modeling_t5.py 106 KB
Newer Older
thomwolf's avatar
thomwolf committed
1
# coding=utf-8
thomwolf's avatar
thomwolf committed
2
# Copyright 2018 Mesh TensorFlow authors, T5 Authors and HuggingFace Inc. team.
thomwolf's avatar
thomwolf committed
3
4
5
6
7
8
9
10
11
12
13
14
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Sylvain Gugger's avatar
Sylvain Gugger committed
15
""" PyTorch T5 model."""
thomwolf's avatar
thomwolf committed
16
17


Aymeric Augustin's avatar
Aymeric Augustin committed
18
import copy
thomwolf's avatar
thomwolf committed
19
20
import math
import os
21
import warnings
22
from typing import List, Optional, Tuple, Union
thomwolf's avatar
thomwolf committed
23
24

import torch
Aymeric Augustin's avatar
Aymeric Augustin committed
25
from torch import nn
26
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
thomwolf's avatar
thomwolf committed
27

Patrick von Platen's avatar
Patrick von Platen committed
28
from ...activations import ACT2FN
Sylvain Gugger's avatar
Sylvain Gugger committed
29
from ...modeling_outputs import (
30
31
32
33
    BaseModelOutput,
    BaseModelOutputWithPastAndCrossAttentions,
    Seq2SeqLMOutput,
    Seq2SeqModelOutput,
34
    Seq2SeqQuestionAnsweringModelOutput,
35
    Seq2SeqSequenceClassifierOutput,
36
    TokenClassifierOutput,
37
)
38
from ...modeling_utils import PreTrainedModel
39
from ...pytorch_utils import ALL_LAYERNORM_LAYERS, find_pruneable_heads_and_indices, prune_linear_layer
40
41
42
43
44
45
46
47
48
from ...utils import (
    DUMMY_INPUTS,
    DUMMY_MASK,
    add_start_docstrings,
    add_start_docstrings_to_model_forward,
    is_torch_fx_proxy,
    logging,
    replace_return_docstrings,
)
49
from ...utils.model_parallel_utils import assert_device_map, get_device_map
Sylvain Gugger's avatar
Sylvain Gugger committed
50
from .configuration_t5 import T5Config
Aymeric Augustin's avatar
Aymeric Augustin committed
51

thomwolf's avatar
thomwolf committed
52

Lysandre Debut's avatar
Lysandre Debut committed
53
logger = logging.get_logger(__name__)
thomwolf's avatar
thomwolf committed
54

55
_CONFIG_FOR_DOC = "T5Config"
56
_CHECKPOINT_FOR_DOC = "google-t5/t5-small"
57

thomwolf's avatar
thomwolf committed
58
####################################################
59
# This dict contains ids and associated url
thomwolf's avatar
thomwolf committed
60
61
# for the pretrained weights provided with the models
####################################################
62
63

from ..deprecated._archive_maps import T5_PRETRAINED_MODEL_ARCHIVE_LIST  # noqa: F401, E402
thomwolf's avatar
thomwolf committed
64

65

thomwolf's avatar
thomwolf committed
66
67
68
69
70
####################################################
# This is a conversion method from TF 1.0 to PyTorch
# More details: https://medium.com/huggingface/from-tensorflow-to-pytorch-265f40ef2a28
####################################################
def load_tf_weights_in_t5(model, config, tf_checkpoint_path):
Lysandre's avatar
Lysandre committed
71
    """Load tf checkpoints in a pytorch model."""
thomwolf's avatar
thomwolf committed
72
73
    try:
        import re
74

thomwolf's avatar
thomwolf committed
75
76
77
        import numpy as np
        import tensorflow as tf
    except ImportError:
78
79
80
81
        logger.error(
            "Loading a TensorFlow model in PyTorch, requires TensorFlow to be installed. Please see "
            "https://www.tensorflow.org/install/ for installation instructions."
        )
thomwolf's avatar
thomwolf committed
82
83
        raise
    tf_path = os.path.abspath(tf_checkpoint_path)
84
    logger.info(f"Converting TensorFlow checkpoint from {tf_path}")
thomwolf's avatar
thomwolf committed
85
86
87
    # Load weights from TF model
    init_vars = tf.train.list_variables(tf_path)
    names = []
88
    tf_weights = {}
thomwolf's avatar
thomwolf committed
89
    for name, shape in init_vars:
90
        logger.info(f"Loading TF weight {name} with shape {shape}")
thomwolf's avatar
thomwolf committed
91
92
        array = tf.train.load_variable(tf_path, name)
        names.append(name)
93
        tf_weights[name] = array
thomwolf's avatar
thomwolf committed
94

95
    for txt_name in names:
96
        name = txt_name.split("/")
thomwolf's avatar
thomwolf committed
97
98
        # adam_v and adam_m are variables used in AdamWeightDecayOptimizer to calculated m and v
        # which are not required for using pretrained model
99
100
101
102
        if any(
            n in ["adam_v", "adam_m", "AdamWeightDecayOptimizer", "AdamWeightDecayOptimizer_1", "global_step"]
            for n in name
        ):
103
            logger.info(f"Skipping {'/'.join(name)}")
104
105
            tf_weights.pop(txt_name, None)
            continue
106
        if "_slot_" in name[-1]:
107
            logger.info(f"Skipping {'/'.join(name)}")
108
            tf_weights.pop(txt_name, None)
thomwolf's avatar
thomwolf committed
109
110
            continue
        pointer = model
111
        array = tf_weights[txt_name]
Patrick von Platen's avatar
Patrick von Platen committed
112

thomwolf's avatar
thomwolf committed
113
        for m_name in name:
114
            if re.fullmatch(r"[A-Za-z]+_\d+", m_name):
115
                scope_names = re.split(r"_(\d+)", m_name)
thomwolf's avatar
thomwolf committed
116
            else:
117
118
                scope_names = [m_name]
            if scope_names[0] in ["kernel", "scale", "embedding"]:
119
                pointer = getattr(pointer, "weight")
Patrick von Platen's avatar
Patrick von Platen committed
120
121
122
123
124
125
126
127
128
129
130
131
132
133
            elif scope_names[0] == "self_attention":
                pointer = getattr(pointer, "layer")
                pointer = pointer[0]
            elif scope_names[0] == "enc_dec_attention":
                pointer = getattr(pointer, "layer")
                pointer = pointer[1]
            elif scope_names[0] == "dense_relu_dense":
                pointer = getattr(pointer, "layer")
                pointer = pointer[2]
            elif scope_names[0] == "rms_norm":
                if hasattr(pointer, "layer_norm"):
                    pointer = getattr(pointer, "layer_norm")
                elif hasattr(pointer, "final_layer_norm"):
                    pointer = getattr(pointer, "final_layer_norm")
134
135
136
137
138
139
            elif scope_names[0] == "scale":
                pointer = getattr(pointer, "weight")
            elif scope_names[0] == "output_bias" or scope_names[0] == "beta":
                pointer = getattr(pointer, "bias")
            elif scope_names[0] == "squad":
                pointer = getattr(pointer, "classifier")
Patrick von Platen's avatar
Patrick von Platen committed
140
141
142
143
            elif scope_names[0] == "decoder" and name[1] == "logits":
                continue
            elif scope_names[0] == "logits":
                pointer = getattr(pointer, "lm_head")
Patrick von Platen's avatar
Patrick von Platen committed
144
145
146
            elif scope_names[0] == "wi" and len(scope_names) > 1 and scope_names[1].isdigit():
                pointer = getattr(pointer, f"wi_{scope_names[1]}")
                continue
thomwolf's avatar
thomwolf committed
147
148
            else:
                try:
149
                    pointer = getattr(pointer, scope_names[0])
thomwolf's avatar
thomwolf committed
150
                except AttributeError:
151
                    logger.info(f"Skipping {'/'.join(name)}")
thomwolf's avatar
thomwolf committed
152
                    continue
153
154
            if len(scope_names) >= 2:
                num = int(scope_names[1])
thomwolf's avatar
thomwolf committed
155
                pointer = pointer[num]
156
        if scope_names[0] not in ["kernel", "scale", "embedding"]:
157
            pointer = getattr(pointer, "weight")
158
        if scope_names[0] != "embedding":
159
            logger.info(f"Transposing numpy weight of shape {array.shape} for {name}")
thomwolf's avatar
thomwolf committed
160
161
            array = np.transpose(array)
        try:
162
163
            if pointer.shape != array.shape:
                raise ValueError(f"Pointer shape {pointer.shape} and array shape {array.shape} mismatched")
thomwolf's avatar
thomwolf committed
164
165
166
        except AssertionError as e:
            e.args += (pointer.shape, array.shape)
            raise
167
        logger.info(f"Initialize PyTorch weight {name}")
168
169
170
        pointer.data = torch.from_numpy(array.astype(np.float32))
        tf_weights.pop(txt_name, None)

171
    logger.info(f"Weights not copied to PyTorch model: {', '.join(tf_weights.keys())}.")
thomwolf's avatar
thomwolf committed
172
173
174
175
176
177
    return model


####################################################
# PyTorch Models are constructed by sub-classing
# - torch.nn.Module for the layers and
178
# - PreTrainedModel for the models (it-self a sub-class of nn.Module)
thomwolf's avatar
thomwolf committed
179
####################################################
180
PARALLELIZE_DOCSTRING = r"""
Stas Bekman's avatar
Stas Bekman committed
181
182
    This is an experimental feature and is a subject to change at a moment's notice.

183
184
185
186
    Uses a device map to distribute attention modules of the model across several devices. If no device map is given,
    it will evenly distribute blocks across all devices.

    Args:
187
        device_map (`Dict[int, list]`, optional, defaults to None):
188
189
190
191
192
            A dictionary that maps attention modules to devices. Note that the embedding module and LMHead are always
            automatically mapped to the first device (for esoteric reasons). That means that the first device should
            have fewer attention modules mapped to it than other devices. For reference, the t5 models have the
            following number of attention modules:

193
194
195
196
197
                - google-t5/t5-small: 6
                - google-t5/t5-base: 12
                - google-t5/t5-large: 24
                - google-t5/t5-3b: 24
                - google-t5/t5-11b: 24
198

199
    Example:
200

201
    ```python
202
203
    # Here is an example of a device map on a machine with 4 GPUs using google-t5/t5-3b, which has a total of 24 attention modules:
    model = T5ForConditionalGeneration.from_pretrained("google-t5/t5-3b")
Sylvain Gugger's avatar
Sylvain Gugger committed
204
205
206
207
208
209
    device_map = {
        0: [0, 1, 2],
        1: [3, 4, 5, 6, 7, 8, 9],
        2: [10, 11, 12, 13, 14, 15, 16],
        3: [17, 18, 19, 20, 21, 22, 23],
    }
210
211
    model.parallelize(device_map)
    ```
212
213
214
215
"""
DEPARALLELIZE_DOCSTRING = r"""
    Moves the model to cpu from a model parallel state.

