cross_attentions = () if (return_dict_in_generate and output_attentions) else None
        decoder_hidden_states = () if (return_dict_in_generate and output_hidden_states) else None

        # if model is an encoder-decoder, retrieve encoder attention weights and hidden states
        if return_dict_in_generate and self.config.is_encoder_decoder:
            encoder_attentions = model_kwargs["encoder_outputs"].get("attentions") if output_attentions else None
            encoder_hidden_states = (
                model_kwargs["encoder_outputs"].get("hidden_states") if output_hidden_states else None
            )

4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
        # prepare assistant model's keys of inputs
        assistant_kwargs = copy.copy(model_kwargs)
        if assistant_model.config.is_encoder_decoder:
            # both are encoder-decoder
            input_ids_key = "decoder_input_ids"
            attention_key = "decoder_attention_mask"
            assistant_kwargs["encoder_outputs"] = assistant_kwargs.pop("assistant_encoder_outputs")
        elif "assistant_encoder_outputs" in assistant_kwargs:
            # special case for encoder-decoder with decoder-only assistant (like DistilWhisper)
            input_ids_key = "input_ids"
            attention_key = "attention_mask"
            assistant_kwargs["attention_mask"] = assistant_kwargs.get(
                "decoder_attention_mask",
                torch.ones((input_ids.shape[0], 1), device=input_ids.device, dtype=torch.long),
            )
            assistant_kwargs["encoder_outputs"] = assistant_kwargs.pop("assistant_encoder_outputs")
        else:
            # both are decoder-only
            input_ids_key = "input_ids"
            attention_key = "attention_mask"

4529
4530
4531
        # keep track of which sequences are already finished
        unfinished_sequences = input_ids.new(input_ids.shape[0]).fill_(1)

4532
4533
4534
        # other auxiliary variables
        max_len = stopping_criteria[0].max_length

4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
        this_peer_finished = False  # used by synced_gpus only
        while True:
            if synced_gpus:
                # Under synced_gpus the `forward` call must continue until all gpus complete their sequence.
                # The following logic allows an early break if all peers finished generating their sequence
                this_peer_finished_flag = torch.tensor(0.0 if this_peer_finished else 1.0).to(input_ids.device)
                # send 0.0 if we finished, 1.0 otherwise
                dist.all_reduce(this_peer_finished_flag, op=dist.ReduceOp.SUM)
                # did all peers finish? the reduced sum will be 0.0 then
                if this_peer_finished_flag.item() == 0.0:
                    break

            # Assistant: main logic start
            cur_len = input_ids.shape[-1]

            #  1. Forecast next N tokens using the assistant model. This `for` block can be replaced with a
            # `.generate()` call if we decide to add `past_key_values` as a possible output of generate, as we
            # need access to the assistant cache to secure strong speedups.
            candidate_input_ids = input_ids
4554
            for _ in range(int(num_assistant_tokens)):
4555
4556
4557
4558
4559
                # 1.1 prepare assistant model inputs
                assistant_inputs = assistant_model.prepare_inputs_for_generation(
                    candidate_input_ids,
                    **assistant_kwargs,
                )
4560

4561
4562
4563
4564
                # 1.2. check if the input ids length is correct
                has_past_key_values = assistant_inputs.get("past_key_values", None) is not None
                if has_past_key_values and assistant_inputs[input_ids_key].shape[-1] not in (1, 2):
                    raise ValueError("The length of the input ids in assistant inputs should be 1 or 2")
4565

4566
4567
                # 1.3. use the assistant model to obtain the next candidate logits
                assistant_model_outputs = assistant_model(**assistant_inputs)
4568

4569
                # 1.4. greedily select the next candidate token
4570
4571
4572
4573
4574
4575
4576
                if len(logits_processor) > 0:
                    assistant_model_outputs.logits[:, -1, :] = logits_processor(
                        candidate_input_ids, assistant_model_outputs.logits[:, -1, :]
                    )
                new_token = assistant_model_outputs.logits[:, -1, :].argmax(dim=-1)
                candidate_input_ids = torch.cat((candidate_input_ids, new_token[:, None]), dim=-1)