216
    Example:
217

218
    ```python
219
220
    # On a 4 GPU machine with google-t5/t5-3b:
    model = T5ForConditionalGeneration.from_pretrained("google-t5/t5-3b")
Sylvain Gugger's avatar
Sylvain Gugger committed
221
222
223
224
225
226
227
228
    device_map = {
        0: [0, 1, 2],
        1: [3, 4, 5, 6, 7, 8, 9],
        2: [10, 11, 12, 13, 14, 15, 16],
        3: [17, 18, 19, 20, 21, 22, 23],
    }
    model.parallelize(device_map)  # Splits the model across several devices
    model.deparallelize()  # Put the model back on cpu and cleans memory by calling torch.cuda.empty_cache()
229
    ```
230
"""
thomwolf's avatar
thomwolf committed
231

232

thomwolf's avatar
thomwolf committed
233
234
class T5LayerNorm(nn.Module):
    def __init__(self, hidden_size, eps=1e-6):
Sylvain Gugger's avatar
Sylvain Gugger committed
235
        """
236
        Construct a layernorm module in the T5 style. No bias and no subtraction of mean.
thomwolf's avatar
thomwolf committed
237
        """
Julien Chaumond's avatar
Julien Chaumond committed
238
        super().__init__()
thomwolf's avatar
thomwolf committed
239
240
241
        self.weight = nn.Parameter(torch.ones(hidden_size))
        self.variance_epsilon = eps

242
    def forward(self, hidden_states):
243
244
245
246
247
        # T5 uses a layer_norm which only scales and doesn't shift, which is also known as Root Mean
        # Square Layer Normalization https://arxiv.org/abs/1910.07467 thus varience is calculated
        # w/o mean and there is no bias. Additionally we want to make sure that the accumulation for
        # half-precision inputs is done in fp32

248
249
        variance = hidden_states.to(torch.float32).pow(2).mean(-1, keepdim=True)
        hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
250

251
252
253
254
        # convert into half-precision if necessary
        if self.weight.dtype in [torch.float16, torch.bfloat16]:
            hidden_states = hidden_states.to(self.weight.dtype)

255
        return self.weight * hidden_states
thomwolf's avatar
thomwolf committed
256
257


258
259
260
261
262
263
264
265
266
267
268
269
270
try:
    from apex.normalization import FusedRMSNorm

    T5LayerNorm = FusedRMSNorm  # noqa

    logger.info("Discovered apex.normalization.FusedRMSNorm - will use it instead of T5LayerNorm")
except ImportError:
    # using the normal T5LayerNorm
    pass
except Exception:
    logger.warning("discovered apex but it failed to load, falling back to T5LayerNorm")
    pass

271
272
ALL_LAYERNORM_LAYERS.append(T5LayerNorm)

273

DanielHesslow's avatar
DanielHesslow committed
274
class T5DenseActDense(nn.Module):
275
    def __init__(self, config: T5Config):
Julien Chaumond's avatar
Julien Chaumond committed
276
        super().__init__()
thomwolf's avatar
thomwolf committed
277
278
        self.wi = nn.Linear(config.d_model, config.d_ff, bias=False)
        self.wo = nn.Linear(config.d_ff, config.d_model, bias=False)
thomwolf's avatar
thomwolf committed
279
        self.dropout = nn.Dropout(config.dropout_rate)
DanielHesslow's avatar
DanielHesslow committed
280
        self.act = ACT2FN[config.dense_act_fn]
thomwolf's avatar
thomwolf committed
281
282

    def forward(self, hidden_states):
283
        hidden_states = self.wi(hidden_states)
DanielHesslow's avatar
DanielHesslow committed
284
        hidden_states = self.act(hidden_states)
285
        hidden_states = self.dropout(hidden_states)
286
287
288
289
290
        if (
            isinstance(self.wo.weight, torch.Tensor)
            and hidden_states.dtype != self.wo.weight.dtype
            and self.wo.weight.dtype != torch.int8
        ):
291
            hidden_states = hidden_states.to(self.wo.weight.dtype)
292
293
        hidden_states = self.wo(hidden_states)
        return hidden_states
thomwolf's avatar
thomwolf committed
294
295


DanielHesslow's avatar
DanielHesslow committed
296
class T5DenseGatedActDense(nn.Module):
297
    def __init__(self, config: T5Config):
Patrick von Platen's avatar
Patrick von Platen committed
298
299
300
301
302
        super().__init__()
        self.wi_0 = nn.Linear(config.d_model, config.d_ff, bias=False)
        self.wi_1 = nn.Linear(config.d_model, config.d_ff, bias=False)
        self.wo = nn.Linear(config.d_ff, config.d_model, bias=False)
        self.dropout = nn.Dropout(config.dropout_rate)
DanielHesslow's avatar
DanielHesslow committed
303
        self.act = ACT2FN[config.dense_act_fn]
Patrick von Platen's avatar
Patrick von Platen committed
304
305

    def forward(self, hidden_states):
DanielHesslow's avatar
DanielHesslow committed
306
        hidden_gelu = self.act(self.wi_0(hidden_states))
Patrick von Platen's avatar
Patrick von Platen committed
307
308
309
        hidden_linear = self.wi_1(hidden_states)
        hidden_states = hidden_gelu * hidden_linear
        hidden_states = self.dropout(hidden_states)
310
311
312

        # To make 8bit quantization work for google/flan-t5-xxl, self.wo is kept in float32.
        # See https://github.com/huggingface/transformers/issues/20287
313
        # we also make sure the weights are not in `int8` in case users will force `_keep_in_fp32_modules` to be `None``
314
315
316
317
318
        if (
            isinstance(self.wo.weight, torch.Tensor)
            and hidden_states.dtype != self.wo.weight.dtype
            and self.wo.weight.dtype != torch.int8
        ):
319
320
            hidden_states = hidden_states.to(self.wo.weight.dtype)

Patrick von Platen's avatar
Patrick von Platen committed
321
322
323
324
        hidden_states = self.wo(hidden_states)
        return hidden_states


thomwolf's avatar
thomwolf committed
325
class T5LayerFF(nn.Module):
326
    def __init__(self, config: T5Config):
Julien Chaumond's avatar
Julien Chaumond committed
327
        super().__init__()
DanielHesslow's avatar
DanielHesslow committed
328
329
        if config.is_gated_act:
            self.DenseReluDense = T5DenseGatedActDense(config)
Patrick von Platen's avatar
Patrick von Platen committed
330
        else:
DanielHesslow's avatar
DanielHesslow committed
331
            self.DenseReluDense = T5DenseActDense(config)
Patrick von Platen's avatar
Patrick von Platen committed
332

thomwolf's avatar
thomwolf committed
333
        self.layer_norm = T5LayerNorm(config.d_model, eps=config.layer_norm_epsilon)
thomwolf's avatar
thomwolf committed
334
        self.dropout = nn.Dropout(config.dropout_rate)
thomwolf's avatar
thomwolf committed
335
336

    def forward(self, hidden_states):
337
338
339
340
        forwarded_states = self.layer_norm(hidden_states)
        forwarded_states = self.DenseReluDense(forwarded_states)
        hidden_states = hidden_states + self.dropout(forwarded_states)
        return hidden_states
thomwolf's avatar
thomwolf committed
341
342
343


class T5Attention(nn.Module):
344
    def __init__(self, config: T5Config, has_relative_attention_bias=False):
Julien Chaumond's avatar
Julien Chaumond committed
345
        super().__init__()
thomwolf's avatar
thomwolf committed
346
        self.is_decoder = config.is_decoder
thomwolf's avatar
thomwolf committed
347
        self.has_relative_attention_bias = has_relative_attention_bias
thomwolf's avatar
thomwolf committed
348
        self.relative_attention_num_buckets = config.relative_attention_num_buckets
349
        self.relative_attention_max_distance = config.relative_attention_max_distance
350
        self.d_model = config.d_model
351
        self.key_value_proj_dim = config.d_kv
thomwolf's avatar
thomwolf committed
352
353
        self.n_heads = config.num_heads
        self.dropout = config.dropout_rate
354
        self.inner_dim = self.n_heads * self.key_value_proj_dim
thomwolf's avatar
thomwolf committed
355

356
        # Mesh TensorFlow initialization to avoid scaling before softmax
357
358
359
360
        self.q = nn.Linear(self.d_model, self.inner_dim, bias=False)
        self.k = nn.Linear(self.d_model, self.inner_dim, bias=False)
        self.v = nn.Linear(self.d_model, self.inner_dim, bias=False)
        self.o = nn.Linear(self.inner_dim, self.d_model, bias=False)
thomwolf's avatar
thomwolf committed
361

thomwolf's avatar
thomwolf committed
362
363
        if self.has_relative_attention_bias:
            self.relative_attention_bias = nn.Embedding(self.relative_attention_num_buckets, self.n_heads)
thomwolf's avatar
thomwolf committed
364
        self.pruned_heads = set()
365
        self.gradient_checkpointing = False
thomwolf's avatar
thomwolf committed
366
367
368
369

    def prune_heads(self, heads):
        if len(heads) == 0:
            return
370
371
372
        heads, index = find_pruneable_heads_and_indices(
            heads, self.n_heads, self.key_value_proj_dim, self.pruned_heads
        )
thomwolf's avatar
thomwolf committed
373
374
375
376
377
378
379
        # Prune linear layers
        self.q = prune_linear_layer(self.q, index)
        self.k = prune_linear_layer(self.k, index)
        self.v = prune_linear_layer(self.v, index)
        self.o = prune_linear_layer(self.o, index, dim=1)
        # Update hyper params
        self.n_heads = self.n_heads - len(heads)
380
        self.inner_dim = self.key_value_proj_dim * self.n_heads
thomwolf's avatar
thomwolf committed
381
382
383
        self.pruned_heads = self.pruned_heads.union(heads)

    @staticmethod
384
    def _relative_position_bucket(relative_position, bidirectional=True, num_buckets=32, max_distance=128):
thomwolf's avatar
thomwolf committed
385
386
387
388
        """
        Adapted from Mesh Tensorflow:
        https://github.com/tensorflow/mesh/blob/0cb87fe07da627bf0b7e60475d59f95ed6b5be3d/mesh_tensorflow/transformer/transformer_layers.py#L593

Sylvain Gugger's avatar
Sylvain Gugger committed
389
390
391
392
393
394
395
        Translate relative position to a bucket number for relative attention. The relative position is defined as
        memory_position - query_position, i.e. the distance in tokens from the attending position to the attended-to
        position. If bidirectional=False, then positive relative positions are invalid. We use smaller buckets for
        small absolute relative_position and larger buckets for larger absolute relative_positions. All relative
        positions >=max_distance map to the same bucket. All relative positions <=-max_distance map to the same bucket.
        This should allow for more graceful generalization to longer sequences than the model has been trained on

thomwolf's avatar
thomwolf committed
396
397
398
399
        Args:
            relative_position: an int32 Tensor
            bidirectional: a boolean - whether the attention is bidirectional
            num_buckets: an integer
400
            max_distance: an integer
Sylvain Gugger's avatar
Sylvain Gugger committed
401

thomwolf's avatar
thomwolf committed
402
        Returns:
Sylvain Gugger's avatar
Sylvain Gugger committed
403
            a Tensor with the same shape as relative_position, containing int32 values in the range [0, num_buckets)
thomwolf's avatar
thomwolf committed
404
        """
405
        relative_buckets = 0
thomwolf's avatar
thomwolf committed
406
407
        if bidirectional:
            num_buckets //= 2
408
409
            relative_buckets += (relative_position > 0).to(torch.long) * num_buckets
            relative_position = torch.abs(relative_position)
thomwolf's avatar
thomwolf committed
410
        else:
411
412
            relative_position = -torch.min(relative_position, torch.zeros_like(relative_position))
        # now relative_position is in the range [0, inf)
thomwolf's avatar
thomwolf committed
413
414
415

        # half of the buckets are for exact increments in positions
        max_exact = num_buckets // 2
416
        is_small = relative_position < max_exact
thomwolf's avatar
thomwolf committed
417
418

        # The other half of the buckets are for logarithmically bigger bins in positions up to max_distance
419
        relative_position_if_large = max_exact + (
420
421
422
            torch.log(relative_position.float() / max_exact)
            / math.log(max_distance / max_exact)
            * (num_buckets - max_exact)
423
        ).to(torch.long)
424
425
        relative_position_if_large = torch.min(
            relative_position_if_large, torch.full_like(relative_position_if_large, num_buckets - 1)
426
        )
thomwolf's avatar
thomwolf committed
427

428
        relative_buckets += torch.where(is_small, relative_position, relative_position_if_large)
429
        return relative_buckets
thomwolf's avatar
thomwolf committed
430

431
    def compute_bias(self, query_length, key_length, device=None):
Patrick von Platen's avatar
Patrick von Platen committed
432
        """Compute binned relative position bias"""
433
434
435
436
        if device is None:
            device = self.relative_attention_bias.weight.device
        context_position = torch.arange(query_length, dtype=torch.long, device=device)[:, None]
        memory_position = torch.arange(key_length, dtype=torch.long, device=device)[None, :]
437
438
439
440
        relative_position = memory_position - context_position  # shape (query_length, key_length)
        relative_position_bucket = self._relative_position_bucket(
            relative_position,  # shape (query_length, key_length)
            bidirectional=(not self.is_decoder),
441
            num_buckets=self.relative_attention_num_buckets,
442
            max_distance=self.relative_attention_max_distance,
443
        )
444
445
        values = self.relative_attention_bias(relative_position_bucket)  # shape (query_length, key_length, num_heads)
        values = values.permute([2, 0, 1]).unsqueeze(0)  # shape (1, num_heads, query_length, key_length)
thomwolf's avatar
thomwolf committed
446
447
        return values

448
449
    def forward(
        self,
450
        hidden_states,
451
        mask=None,
452
        key_value_states=None,
453
        position_bias=None,
454
        past_key_value=None,
455
        layer_head_mask=None,
456
        query_length=None,
457
        use_cache=False,
458
        output_attentions=False,
459
    ):
thomwolf's avatar
thomwolf committed
460
        """
461
        Self-attention (if key_value_states is None) or attention over source sentence (provided by key_value_states).
thomwolf's avatar
thomwolf committed
462
        """
463
464
465
466
467
468
        # Input is (batch_size, seq_length, dim)
        # Mask is (batch_size, key_length) (non-causal) or (batch_size, key_length, key_length)
        # past_key_value[0] is (batch_size, n_heads, q_len - 1, dim_per_head)
        batch_size, seq_length = hidden_states.shape[:2]

        real_seq_length = seq_length
469

470
        if past_key_value is not None:
471
472
473
474
            if len(past_key_value) != 2:
                raise ValueError(
                    f"past_key_value should have 2 past states: keys and values. Got { len(past_key_value)} past states"
                )
475
            real_seq_length += past_key_value[0].shape[2] if query_length is None else query_length
476

477
        key_length = real_seq_length if key_value_states is None else key_value_states.shape[1]
thomwolf's avatar
thomwolf committed
478

479
        def shape(states):
Patrick von Platen's avatar
Patrick von Platen committed
480
            """projection"""
481
482
483
            return states.view(batch_size, -1, self.n_heads, self.key_value_proj_dim).transpose(1, 2)

        def unshape(states):
Patrick von Platen's avatar
Patrick von Platen committed
484
            """reshape"""
485
486
487
            return states.transpose(1, 2).contiguous().view(batch_size, -1, self.inner_dim)

        def project(hidden_states, proj_layer, key_value_states, past_key_value):
Patrick von Platen's avatar
Patrick von Platen committed
488
            """projects hidden states correctly to key/query states"""
489
490
491
492
493
494
495
496
            if key_value_states is None:
                # self-attn
                # (batch_size, n_heads, seq_length, dim_per_head)
                hidden_states = shape(proj_layer(hidden_states))
            elif past_key_value is None:
                # cross-attn
                # (batch_size, n_heads, seq_length, dim_per_head)
                hidden_states = shape(proj_layer(key_value_states))
497

498
499
500
501
502
            if past_key_value is not None:
                if key_value_states is None:
                    # self-attn
                    # (batch_size, n_heads, key_length, dim_per_head)
                    hidden_states = torch.cat([past_key_value, hidden_states], dim=2)
503
504
505
506
507
508
                elif past_key_value.shape[2] != key_value_states.shape[1]:
                    # checking that the `sequence_length` of the `past_key_value` is the same as
                    # the provided `key_value_states` to support prefix tuning
                    # cross-attn
                    # (batch_size, n_heads, seq_length, dim_per_head)
                    hidden_states = shape(proj_layer(key_value_states))
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
                else:
                    # cross-attn
                    hidden_states = past_key_value
            return hidden_states

        # get query states
        query_states = shape(self.q(hidden_states))  # (batch_size, n_heads, seq_length, dim_per_head)

        # get key/value states
        key_states = project(
            hidden_states, self.k, key_value_states, past_key_value[0] if past_key_value is not None else None
        )
        value_states = project(
            hidden_states, self.v, key_value_states, past_key_value[1] if past_key_value is not None else None
        )
thomwolf's avatar
thomwolf committed
524

525
        # compute scores
Abel's avatar
Abel committed
526
        scores = torch.matmul(
527
528
            query_states, key_states.transpose(3, 2)
        )  # equivalent of torch.einsum("bnqd,bnkd->bnqk", query_states, key_states), compatible with onnx op>9
thomwolf's avatar
thomwolf committed
529
530

        if position_bias is None:
thomwolf's avatar
thomwolf committed
531
            if not self.has_relative_attention_bias:
532
533
534
                position_bias = torch.zeros(
                    (1, self.n_heads, real_seq_length, key_length), device=scores.device, dtype=scores.dtype
                )
535
                if self.gradient_checkpointing and self.training:
536
                    position_bias.requires_grad = True
537
            else:
538
                position_bias = self.compute_bias(real_seq_length, key_length, device=scores.device)
539
540
541

            # if key and values are already calculated
            # we want only the last query position bias
542
            if past_key_value is not None:
543
                position_bias = position_bias[:, :, -hidden_states.size(1) :, :]
544

thomwolf's avatar
thomwolf committed
545
            if mask is not None:
546
                position_bias = position_bias + mask  # (batch_size, n_heads, seq_length, key_length)
thomwolf's avatar
thomwolf committed
547

548
549
550
551
552
553
554
555
        if self.pruned_heads:
            mask = torch.ones(position_bias.shape[1])
            mask[list(self.pruned_heads)] = 0
            position_bias_masked = position_bias[:, mask.bool()]
        else:
            position_bias_masked = position_bias

        scores += position_bias_masked
556
        attn_weights = nn.functional.softmax(scores.float(), dim=-1).type_as(
557
558
            scores
        )  # (batch_size, n_heads, seq_length, key_length)
559
        attn_weights = nn.functional.dropout(
560
561
            attn_weights, p=self.dropout, training=self.training
        )  # (batch_size, n_heads, seq_length, key_length)
thomwolf's avatar
thomwolf committed
562
563

        # Mask heads if we want to
564
565
        if layer_head_mask is not None:
            attn_weights = attn_weights * layer_head_mask
thomwolf's avatar
thomwolf committed
566

567
568
        attn_output = unshape(torch.matmul(attn_weights, value_states))  # (batch_size, seq_length, dim)
        attn_output = self.o(attn_output)
thomwolf's avatar
thomwolf committed
569

570
571
        present_key_value_state = (key_states, value_states) if (self.is_decoder and use_cache) else None
        outputs = (attn_output,) + (present_key_value_state,) + (position_bias,)
572

573
        if output_attentions:
574
            outputs = outputs + (attn_weights,)
thomwolf's avatar
thomwolf committed
575
        return outputs
thomwolf's avatar
thomwolf committed
576
577
578


class T5LayerSelfAttention(nn.Module):
thomwolf's avatar
thomwolf committed
579
    def __init__(self, config, has_relative_attention_bias=False):
Julien Chaumond's avatar
Julien Chaumond committed
580
        super().__init__()
581
        self.SelfAttention = T5Attention(config, has_relative_attention_bias=has_relative_attention_bias)
thomwolf's avatar
thomwolf committed
582
        self.layer_norm = T5LayerNorm(config.d_model, eps=config.layer_norm_epsilon)
thomwolf's avatar
thomwolf committed
583
        self.dropout = nn.Dropout(config.dropout_rate)
thomwolf's avatar
thomwolf committed
584