4577
4578
4579
4580
4581
4582
4583
                # 1.5. update assistant model inputs
                if assistant_kwargs.get(attention_key, None) is not None:
                    mask = assistant_kwargs[attention_key]
                    assistant_kwargs[attention_key] = torch.cat([mask, mask.new_ones((mask.shape[0], 1))], dim=-1)
                assistant_kwargs["past_key_values"] = assistant_model_outputs.past_key_values

                # 1.6. stop assistant generation on EOS
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
                if eos_token_id_tensor is not None:
                    last_assistant_token_is_eos = new_token.tile(eos_token_id_tensor.shape[0], 1)
                    last_assistant_token_is_eos = (
                        ~last_assistant_token_is_eos.ne(eos_token_id_tensor.unsqueeze(1)).prod(dim=0).bool()
                    )
                    if last_assistant_token_is_eos:
                        break
                else:
                    last_assistant_token_is_eos = False

            candidate_length = candidate_input_ids.shape[1] - input_ids.shape[1]

            # 2. Use the original model to obtain the next token logits given the candidate sequence. We obtain
4597
4598
            # `candidate_length + 1` relevant logits from this process: in the event that all candidates are correct,
            # we use this forward pass to also pick the subsequent logits in the original model.
4599

4600
4601
            # 2.1. Prepare the model inputs
            candidate_kwargs = copy.copy(model_kwargs)
4602
4603
4604
4605
            candidate_kwargs = _prepare_attention_mask(
                candidate_kwargs, candidate_input_ids.shape[1], self.config.is_encoder_decoder
            )
            candidate_kwargs = _prepare_token_type_ids(candidate_kwargs, candidate_input_ids.shape[1])
4606
4607
4608
4609
4610
4611
4612
4613
4614

            model_inputs = self.prepare_inputs_for_generation(candidate_input_ids, **candidate_kwargs)

            # 2.2. Run a forward pass on the candidate sequence
            outputs = self(
                **model_inputs,
                output_attentions=output_attentions,
                output_hidden_states=output_hidden_states,
            )
4615

4616
            # 2.3. Process the new logits
4617
4618
            new_logits = outputs.logits[:, -candidate_length - 1 :]  # excludes the input prompt if present
            if len(logits_processor) > 0:
4619
                for i in range(candidate_length + 1):
4620
                    new_logits[:, i, :] = logits_processor(candidate_input_ids[:, : cur_len + i], new_logits[:, i, :])
4621
            if len(logits_warper) > 0:
4622
                for i in range(candidate_length + 1):
4623
4624
                    new_logits[:, i, :] = logits_warper(candidate_input_ids[:, : cur_len + i], new_logits[:, i, :])

4625
            # 3. Obtain the next tokens from the original model logits.
4626
            if do_sample:
4627
                probs = new_logits.softmax(dim=-1)
4628
                selected_tokens = torch.multinomial(probs[0, :, :], num_samples=1).squeeze(1)[None, :]
4629
            else:
4630
                selected_tokens = new_logits.argmax(dim=-1)
4631
4632
4633
4634

            # 4. Compare the argmax from the original model logits with the assistant forecasted tokens. We can keep
            # the assistant forecasted tokens until the first mismatch, or until the max length is reached.
            candidate_new_tokens = candidate_input_ids[:, -candidate_length:]
4635
            n_matches = ((~(candidate_new_tokens == selected_tokens[:, :-1])).cumsum(dim=-1) < 1).sum()
4636

4637
4638
4639
4640
            # 5. Update variables according to the number of matching assistant tokens. Remember: the token generated
            # by the model after the last candidate match is also valid, as it is generated from a correct sequence.
            # Because of this last token, assisted generation search reduces to a normal greedy search/sample if there
            # is no match.
4641

4642
            # 5.1. Ensure we don't generate beyond max_len or an EOS token
4643
4644
            if last_assistant_token_is_eos and n_matches == candidate_length:
                n_matches -= 1
4645
4646
4647
4648
4649
            n_matches = min(n_matches, max_len - cur_len - 1)

            # 5.2. Get the valid continuation, after the matching tokens
            valid_tokens = selected_tokens[:, : n_matches + 1]
            input_ids = torch.cat((input_ids, valid_tokens), dim=-1)
4650
            if streamer is not None:
4651
4652
                streamer.put(valid_tokens.cpu())
            new_cur_len = input_ids.shape[-1]
4653