585
    def forward(
586
587
588
589
        self,
        hidden_states,
        attention_mask=None,
        position_bias=None,
590
        layer_head_mask=None,
591
        past_key_value=None,
592
        use_cache=False,
593
        output_attentions=False,
594
    ):
595
        normed_hidden_states = self.layer_norm(hidden_states)
596
        attention_output = self.SelfAttention(
597
            normed_hidden_states,
598
599
            mask=attention_mask,
            position_bias=position_bias,
600
            layer_head_mask=layer_head_mask,
601
            past_key_value=past_key_value,
602
            use_cache=use_cache,
603
            output_attentions=output_attentions,
604
        )
605
606
        hidden_states = hidden_states + self.dropout(attention_output[0])
        outputs = (hidden_states,) + attention_output[1:]  # add attentions if we output them
thomwolf's avatar
thomwolf committed
607
        return outputs
thomwolf's avatar
thomwolf committed
608
609


thomwolf's avatar
thomwolf committed
610
class T5LayerCrossAttention(nn.Module):
611
    def __init__(self, config):
Julien Chaumond's avatar
Julien Chaumond committed
612
        super().__init__()
613
        self.EncDecAttention = T5Attention(config, has_relative_attention_bias=False)
thomwolf's avatar
thomwolf committed
614
        self.layer_norm = T5LayerNorm(config.d_model, eps=config.layer_norm_epsilon)
thomwolf's avatar
thomwolf committed
615
        self.dropout = nn.Dropout(config.dropout_rate)
thomwolf's avatar
thomwolf committed
616

617
618
619
    def forward(
        self,
        hidden_states,
620
        key_value_states,
621
622
        attention_mask=None,
        position_bias=None,
623
        layer_head_mask=None,
624
        past_key_value=None,
625
        use_cache=False,
626
        query_length=None,
627
        output_attentions=False,
628
    ):
629
        normed_hidden_states = self.layer_norm(hidden_states)
630
        attention_output = self.EncDecAttention(
631
            normed_hidden_states,
632
            mask=attention_mask,
633
            key_value_states=key_value_states,
634
            position_bias=position_bias,
635
            layer_head_mask=layer_head_mask,
636
            past_key_value=past_key_value,
637
            use_cache=use_cache,
638
            query_length=query_length,
639
            output_attentions=output_attentions,
640
        )
641
        layer_output = hidden_states + self.dropout(attention_output[0])
thomwolf's avatar
thomwolf committed
642
643
644
645
646
        outputs = (layer_output,) + attention_output[1:]  # add attentions if we output them
        return outputs


class T5Block(nn.Module):
thomwolf's avatar
thomwolf committed
647
    def __init__(self, config, has_relative_attention_bias=False):
Julien Chaumond's avatar
Julien Chaumond committed
648
        super().__init__()
thomwolf's avatar
thomwolf committed
649
        self.is_decoder = config.is_decoder
650
651
        self.layer = nn.ModuleList()
        self.layer.append(T5LayerSelfAttention(config, has_relative_attention_bias=has_relative_attention_bias))
thomwolf's avatar
thomwolf committed
652
        if self.is_decoder:
653
            self.layer.append(T5LayerCrossAttention(config))
654
655

        self.layer.append(T5LayerFF(config))
thomwolf's avatar
thomwolf committed
656

657
658
659
660
661
662
663
664
    def forward(
        self,
        hidden_states,
        attention_mask=None,
        position_bias=None,
        encoder_hidden_states=None,
        encoder_attention_mask=None,
        encoder_decoder_position_bias=None,
665
        layer_head_mask=None,
666
        cross_attn_layer_head_mask=None,
667
        past_key_value=None,
668
        use_cache=False,
669
        output_attentions=False,
670
        return_dict=True,
671
    ):
672
        if past_key_value is not None:
673
674
            if not self.is_decoder:
                logger.warning("`past_key_values` is passed to the encoder. Please make sure this is intended.")
675
            expected_num_past_key_values = 2 if encoder_hidden_states is None else 4
676

677
678
679
            if len(past_key_value) != expected_num_past_key_values:
                raise ValueError(
                    f"There should be {expected_num_past_key_values} past states. "
680
                    f"{'2 (key / value) for cross attention. ' if expected_num_past_key_values == 4 else ''}"
681
682
                    f"Got {len(past_key_value)} past key / value states"
                )
683

684
685
            self_attn_past_key_value = past_key_value[:2]
            cross_attn_past_key_value = past_key_value[2:]
686
        else:
687
            self_attn_past_key_value, cross_attn_past_key_value = None, None
688

689
        self_attention_outputs = self.layer[0](
690
691
692
            hidden_states,
            attention_mask=attention_mask,
            position_bias=position_bias,
693
            layer_head_mask=layer_head_mask,
694
            past_key_value=self_attn_past_key_value,
695
            use_cache=use_cache,
696
            output_attentions=output_attentions,
697
        )
698
699
700
        hidden_states, present_key_value_state = self_attention_outputs[:2]
        attention_outputs = self_attention_outputs[2:]  # Keep self-attention outputs and relative position weights

Suraj Patil's avatar
Suraj Patil committed
701
        # clamp inf values to enable fp16 training
702
703
704
705
706
707
        if hidden_states.dtype == torch.float16:
            clamp_value = torch.where(
                torch.isinf(hidden_states).any(),
                torch.finfo(hidden_states.dtype).max - 1000,
                torch.finfo(hidden_states.dtype).max,
            )
Suraj Patil's avatar
Suraj Patil committed
708
709
            hidden_states = torch.clamp(hidden_states, min=-clamp_value, max=clamp_value)

710
711
        do_cross_attention = self.is_decoder and encoder_hidden_states is not None
        if do_cross_attention:
712
713
714
715
716
717
            # the actual query length is unknown for cross attention
            # if using past key value states. Need to inject it here
            if present_key_value_state is not None:
                query_length = present_key_value_state[0].shape[2]
            else:
                query_length = None
thomwolf's avatar
thomwolf committed
718

719
720
            cross_attention_outputs = self.layer[1](
                hidden_states,
721
                key_value_states=encoder_hidden_states,
722
723
                attention_mask=encoder_attention_mask,
                position_bias=encoder_decoder_position_bias,
724
                layer_head_mask=cross_attn_layer_head_mask,
725
                past_key_value=cross_attn_past_key_value,
726
                query_length=query_length,
727
                use_cache=use_cache,
728
                output_attentions=output_attentions,
729
            )
thomwolf's avatar
thomwolf committed
730
            hidden_states = cross_attention_outputs[0]
731
732

            # clamp inf values to enable fp16 training
733
734
735
736
737
738
            if hidden_states.dtype == torch.float16:
                clamp_value = torch.where(
                    torch.isinf(hidden_states).any(),
                    torch.finfo(hidden_states.dtype).max - 1000,
                    torch.finfo(hidden_states.dtype).max,
                )
Suraj Patil's avatar
Suraj Patil committed
739
740
                hidden_states = torch.clamp(hidden_states, min=-clamp_value, max=clamp_value)

741
742
743
744
745
746
747
748
749
            # Combine self attn and cross attn key value states
            if present_key_value_state is not None:
                present_key_value_state = present_key_value_state + cross_attention_outputs[1]

            # Keep cross-attention outputs and relative position weights
            attention_outputs = attention_outputs + cross_attention_outputs[2:]

        # Apply Feed Forward layer
        hidden_states = self.layer[-1](hidden_states)
750
751

        # clamp inf values to enable fp16 training
752
753
754
755
756
757
        if hidden_states.dtype == torch.float16:
            clamp_value = torch.where(
                torch.isinf(hidden_states).any(),
                torch.finfo(hidden_states.dtype).max - 1000,
                torch.finfo(hidden_states.dtype).max,
            )
Suraj Patil's avatar
Suraj Patil committed
758
            hidden_states = torch.clamp(hidden_states, min=-clamp_value, max=clamp_value)
759

760
        outputs = (hidden_states,)
thomwolf's avatar
thomwolf committed
761

762
763
764
765
766
        if use_cache:
            outputs = outputs + (present_key_value_state,) + attention_outputs
        else:
            outputs = outputs + attention_outputs

767
        return outputs  # hidden-states, present_key_value_states, (self-attention position bias), (self-attention weights), (cross-attention position bias), (cross-attention weights)
thomwolf's avatar
thomwolf committed
768
769


770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
class T5ClassificationHead(nn.Module):
    """Head for sentence-level classification tasks."""

    def __init__(self, config: T5Config):
        super().__init__()
        self.dense = nn.Linear(config.d_model, config.d_model)
        self.dropout = nn.Dropout(p=config.classifier_dropout)
        self.out_proj = nn.Linear(config.d_model, config.num_labels)

    def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
        hidden_states = self.dropout(hidden_states)
        hidden_states = self.dense(hidden_states)
        hidden_states = torch.tanh(hidden_states)
        hidden_states = self.dropout(hidden_states)
        hidden_states = self.out_proj(hidden_states)
        return hidden_states


thomwolf's avatar
thomwolf committed
788
class T5PreTrainedModel(PreTrainedModel):
Sylvain Gugger's avatar
Sylvain Gugger committed
789
790
791
    """
    An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
    models.
thomwolf's avatar
thomwolf committed
792
    """
793

thomwolf's avatar
thomwolf committed
794
795
796
    config_class = T5Config
    load_tf_weights = load_tf_weights_in_t5
    base_model_prefix = "transformer"
797
    is_parallelizable = True
798
    supports_gradient_checkpointing = True
799
    _no_split_modules = ["T5Block"]
800
    _keep_in_fp32_modules = ["wo"]
thomwolf's avatar
thomwolf committed
801