4654
4655
4656
            # 5.3. Discard past key values relative to unused assistant tokens
            new_cache_size = new_cur_len - 1
            outputs.past_key_values = _crop_past_key_values(self, outputs.past_key_values, new_cache_size)
4657
4658
            assistant_kwargs["past_key_values"] = _crop_past_key_values(
                assistant_model, assistant_kwargs["past_key_values"], new_cache_size - 1
4659
            )  # the assistant does not have the token after the last match, hence the -1
4660

4661
4662
4663
            # 6. Adjust the max number of assistant tokens to use in the next iteration. This is a simple heuristic,
            # probably can be improved -- we want to balance the benefits of getting assistant tokens correct with the
            # cost of forecasting incorrect assistant tokens.
4664
4665
4666
4667
4668
            if assistant_model.generation_config.num_assistant_tokens_schedule == "heuristic":
                if n_matches == int(num_assistant_tokens):
                    num_assistant_tokens += 2.0
                else:
                    num_assistant_tokens = max(1.0, num_assistant_tokens - 1.0)
4669

4670
            # Assistant: main logic end
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
            if synced_gpus and this_peer_finished:
                continue  # don't waste resources running the code we don't need

            # Store scores, attentions and hidden_states when required
            # Assistant: modified to append one tuple element per token, as in the other generation methods.
            if return_dict_in_generate:
                if output_scores:
                    scores += tuple(new_logits[:, i, :] for i in range(n_matches + 1))

                if "past_key_values" not in model_kwargs:
4681
                    added_len = new_cur_len
4682
                else:
4683
                    added_len = n_matches + 1
4684
4685
4686
4687

                if output_attentions:
                    if self.config.is_encoder_decoder:
                        cross_attentions = _split_model_outputs(
4688
                            cross_attentions, outputs.cross_attentions, cur_len, added_len
4689
4690
4691
4692
                        )
                        decoder_attentions = _split_model_outputs(
                            decoder_attentions,
                            outputs.decoder_attentions,
4693
                            cur_len,
4694
                            added_len,
4695
4696
4697
4698
4699
4700
                            is_decoder_attention=True,
                        )
                    else:
                        decoder_attentions = _split_model_outputs(
                            decoder_attentions,
                            outputs.attentions,
4701
                            cur_len,
4702
                            added_len,
4703
4704
4705
4706
4707
                            is_decoder_attention=True,
                        )
                if output_hidden_states:
                    if self.config.is_encoder_decoder:
                        decoder_hidden_states = _split_model_outputs(
4708
                            decoder_hidden_states, outputs.decoder_hidden_states, cur_len, added_len
4709
4710
4711
                        )
                    else:
                        decoder_hidden_states = _split_model_outputs(
4712
                            decoder_hidden_states, outputs.hidden_states, cur_len, added_len
4713
4714
4715
4716
4717
4718
                        )

            model_kwargs = self._update_model_kwargs_for_generation(
                outputs, model_kwargs, is_encoder_decoder=self.config.is_encoder_decoder
            )

4719
4720
4721
4722
4723
4724
            # Update assistant_kwargs for the assistant's next round of generations
            assistant_kwargs = _prepare_attention_mask(
                assistant_kwargs, new_cur_len, assistant_model.config.is_encoder_decoder
            )
            assistant_kwargs = _prepare_token_type_ids(assistant_kwargs, new_cur_len)

4725
4726
4727
            # if eos_token was found in one sentence, set sentence to finished
            if eos_token_id_tensor is not None:
                unfinished_sequences = unfinished_sequences.mul(
4728
4729
4730
4731
                    input_ids[:, -1]
                    .tile(eos_token_id_tensor.shape[0], 1)
                    .ne(eos_token_id_tensor.unsqueeze(1))
                    .prod(dim=0)
4732
4733
                )

4734
4735
                # stop when each sentence is finished
                if unfinished_sequences.max() == 0:
4736
4737
                    this_peer_finished = True