802
803
804
805
    @property
    def dummy_inputs(self):
        input_ids = torch.tensor(DUMMY_INPUTS)
        input_mask = torch.tensor(DUMMY_MASK)
806
807
        dummy_inputs = {
            "decoder_input_ids": input_ids,
808
            "input_ids": input_ids,
809
810
            "decoder_attention_mask": input_mask,
        }
811
812
        return dummy_inputs

thomwolf's avatar
thomwolf committed
813
    def _init_weights(self, module):
Patrick von Platen's avatar
Patrick von Platen committed
814
        """Initialize the weights"""
815
        factor = self.config.initializer_factor  # Used for testing weights initialization
thomwolf's avatar
thomwolf committed
816
        if isinstance(module, T5LayerNorm):
817
            module.weight.data.fill_(factor * 1.0)
818
819
820
821
        elif isinstance(
            module,
            (T5Model, T5ForConditionalGeneration, T5EncoderModel, T5ForQuestionAnswering),
        ):
822
823
            # Mesh TensorFlow embeddings initialization
            # See https://github.com/tensorflow/mesh/blob/fa19d69eafc9a482aff0b59ddd96b025c0cb207d/mesh_tensorflow/layers.py#L1624
824
            module.shared.weight.data.normal_(mean=0.0, std=factor * 1.0)
825
826
            if hasattr(module, "lm_head") and not self.config.tie_word_embeddings:
                module.lm_head.weight.data.normal_(mean=0.0, std=factor * 1.0)
827
828
829
            if hasattr(module, "qa_outputs"):
                module.qa_outputs.weight.data.normal_(mean=0.0, std=factor * ((self.config.d_model) ** -0.5))
                module.qa_outputs.bias.data.zero_()
830
831
832
833
        elif isinstance(module, T5ForTokenClassification):
            if hasattr(module, "classifier"):
                module.classifier.weight.data.normal_(mean=0.0, std=factor * 1.0)
                module.classifier.bias.data.zero_()
834
835
836
837
838
839
840
        elif isinstance(module, T5ClassificationHead):
            module.dense.weight.data.normal_(mean=0.0, std=factor * ((self.config.d_model) ** -0.5))
            if hasattr(module.dense, "bias") and module.dense.bias is not None:
                module.dense.bias.data.zero_()
            module.out_proj.weight.data.normal_(mean=0.0, std=factor * ((self.config.d_model) ** -0.5))
            if hasattr(module.out_proj, "bias") and module.out_proj.bias is not None:
                module.out_proj.bias.data.zero_()
DanielHesslow's avatar
DanielHesslow committed
841
        elif isinstance(module, T5DenseActDense):
842
843
844
            # Mesh TensorFlow FF initialization
            # See https://github.com/tensorflow/mesh/blob/master/mesh_tensorflow/transformer/transformer_layers.py#L56
            # and https://github.com/tensorflow/mesh/blob/fa19d69eafc9a482aff0b59ddd96b025c0cb207d/mesh_tensorflow/layers.py#L89
845
846
            module.wi.weight.data.normal_(mean=0.0, std=factor * ((self.config.d_model) ** -0.5))
            if hasattr(module.wi, "bias") and module.wi.bias is not None:
847
                module.wi.bias.data.zero_()
848
849
            module.wo.weight.data.normal_(mean=0.0, std=factor * ((self.config.d_ff) ** -0.5))
            if hasattr(module.wo, "bias") and module.wo.bias is not None:
850
                module.wo.bias.data.zero_()
DanielHesslow's avatar
DanielHesslow committed
851
        elif isinstance(module, T5DenseGatedActDense):
Patrick von Platen's avatar
Patrick von Platen committed
852
853
854
855
856
857
858
859
860
            module.wi_0.weight.data.normal_(mean=0.0, std=factor * ((self.config.d_model) ** -0.5))
            if hasattr(module.wi_0, "bias") and module.wi_0.bias is not None:
                module.wi_0.bias.data.zero_()
            module.wi_1.weight.data.normal_(mean=0.0, std=factor * ((self.config.d_model) ** -0.5))
            if hasattr(module.wi_1, "bias") and module.wi_1.bias is not None:
                module.wi_1.bias.data.zero_()
            module.wo.weight.data.normal_(mean=0.0, std=factor * ((self.config.d_ff) ** -0.5))
            if hasattr(module.wo, "bias") and module.wo.bias is not None:
                module.wo.bias.data.zero_()
861
862
863
864
        elif isinstance(module, T5Attention):
            # Mesh TensorFlow attention initialization to avoid scaling before softmax
            # See https://github.com/tensorflow/mesh/blob/fa19d69eafc9a482aff0b59ddd96b025c0cb207d/mesh_tensorflow/transformer/attention.py#L136
            d_model = self.config.d_model
865
            key_value_proj_dim = self.config.d_kv
866
            n_heads = self.config.num_heads
867
            module.q.weight.data.normal_(mean=0.0, std=factor * ((d_model * key_value_proj_dim) ** -0.5))
868
869
            module.k.weight.data.normal_(mean=0.0, std=factor * (d_model**-0.5))
            module.v.weight.data.normal_(mean=0.0, std=factor * (d_model**-0.5))
870
            module.o.weight.data.normal_(mean=0.0, std=factor * ((n_heads * key_value_proj_dim) ** -0.5))
871
            if module.has_relative_attention_bias:
872
                module.relative_attention_bias.weight.data.normal_(mean=0.0, std=factor * ((d_model) ** -0.5))
thomwolf's avatar
thomwolf committed
873

874
875
876
877
    def _shift_right(self, input_ids):
        decoder_start_token_id = self.config.decoder_start_token_id
        pad_token_id = self.config.pad_token_id

878
879
        if decoder_start_token_id is None:
            raise ValueError(
880
                "self.model.config.decoder_start_token_id has to be defined. In T5 it is usually set to the pad_token_id. "
881
882
                "See T5 docs for more information."
            )
883
884

        # shift inputs to the right
885
886
887
888
889
890
891
892
        if is_torch_fx_proxy(input_ids):
            # Item assignment is not supported natively for proxies.
            shifted_input_ids = torch.full(input_ids.shape[:-1] + (1,), decoder_start_token_id)
            shifted_input_ids = torch.cat([shifted_input_ids, input_ids[..., :-1]], dim=-1)
        else:
            shifted_input_ids = input_ids.new_zeros(input_ids.shape)
            shifted_input_ids[..., 1:] = input_ids[..., :-1].clone()
            shifted_input_ids[..., 0] = decoder_start_token_id
893

894
895
        if pad_token_id is None:
            raise ValueError("self.model.config.pad_token_id has to be defined.")
Sylvain Gugger's avatar
Sylvain Gugger committed
896
        # replace possible -100 values in labels by `pad_token_id`
897
898
899
900
        shifted_input_ids.masked_fill_(shifted_input_ids == -100, pad_token_id)

        return shifted_input_ids

thomwolf's avatar
thomwolf committed
901
902

class T5Stack(T5PreTrainedModel):
903
    def __init__(self, config, embed_tokens=None):
Julien Chaumond's avatar
Julien Chaumond committed
904
        super().__init__(config)
905
906

        self.embed_tokens = embed_tokens
thomwolf's avatar
thomwolf committed
907
908
        self.is_decoder = config.is_decoder

909
910
911
        self.block = nn.ModuleList(
            [T5Block(config, has_relative_attention_bias=bool(i == 0)) for i in range(config.num_layers)]
        )
thomwolf's avatar
thomwolf committed
912
        self.final_layer_norm = T5LayerNorm(config.d_model, eps=config.layer_norm_epsilon)
thomwolf's avatar
thomwolf committed
913
914
        self.dropout = nn.Dropout(config.dropout_rate)

915
916
        # Initialize weights and apply final processing
        self.post_init()
917
918
919
        # Model parallel
        self.model_parallel = False
        self.device_map = None
920
        self.gradient_checkpointing = False
921
922
923

    @add_start_docstrings(PARALLELIZE_DOCSTRING)
    def parallelize(self, device_map=None):
924
925
926
927
928
929
930
        warnings.warn(
            "`T5Stack.parallelize` is deprecated and will be removed in v5 of Transformers, you should load your model"
            " with `device_map='balanced'` in the call to `from_pretrained`. You can also provide your own"
            " `device_map` but it needs to be a dictionary module_name to device, so for instance {'block.0': 0,"
            " 'block.1': 1, ...}",
            FutureWarning,
        )
931
932
        # Check validity of device_map
        self.device_map = (
933
            get_device_map(len(self.block), range(torch.cuda.device_count())) if device_map is None else device_map
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
        )
        assert_device_map(self.device_map, len(self.block))
        self.model_parallel = True
        self.first_device = "cpu" if "cpu" in self.device_map.keys() else "cuda:" + str(min(self.device_map.keys()))
        self.last_device = "cuda:" + str(max(self.device_map.keys()))
        # Load onto devices
        for k, v in self.device_map.items():
            for layer in v:
                cuda_device = "cuda:" + str(k)
                self.block[layer] = self.block[layer].to(cuda_device)

        # Set embed_tokens to first layer
        self.embed_tokens = self.embed_tokens.to(self.first_device)
        # Set final layer norm to last device
        self.final_layer_norm = self.final_layer_norm.to(self.last_device)

ivanllt's avatar
ivanllt committed
950
    @add_start_docstrings(DEPARALLELIZE_DOCSTRING)
951
    def deparallelize(self):
952
953
954
955
        warnings.warn(
            "Like `parallelize`, `deparallelize` is deprecated and will be removed in v5 of Transformers.",
            FutureWarning,
        )
956
957
958
959
960
961
962
963
964
        self.model_parallel = False
        self.device_map = None
        self.first_device = "cpu"
        self.last_device = "cpu"
        for i in range(len(self.block)):
            self.block[i] = self.block[i].to("cpu")
        self.embed_tokens = self.embed_tokens.to("cpu")
        self.final_layer_norm = self.final_layer_norm.to("cpu")
        torch.cuda.empty_cache()
thomwolf's avatar
thomwolf committed
965

966
967
968
969
970
971
    def get_input_embeddings(self):
        return self.embed_tokens

    def set_input_embeddings(self, new_embeddings):
        self.embed_tokens = new_embeddings

972
973
    def forward(
        self,
974
        input_ids=None,
975
976
977
        attention_mask=None,
        encoder_hidden_states=None,
        encoder_attention_mask=None,
978
        inputs_embeds=None,
979
        head_mask=None,
980
        cross_attn_head_mask=None,
981
        past_key_values=None,
982
        use_cache=None,
983
        output_attentions=None,
Joseph Liu's avatar
Joseph Liu committed
984
        output_hidden_states=None,
985
        return_dict=None,
986
    ):
987
988
989
990
        # Model parallel
        if self.model_parallel:
            torch.cuda.set_device(self.first_device)
            self.embed_tokens = self.embed_tokens.to(self.first_device)
991
        use_cache = use_cache if use_cache is not None else self.config.use_cache
992
        output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
Joseph Liu's avatar
Joseph Liu committed
993
994
995
        output_hidden_states = (
            output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
        )
996
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict
997