4738
4739
4740
4741
4742
4743
4744
            # stop if we exceed the maximum length
            if stopping_criteria(input_ids, scores):
                this_peer_finished = True

            if this_peer_finished and not synced_gpus:
                break

4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
        if streamer is not None:
            streamer.end()

        if return_dict_in_generate:
            if self.config.is_encoder_decoder:
                return GreedySearchEncoderDecoderOutput(
                    sequences=input_ids,
                    scores=scores,
                    encoder_attentions=encoder_attentions,
                    encoder_hidden_states=encoder_hidden_states,
                    decoder_attentions=decoder_attentions,
                    cross_attentions=cross_attentions,
                    decoder_hidden_states=decoder_hidden_states,
4758
                    past_key_values=model_kwargs.get("past_key_values"),
4759
4760
4761
4762
4763
4764
4765
                )
            else:
                return GreedySearchDecoderOnlyOutput(
                    sequences=input_ids,
                    scores=scores,
                    attentions=decoder_attentions,
                    hidden_states=decoder_hidden_states,
4766
                    past_key_values=model_kwargs.get("past_key_values"),
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
                )
        else:
            return input_ids


def _crop_past_key_values(model, past_key_values, maximum_length):
    """Crops the past key values up to a certain maximum length."""
    new_past = []
    if model.config.is_encoder_decoder:
        for idx in range(len(past_key_values)):
            new_past.append(
                (
                    past_key_values[idx][0][:, :, :maximum_length, :],
                    past_key_values[idx][1][:, :, :maximum_length, :],
                    past_key_values[idx][2],
                    past_key_values[idx][3],
                )
            )
        past_key_values = tuple(new_past)
4786
4787
4788
4789
    # bloom is special
    elif "bloom" in model.__class__.__name__.lower() or (
        model.config.architectures is not None and "bloom" in model.config.architectures[0].lower()
    ):
4790
4791
4792
4793
4794
4795
4796
4797
        for idx in range(len(past_key_values)):
            new_past.append(
                (
                    past_key_values[idx][0][:, :, :maximum_length],
                    past_key_values[idx][1][:, :maximum_length, :],
                )
            )
        past_key_values = tuple(new_past)
4798
4799
4800
4801
    # gptbigcode is too
    elif "gptbigcode" in model.__class__.__name__.lower() or (
        model.config.architectures is not None and "gptbigcode" in model.config.architectures[0].lower()
    ):
4802
4803
4804
4805
4806
4807
        if model.config.multi_query:
            for idx in range(len(past_key_values)):
                past_key_values[idx] = past_key_values[idx][:, :maximum_length, :]
        else:
            for idx in range(len(past_key_values)):
                past_key_values[idx] = past_key_values[idx][:, :, :maximum_length, :]
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
    else:
        for idx in range(len(past_key_values)):
            new_past.append(
                (
                    past_key_values[idx][0][:, :, :maximum_length, :],
                    past_key_values[idx][1][:, :, :maximum_length, :],
                )
            )
        past_key_values = tuple(new_past)
    return past_key_values


4820
def _split_model_outputs(outputs, new_outputs, cur_len, added_len, is_decoder_attention=False):
4821
4822
4823
4824
4825
4826
    """
    Given the (decoder/cross attentions)/(decoder hidden states) for multiple generated tokens, splits it into a tuple
    where each member corresponds to a single generated token.
    """
    # Retrocompatibility: in our generation functions, the first iteration includes the attention/hidden states for the
    # prompt.
4827
    if len(outputs) == 0:
4828
4829
        new_tuple = ()
        for layer in new_outputs:
4830
4831
            last_dim_size = cur_len if is_decoder_attention else layer.shape[-1]
            new_tuple += (layer[..., :cur_len, :last_dim_size],)
4832
        outputs += (new_tuple,)
4833
4834
4835
        # The first iteration contains the prompt + 1 generated token, let's update the length variables accordingly
        cur_len += 1
        added_len -= cur_len
4836

4837
    for i in range(added_len):
4838
4839
        new_tuple = ()
        for layer in new_outputs:
4840
            last_dim_size = cur_len + i if is_decoder_attention else layer.shape[-1]
4841
4842
4843
4844
            new_tuple += (layer[..., i : i + 1, :last_dim_size],)
        outputs += (new_tuple,)
    return outputs

4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901

def top_k_top_p_filtering(
    logits: torch.FloatTensor,
    top_k: int = 0,
    top_p: float = 1.0,
    filter_value: float = -float("Inf"),
    min_tokens_to_keep: int = 1,
) -> torch.FloatTensor:
    """
    Filter a distribution of logits using top-k and/or nucleus (top-p) filtering