998
        if input_ids is not None and inputs_embeds is not None:
999
1000
            err_msg_prefix = "decoder_" if self.is_decoder else ""
            raise ValueError(
Jonathan Chang's avatar
Jonathan Chang committed
1001
                f"You cannot specify both {err_msg_prefix}input_ids and {err_msg_prefix}inputs_embeds at the same time"
1002
            )
1003
1004
1005
1006
1007
1008
        elif input_ids is not None:
            input_shape = input_ids.size()
            input_ids = input_ids.view(-1, input_shape[-1])
        elif inputs_embeds is not None:
            input_shape = inputs_embeds.size()[:-1]
        else:
1009
            err_msg_prefix = "decoder_" if self.is_decoder else ""
Jonathan Chang's avatar
Jonathan Chang committed
1010
            raise ValueError(f"You have to specify either {err_msg_prefix}input_ids or {err_msg_prefix}inputs_embeds")
1011
1012

        if inputs_embeds is None:
1013
1014
            if self.embed_tokens is None:
                raise ValueError("You have to initialize the model with valid token embeddings")
1015
1016
1017
1018
            inputs_embeds = self.embed_tokens(input_ids)

        batch_size, seq_length = input_shape

1019
1020
        # required mask seq length can be calculated via length of past
        mask_seq_length = past_key_values[0][0].shape[2] + seq_length if past_key_values is not None else seq_length
1021

1022
        if use_cache is True:
1023
1024
            if not self.is_decoder:
                raise ValueError(f"`use_cache` can only be set to `True` if {self} is used as a decoder")
1025

1026
1027
1028
        # initialize past_key_values with `None` if past does not exist
        if past_key_values is None:
            past_key_values = [None] * len(self.block)
1029

1030
1031
1032
        if attention_mask is None:
            attention_mask = torch.ones(batch_size, mask_seq_length, device=inputs_embeds.device)

lexhuismans's avatar
lexhuismans committed
1033
        # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length]
thomwolf's avatar
thomwolf committed
1034
        # ourselves in which case we just need to make it broadcastable to all heads.
1035
        extended_attention_mask = self.get_extended_attention_mask(attention_mask, input_shape)
thomwolf's avatar
thomwolf committed
1036

1037
1038
1039
1040
1041
1042
        # If a 2D or 3D attention mask is provided for the cross-attention
        # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length]
        if self.is_decoder and encoder_hidden_states is not None:
            encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states.size()
            encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length)
            if encoder_attention_mask is None:
1043
1044
1045
                encoder_attention_mask = torch.ones(
                    encoder_hidden_shape, device=inputs_embeds.device, dtype=torch.long
                )
1046
            encoder_extended_attention_mask = self.invert_attention_mask(encoder_attention_mask)
thomwolf's avatar
thomwolf committed
1047
1048
        else:
            encoder_extended_attention_mask = None
thomwolf's avatar
thomwolf committed
1049

1050
1051
1052
1053
1054
1055
1056
        if self.gradient_checkpointing and self.training:
            if use_cache:
                logger.warning_once(
                    "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
                )
                use_cache = False

thomwolf's avatar
thomwolf committed
1057
        # Prepare head mask if needed
1058
        head_mask = self.get_head_mask(head_mask, self.config.num_layers)
1059
        cross_attn_head_mask = self.get_head_mask(cross_attn_head_mask, self.config.num_layers)
1060
1061
1062
        present_key_value_states = () if use_cache else None
        all_hidden_states = () if output_hidden_states else None
        all_attentions = () if output_attentions else None
1063
        all_cross_attentions = () if (output_attentions and self.is_decoder) else None
thomwolf's avatar
thomwolf committed
1064
        position_bias = None
thomwolf's avatar
thomwolf committed
1065
        encoder_decoder_position_bias = None
thomwolf's avatar
thomwolf committed
1066

1067
        hidden_states = self.dropout(inputs_embeds)
1068

1069
        for i, (layer_module, past_key_value) in enumerate(zip(self.block, past_key_values)):
1070
            layer_head_mask = head_mask[i]
1071
            cross_attn_layer_head_mask = cross_attn_head_mask[i]
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
            # Model parallel
            if self.model_parallel:
                torch.cuda.set_device(hidden_states.device)
                # Ensure that attention_mask is always on the same device as hidden_states
                if attention_mask is not None:
                    attention_mask = attention_mask.to(hidden_states.device)
                if position_bias is not None:
                    position_bias = position_bias.to(hidden_states.device)
                if encoder_hidden_states is not None:
                    encoder_hidden_states = encoder_hidden_states.to(hidden_states.device)
                if encoder_extended_attention_mask is not None:
                    encoder_extended_attention_mask = encoder_extended_attention_mask.to(hidden_states.device)
                if encoder_decoder_position_bias is not None:
                    encoder_decoder_position_bias = encoder_decoder_position_bias.to(hidden_states.device)
1086
1087
                if layer_head_mask is not None:
                    layer_head_mask = layer_head_mask.to(hidden_states.device)
1088
1089
                if cross_attn_layer_head_mask is not None:
                    cross_attn_layer_head_mask = cross_attn_layer_head_mask.to(hidden_states.device)
Joseph Liu's avatar
Joseph Liu committed
1090
            if output_hidden_states:
thomwolf's avatar
thomwolf committed
1091
1092
                all_hidden_states = all_hidden_states + (hidden_states,)

1093
            if self.gradient_checkpointing and self.training:
1094
                layer_outputs = self._gradient_checkpointing_func(
1095
                    layer_module.forward,
1096
1097
1098
1099
1100
1101
1102
1103
1104
                    hidden_states,
                    extended_attention_mask,
                    position_bias,
                    encoder_hidden_states,
                    encoder_extended_attention_mask,
                    encoder_decoder_position_bias,
                    layer_head_mask,
                    cross_attn_layer_head_mask,
                    None,  # past_key_value is always None with gradient checkpointing
1105
1106
                    use_cache,
                    output_attentions,
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
                )
            else:
                layer_outputs = layer_module(
                    hidden_states,
                    attention_mask=extended_attention_mask,
                    position_bias=position_bias,
                    encoder_hidden_states=encoder_hidden_states,
                    encoder_attention_mask=encoder_extended_attention_mask,
                    encoder_decoder_position_bias=encoder_decoder_position_bias,
                    layer_head_mask=layer_head_mask,
                    cross_attn_layer_head_mask=cross_attn_layer_head_mask,
                    past_key_value=past_key_value,
                    use_cache=use_cache,
                    output_attentions=output_attentions,
                )

thomwolf's avatar
thomwolf committed
1123
            # layer_outputs is a tuple with:
1124
            # hidden-states, key-value-states, (self-attention position bias), (self-attention weights), (cross-attention position bias), (cross-attention weights)
1125
1126
            if use_cache is False:
                layer_outputs = layer_outputs[:1] + (None,) + layer_outputs[1:]
1127

1128
            hidden_states, present_key_value_state = layer_outputs[:2]
1129

1130
            # We share the position biases between the layers - the first layer store them
1131
1132
            # layer_outputs = hidden-states, key-value-states (self-attention position bias), (self-attention weights),
            # (cross-attention position bias), (cross-attention weights)
1133
1134
1135
            position_bias = layer_outputs[2]
            if self.is_decoder and encoder_hidden_states is not None:
                encoder_decoder_position_bias = layer_outputs[4 if output_attentions else 3]
1136
            # append next layer key value states
1137
1138
            if use_cache:
                present_key_value_states = present_key_value_states + (present_key_value_state,)
thomwolf's avatar
thomwolf committed
1139

1140
            if output_attentions:
1141
                all_attentions = all_attentions + (layer_outputs[3],)
1142
                if self.is_decoder:
1143
                    all_cross_attentions = all_cross_attentions + (layer_outputs[5],)
thomwolf's avatar
thomwolf committed
1144

1145
1146
1147
1148
1149
1150
            # Model Parallel: If it's the last layer for that device, put things on the next device
            if self.model_parallel:
                for k, v in self.device_map.items():
                    if i == v[-1] and "cuda:" + str(k) != self.last_device:
                        hidden_states = hidden_states.to("cuda:" + str(k + 1))

thomwolf's avatar
thomwolf committed
1151
        hidden_states = self.final_layer_norm(hidden_states)
thomwolf's avatar
thomwolf committed
1152
        hidden_states = self.dropout(hidden_states)
thomwolf's avatar
thomwolf committed
1153
1154

        # Add last layer
Joseph Liu's avatar
Joseph Liu committed
1155
        if output_hidden_states:
thomwolf's avatar
thomwolf committed
1156
1157
            all_hidden_states = all_hidden_states + (hidden_states,)

1158
        if not return_dict:
1159
1160
            return tuple(
                v
1161
1162
1163
1164
1165
1166
1167
                for v in [
                    hidden_states,
                    present_key_value_states,
                    all_hidden_states,
                    all_attentions,
                    all_cross_attentions,
                ]
1168
1169
                if v is not None
            )
1170
        return BaseModelOutputWithPastAndCrossAttentions(
1171
1172
1173
1174
            last_hidden_state=hidden_states,
            past_key_values=present_key_value_states,
            hidden_states=all_hidden_states,
            attentions=all_attentions,
1175
            cross_attentions=all_cross_attentions,
1176
        )
thomwolf's avatar
thomwolf committed
1177
1178


1179
T5_START_DOCSTRING = r"""
Sylvain Gugger's avatar
Sylvain Gugger committed
1180

Sylvain Gugger's avatar
Sylvain Gugger committed
1181
1182
1183
1184
    The T5 model was proposed in [Exploring the Limits of Transfer Learning with a Unified Text-to-Text
    Transformer](https://arxiv.org/abs/1910.10683) by Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan
    Narang, Michael Matena, Yanqi Zhou, Wei Li, Peter J. Liu. It's an encoder decoder transformer pre-trained in a
    text-to-text denoising generative setting.
thomwolf's avatar
thomwolf committed
1185

Sylvain Gugger's avatar
Sylvain Gugger committed
1186
1187
1188
    This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
    library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
    etc.)
Sylvain Gugger's avatar
Sylvain Gugger committed
1189

Sylvain Gugger's avatar
Sylvain Gugger committed
1190
1191
1192
    This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
    Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
    and behavior.
thomwolf's avatar
thomwolf committed
1193
1194

    Parameters:
1195
        config ([`T5Config`]): Model configuration class with all the parameters of the model.
Sylvain Gugger's avatar
Sylvain Gugger committed
1196
            Initializing with a config file does not load the weights associated with the model, only the
Sylvain Gugger's avatar
Sylvain Gugger committed
1197
            configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
thomwolf's avatar
thomwolf committed
1198
1199
1200
"""

T5_INPUTS_DOCSTRING = r"""
Patrick von Platen's avatar
Patrick von Platen committed
1201
    Args:
1202
        input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
Sylvain Gugger's avatar
Sylvain Gugger committed
1203
1204
            Indices of input sequence tokens in the vocabulary. T5 is a model with relative position embeddings so you
            should be able to pad the inputs on both the right and the left.
Sylvain Gugger's avatar
Sylvain Gugger committed
1205

Sylvain Gugger's avatar
Sylvain Gugger committed
1206
            Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
Sylvain Gugger's avatar
Sylvain Gugger committed
1207
            [`PreTrainedTokenizer.__call__`] for detail.
Sylvain Gugger's avatar
Sylvain Gugger committed
1208

1209
            [What are input IDs?](../glossary#input-ids)
Sylvain Gugger's avatar
Sylvain Gugger committed
1210

1211
1212
1213
            To know more on how to prepare `input_ids` for pretraining take a look a [T5 Training](./t5#training).
        attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*):
            Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
Sylvain Gugger's avatar
Sylvain Gugger committed
1214
1215

            - 1 for tokens that are **not masked**,
1216
            - 0 for tokens that are **masked**.
Sylvain Gugger's avatar
Sylvain Gugger committed
1217

1218
1219
            [What are attention masks?](../glossary#attention-mask)
        decoder_input_ids (`torch.LongTensor` of shape `(batch_size, target_sequence_length)`, *optional*):
1220
1221
            Indices of decoder input sequence tokens in the vocabulary.

Sylvain Gugger's avatar
Sylvain Gugger committed
1222
            Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
Sylvain Gugger's avatar
Sylvain Gugger committed
1223
            [`PreTrainedTokenizer.__call__`] for details.
1224

1225
            [What are decoder input IDs?](../glossary#decoder-input-ids)
1226

Sylvain Gugger's avatar
Sylvain Gugger committed
1227
1228
            T5 uses the `pad_token_id` as the starting token for `decoder_input_ids` generation. If `past_key_values`
            is used, optionally only the last `decoder_input_ids` have to be input (see `past_key_values`).
Sylvain Gugger's avatar
Sylvain Gugger committed
1229

Sylvain Gugger's avatar
Sylvain Gugger committed
1230
1231
            To know more on how to prepare `decoder_input_ids` for pretraining take a look at [T5
            Training](./t5#training).
1232
        decoder_attention_mask (`torch.BoolTensor` of shape `(batch_size, target_sequence_length)`, *optional*):
Sylvain Gugger's avatar
Sylvain Gugger committed
1233
1234
            Default behavior: generate a tensor that ignores pad tokens in `decoder_input_ids`. Causal mask will also
            be used by default.
1235
        head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
Sylvain Gugger's avatar
Sylvain Gugger committed
1236
1237
            Mask to nullify selected heads of the self-attention modules in the encoder. Mask values selected in `[0,
            1]`:
1238
1239
1240
1241

            - 1 indicates the head is **not masked**,
            - 0 indicates the head is **masked**.

1242
        decoder_head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
Sylvain Gugger's avatar
Sylvain Gugger committed
1243
1244
            Mask to nullify selected heads of the self-attention modules in the decoder. Mask values selected in `[0,
            1]`:
1245
1246
1247
1248

            - 1 indicates the head is **not masked**,
            - 0 indicates the head is **masked**.

1249
        cross_attn_head_mask (`torch.Tensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
1250
                Mask to nullify selected heads of the cross-attention modules in the decoder. Mask values selected in
1251
                `[0, 1]`:
1252
1253
1254
1255

                - 1 indicates the head is **not masked**,
                - 0 indicates the head is **masked**.

1256
        encoder_outputs (`tuple(tuple(torch.FloatTensor)`, *optional*):
Sylvain Gugger's avatar
Sylvain Gugger committed
1257
1258
1259
            Tuple consists of (`last_hidden_state`, `optional`: *hidden_states*, `optional`: *attentions*)
            `last_hidden_state` of shape `(batch_size, sequence_length, hidden_size)` is a sequence of hidden states at
            the output of the last layer of the encoder. Used in the cross-attention of the decoder.
1260
        past_key_values (`tuple(tuple(torch.FloatTensor))` of length `config.n_layers` with each tuple having 4 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`):
Sylvain Gugger's avatar
Sylvain Gugger committed
1261
1262
            Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding.

Sylvain Gugger's avatar
Sylvain Gugger committed
1263
1264
1265
            If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
            don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
            `decoder_input_ids` of shape `(batch_size, sequence_length)`.
1266
        inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
Sylvain Gugger's avatar
Sylvain Gugger committed
1267
1268
1269
            Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
            is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
            model's internal embedding lookup matrix.
1270
1271
        decoder_inputs_embeds (`torch.FloatTensor` of shape `(batch_size, target_sequence_length, hidden_size)`, *optional*):
            Optionally, instead of passing `decoder_input_ids` you can choose to directly pass an embedded
Sylvain Gugger's avatar
Sylvain Gugger committed
1272
1273
            representation. If `past_key_values` is used, optionally only the last `decoder_inputs_embeds` have to be
            input (see `past_key_values`). This is useful if you want more control over how to convert
1274
            `decoder_input_ids` indices into associated vectors than the model's internal embedding lookup matrix.
Sylvain Gugger's avatar
Sylvain Gugger committed
1275

Sylvain Gugger's avatar
Sylvain Gugger committed
1276
1277
            If `decoder_input_ids` and `decoder_inputs_embeds` are both unset, `decoder_inputs_embeds` takes the value
            of `inputs_embeds`.
Sylvain Gugger's avatar
Sylvain Gugger committed
1278

1279
        use_cache (`bool`, *optional*):
Sylvain Gugger's avatar
Sylvain Gugger committed
1280
1281
            If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
            `past_key_values`).
Sylvain Gugger's avatar
Sylvain Gugger committed
1282

1283
1284
        output_attentions (`bool`, *optional*):
            Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
Sylvain Gugger's avatar
Sylvain Gugger committed
1285
            tensors for more detail.
1286
1287
        output_hidden_states (`bool`, *optional*):
            Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
Sylvain Gugger's avatar
Sylvain Gugger committed
1288
            more detail.
1289
        return_dict (`bool`, *optional*):
1290
            Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
thomwolf's avatar
thomwolf committed
1291
1292
"""

1293
1294
T5_ENCODER_INPUTS_DOCSTRING = r"""
    Args:
1295
        input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
1296
1297
1298
            Indices of input sequence tokens in the vocabulary. T5 is a model with relative position embeddings so you
            should be able to pad the inputs on both the right and the left.

Sylvain Gugger's avatar
Sylvain Gugger committed
1299
            Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
Sylvain Gugger's avatar
Sylvain Gugger committed
1300
            [`PreTrainedTokenizer.__call__`] for detail.
1301

1302
1303
1304
            To know more on how to prepare `input_ids` for pretraining take a look a [T5 Training](./t5#training).
        attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*):
            Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
1305
1306
1307
1308

            - 1 for tokens that are **not masked**,
            - 0 for tokens that are **masked**.

1309
1310
1311
            [What are attention masks?](../glossary#attention-mask)
        head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
            Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`:
1312
1313
1314
1315

            - 1 indicates the head is **not masked**,
            - 0 indicates the head is **masked**.

1316
        inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
Sylvain Gugger's avatar
Sylvain Gugger committed
1317
1318
1319
            Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
            is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
            model's internal embedding lookup matrix.
1320
1321
        output_attentions (`bool`, *optional*):
            Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
1322
            tensors for more detail.
1323
1324
        output_hidden_states (`bool`, *optional*):
            Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
1325
            more detail.
1326
        return_dict (`bool`, *optional*):
1327
            Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
1328
1329
"""

1330
# Warning message for FutureWarning: head_mask was separated into two input args - head_mask, decoder_head_mask
1331
1332
1333
1334
1335
1336
1337
__HEAD_MASK_WARNING_MSG = """
The input argument `head_mask` was split into two arguments `head_mask` and `decoder_head_mask`. Currently,
`decoder_head_mask` is set to copy `head_mask`, but this feature is deprecated and will be removed in future versions.
If you do not want to use any `decoder_head_mask` now, please set `decoder_head_mask = torch.ones(num_layers,
num_heads)`.
"""

1338
1339

@add_start_docstrings(
NielsRogge's avatar
NielsRogge committed
1340
    "The bare T5 Model transformer outputting raw hidden-states without any specific head on top.",
1341
1342
    T5_START_DOCSTRING,
)
thomwolf's avatar
thomwolf committed
1343
class T5Model(T5PreTrainedModel):
Patrick von Platen's avatar
Patrick von Platen committed
1344
    _keys_to_ignore_on_load_unexpected = [
Sylvain Gugger's avatar
Sylvain Gugger committed
1345
        "decoder.block.0.layer.1.EncDecAttention.relative_attention_bias.weight",
1346
    ]
Sylvain Gugger's avatar
Sylvain Gugger committed
1347
    _tied_weights_keys = ["encoder.embed_tokens.weight", "decoder.embed_tokens.weight"]
1348

1349
    def __init__(self, config: T5Config):
Julien Chaumond's avatar
Julien Chaumond committed
1350
        super().__init__(config)
thomwolf's avatar
thomwolf committed
1351
        self.shared = nn.Embedding(config.vocab_size, config.d_model)
thomwolf's avatar
thomwolf committed
1352
1353

        encoder_config = copy.deepcopy(config)
1354
        encoder_config.is_decoder = False
1355
        encoder_config.use_cache = False
1356
        encoder_config.is_encoder_decoder = False
1357
        self.encoder = T5Stack(encoder_config, self.shared)
thomwolf's avatar
thomwolf committed
1358

thomwolf's avatar
thomwolf committed
1359
1360
        decoder_config = copy.deepcopy(config)
        decoder_config.is_decoder = True
1361
        decoder_config.is_encoder_decoder = False
1362
        decoder_config.num_layers = config.num_decoder_layers
1363
        self.decoder = T5Stack(decoder_config, self.shared)
thomwolf's avatar
thomwolf committed
1364

1365
1366
        # Initialize weights and apply final processing
        self.post_init()
thomwolf's avatar
thomwolf committed
1367

1368
1369
1370
1371
1372
1373
        # Model parallel
        self.model_parallel = False
        self.device_map = None