    Args:
        logits: logits distribution shape (batch size, vocabulary size)
        top_k (`int`, *optional*, defaults to 0):
            If > 0, only keep the top k tokens with highest probability (top-k filtering)
        top_p (`float`, *optional*, defaults to 1.0):
            If < 1.0, only keep the top tokens with cumulative probability >= top_p (nucleus filtering). Nucleus
            filtering is described in Holtzman et al. (http://arxiv.org/abs/1904.09751)
        min_tokens_to_keep (`int`, *optional*, defaults to 1):
            Minimumber of tokens we keep per batch example in the output.

    From: https://gist.github.com/thomwolf/1a5a29f6962089e871b94cbd09daf317
    """
    if top_k > 0:
        logits = TopKLogitsWarper(top_k=top_k, filter_value=filter_value, min_tokens_to_keep=min_tokens_to_keep)(
            None, logits
        )

    if 0 <= top_p <= 1.0:
        logits = TopPLogitsWarper(top_p=top_p, filter_value=filter_value, min_tokens_to_keep=min_tokens_to_keep)(
            None, logits
        )

    return logits


def _ranking_fast(
    context_hidden: torch.FloatTensor,
    next_hidden: torch.FloatTensor,
    next_top_k_probs: torch.FloatTensor,
    alpha: float,
    beam_width: int,
) -> torch.FloatTensor:
    """
    Reranks the top_k candidates based on a degeneration penalty (cosine similarity with previous tokens), as described
    in the paper "A Contrastive Framework for Neural Text Generation". Returns the index of the best candidate for each
    row in the batch.
    """
    norm_context_hidden = context_hidden / context_hidden.norm(dim=2, keepdim=True)
    norm_next_hidden = next_hidden / next_hidden.norm(dim=2, keepdim=True)
    cosine_matrix = torch.matmul(norm_context_hidden, norm_next_hidden.transpose(1, 2)).squeeze(-1)  # [B*K, S]
    degeneration_penalty, _ = torch.max(cosine_matrix, dim=-1)  # [B*K]
    next_top_k_probs = next_top_k_probs.view(-1)  # [B*K]
    contrastive_score = (1.0 - alpha) * next_top_k_probs - alpha * degeneration_penalty
    contrastive_score = torch.stack(torch.split(contrastive_score, beam_width))  # [B, K]
    _, selected_idx = contrastive_score.max(dim=-1)  # [B]
    return selected_idx
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935


def _prepare_attention_mask(model_kwargs: Dict[str, Any], new_length: int, is_encoder_decoder: bool) -> Dict[str, Any]:
    """Expands or crops the model's mask for decoding purposes, to the defined length"""

    mask_key = "decoder_attention_mask" if is_encoder_decoder else "attention_mask"
    if mask_key not in model_kwargs:
        return model_kwargs

    mask = model_kwargs[mask_key]
    mask_length_diff = new_length - mask.shape[1]

    if mask_length_diff < 0:
        model_kwargs[mask_key] = mask[:, :mask_length_diff]
    elif mask_length_diff > 0:
        model_kwargs[mask_key] = torch.cat([mask, mask.new_ones((mask.shape[0], mask_length_diff))], dim=-1)
    return model_kwargs


def _prepare_token_type_ids(model_kwargs: Dict[str, Any], new_length: int) -> Dict[str, Any]:
    """Expands or crops the model's token_type_ids for decoding purposes, to the defined length"""
    if "token_type_ids" not in model_kwargs or model_kwargs["token_type_ids"] is None:
        return model_kwargs

    token_type_ids = model_kwargs["token_type_ids"]
    final_token_type = token_type_ids[:, -1].unsqueeze(-1)
    type_length_diff = new_length - token_type_ids.shape[1]

    if type_length_diff < 0:
        token_type_ids = token_type_ids[:, :type_length_diff]
    elif type_length_diff > 0:
        token_type_copies = final_token_type.repeat(1, type_length_diff)
        model_kwargs["token_type_ids"] = torch.cat([model_kwargs["token_type_ids"], token_type_copies], dim=-1)
    return model_kwargs