    @add_start_docstrings(PARALLELIZE_DOCSTRING)
    def parallelize(self, device_map=None):
1374
1375
1376
1377
1378
1379
1380
        warnings.warn(
            "`T5Model.parallelize` is deprecated and will be removed in v5 of Transformers, you should load your model"
            " with `device_map='balanced'` in the call to `from_pretrained`. You can also provide your own"
            " `device_map` but it needs to be a dictionary module_name to device, so for instance {'encoder.block.0':"
            " 0, 'encoder.block.1': 1, ...}",
            FutureWarning,
        )
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
        self.device_map = (
            get_device_map(len(self.encoder.block), range(torch.cuda.device_count()))
            if device_map is None
            else device_map
        )
        assert_device_map(self.device_map, len(self.encoder.block))
        self.encoder.parallelize(self.device_map)
        self.decoder.parallelize(self.device_map)
        self.model_parallel = True

    @add_start_docstrings(DEPARALLELIZE_DOCSTRING)
    def deparallelize(self):
1393
1394
1395
1396
        warnings.warn(
            "Like `parallelize`, `deparallelize` is deprecated and will be removed in v5 of Transformers.",
            FutureWarning,
        )
1397
1398
1399
1400
1401
1402
1403
1404
        self.encoder.deparallelize()
        self.decoder.deparallelize()
        self.encoder = self.encoder.to("cpu")
        self.decoder = self.decoder.to("cpu")
        self.model_parallel = False
        self.device_map = None
        torch.cuda.empty_cache()

thomwolf's avatar
thomwolf committed
1405
    def get_input_embeddings(self):
thomwolf's avatar
thomwolf committed
1406
        return self.shared
thomwolf's avatar
thomwolf committed
1407
1408

    def set_input_embeddings(self, new_embeddings):
thomwolf's avatar
thomwolf committed
1409
        self.shared = new_embeddings
1410
1411
        self.encoder.set_input_embeddings(new_embeddings)
        self.decoder.set_input_embeddings(new_embeddings)
thomwolf's avatar
thomwolf committed
1412

1413
1414
1415
1416
1417
    def _tie_weights(self):
        if self.config.tie_word_embeddings:
            self._tie_or_clone_weights(self.encoder.embed_tokens, self.shared)
            self._tie_or_clone_weights(self.decoder.embed_tokens, self.shared)

1418
1419
1420
1421
1422
1423
    def get_encoder(self):
        return self.encoder

    def get_decoder(self):
        return self.decoder

thomwolf's avatar
thomwolf committed
1424
    def _prune_heads(self, heads_to_prune):
Sylvain Gugger's avatar
Sylvain Gugger committed
1425
1426
1427
        """
        Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
        class PreTrainedModel
thomwolf's avatar
thomwolf committed
1428
1429
1430
1431
        """
        for layer, heads in heads_to_prune.items():
            self.encoder.layer[layer].attention.prune_heads(heads)

1432
    @add_start_docstrings_to_model_forward(T5_INPUTS_DOCSTRING)
1433
    @replace_return_docstrings(output_type=Seq2SeqModelOutput, config_class=_CONFIG_FOR_DOC)
1434
1435
    def forward(
        self,
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
        input_ids: Optional[torch.LongTensor] = None,
        attention_mask: Optional[torch.FloatTensor] = None,
        decoder_input_ids: Optional[torch.LongTensor] = None,
        decoder_attention_mask: Optional[torch.BoolTensor] = None,
        head_mask: Optional[torch.FloatTensor] = None,
        decoder_head_mask: Optional[torch.FloatTensor] = None,
        cross_attn_head_mask: Optional[torch.Tensor] = None,
        encoder_outputs: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
        past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
        inputs_embeds: Optional[torch.Tensor] = None,
        decoder_inputs_embeds: Optional[torch.Tensor] = None,
        use_cache: Optional[bool] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
    ) -> Union[Tuple[torch.FloatTensor], Seq2SeqModelOutput]:
Patrick von Platen's avatar
Patrick von Platen committed
1452
        r"""
Lysandre's avatar
Lysandre committed
1453
        Returns:
Patrick von Platen's avatar
Patrick von Platen committed
1454

1455
        Example:
1456

1457
        ```python
Sylvain Gugger's avatar
Sylvain Gugger committed
1458
        >>> from transformers import AutoTokenizer, T5Model
Patrick von Platen's avatar
Patrick von Platen committed
1459

1460
1461
        >>> tokenizer = AutoTokenizer.from_pretrained("google-t5/t5-small")
        >>> model = T5Model.from_pretrained("google-t5/t5-small")
Patrick von Platen's avatar
Patrick von Platen committed
1462

Sylvain Gugger's avatar
Sylvain Gugger committed
1463
1464
        >>> input_ids = tokenizer(
        ...     "Studies have been shown that owning a dog is good for you", return_tensors="pt"
1465
        ... ).input_ids  # Batch size 1
1466
        >>> decoder_input_ids = tokenizer("Studies show that", return_tensors="pt").input_ids  # Batch size 1
Patrick von Platen's avatar
Patrick von Platen committed
1467

1468
1469
1470
1471
        >>> # preprocess: Prepend decoder_input_ids with start token which is pad token for T5Model.
        >>> # This is not needed for torch's T5ForConditionalGeneration as it does this internally using labels arg.
        >>> decoder_input_ids = model._shift_right(decoder_input_ids)

1472
1473
1474
1475
        >>> # forward pass
        >>> outputs = model(input_ids=input_ids, decoder_input_ids=decoder_input_ids)
        >>> last_hidden_states = outputs.last_hidden_state
        ```"""
1476
        use_cache = use_cache if use_cache is not None else self.config.use_cache
1477
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict
thomwolf's avatar
thomwolf committed
1478

1479
1480
1481
1482
1483
1484
        # FutureWarning: head_mask was separated into two input args - head_mask, decoder_head_mask
        if head_mask is not None and decoder_head_mask is None:
            if self.config.num_layers == self.config.num_decoder_layers:
                warnings.warn(__HEAD_MASK_WARNING_MSG, FutureWarning)
                decoder_head_mask = head_mask

thomwolf's avatar
thomwolf committed
1485
        # Encode if needed (training, first prediction pass)
1486
1487
        if encoder_outputs is None:
            encoder_outputs = self.encoder(
1488
1489
1490
1491
1492
                input_ids=input_ids,
                attention_mask=attention_mask,
                inputs_embeds=inputs_embeds,
                head_mask=head_mask,
                output_attentions=output_attentions,
Joseph Liu's avatar
Joseph Liu committed
1493
                output_hidden_states=output_hidden_states,
1494
                return_dict=return_dict,
1495
            )
Sylvain Gugger's avatar
Sylvain Gugger committed
1496
        elif return_dict and not isinstance(encoder_outputs, BaseModelOutput):
1497
1498
1499
1500
            encoder_outputs = BaseModelOutput(
                last_hidden_state=encoder_outputs[0],
                hidden_states=encoder_outputs[1] if len(encoder_outputs) > 1 else None,
                attentions=encoder_outputs[2] if len(encoder_outputs) > 2 else None,
1501
            )
thomwolf's avatar
thomwolf committed
1502

1503
        hidden_states = encoder_outputs[0]
Kyungmin Lee's avatar
Kyungmin Lee committed
1504

1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
        # Set device for model parallelism
        if self.model_parallel:
            torch.cuda.set_device(self.decoder.first_device)
            hidden_states = hidden_states.to(self.decoder.first_device)
            if decoder_input_ids is not None:
                decoder_input_ids = decoder_input_ids.to(self.decoder.first_device)
            if attention_mask is not None:
                attention_mask = attention_mask.to(self.decoder.first_device)
            if decoder_attention_mask is not None:
                decoder_attention_mask = decoder_attention_mask.to(self.decoder.first_device)
thomwolf's avatar
thomwolf committed
1515

1516
1517
1518
1519
1520
        # Decode
        decoder_outputs = self.decoder(
            input_ids=decoder_input_ids,
            attention_mask=decoder_attention_mask,
            inputs_embeds=decoder_inputs_embeds,
1521
            past_key_values=past_key_values,
1522
1523
            encoder_hidden_states=hidden_states,
            encoder_attention_mask=attention_mask,
1524
            head_mask=decoder_head_mask,
1525
            cross_attn_head_mask=cross_attn_head_mask,
1526
            use_cache=use_cache,
1527
            output_attentions=output_attentions,
Joseph Liu's avatar
Joseph Liu committed
1528
            output_hidden_states=output_hidden_states,
1529
            return_dict=return_dict,
1530
        )
thomwolf's avatar
thomwolf committed
1531

1532
        if not return_dict:
1533
1534
1535
1536
            return decoder_outputs + encoder_outputs

        return Seq2SeqModelOutput(
            last_hidden_state=decoder_outputs.last_hidden_state,
1537
            past_key_values=decoder_outputs.past_key_values,
1538
1539
            decoder_hidden_states=decoder_outputs.hidden_states,
            decoder_attentions=decoder_outputs.attentions,
1540
            cross_attentions=decoder_outputs.cross_attentions,
1541
1542
1543
1544
            encoder_last_hidden_state=encoder_outputs.last_hidden_state,
            encoder_hidden_states=encoder_outputs.hidden_states,
            encoder_attentions=encoder_outputs.attentions,
        )
thomwolf's avatar
thomwolf committed
1545
1546


Sylvain Gugger's avatar
Sylvain Gugger committed
1547
@add_start_docstrings("""T5 Model with a `language modeling` head on top.""", T5_START_DOCSTRING)
1548
class T5ForConditionalGeneration(T5PreTrainedModel):
Patrick von Platen's avatar
Patrick von Platen committed
1549
    _keys_to_ignore_on_load_unexpected = [
Sylvain Gugger's avatar
Sylvain Gugger committed
1550
        "decoder.block.0.layer.1.EncDecAttention.relative_attention_bias.weight",
1551
    ]
Sylvain Gugger's avatar
Sylvain Gugger committed
1552
    _tied_weights_keys = ["encoder.embed_tokens.weight", "decoder.embed_tokens.weight", "lm_head.weight"]
1553

1554
    def __init__(self, config: T5Config):
Julien Chaumond's avatar
Julien Chaumond committed
1555
        super().__init__(config)
1556
        self.model_dim = config.d_model
thomwolf's avatar
thomwolf committed
1557

1558
1559
1560
        self.shared = nn.Embedding(config.vocab_size, config.d_model)

        encoder_config = copy.deepcopy(config)
1561
        encoder_config.is_decoder = False
1562
        encoder_config.use_cache = False
1563
        encoder_config.is_encoder_decoder = False
1564
        self.encoder = T5Stack(encoder_config, self.shared)
1565
1566
1567

        decoder_config = copy.deepcopy(config)
        decoder_config.is_decoder = True
1568
        decoder_config.is_encoder_decoder = False
1569
        decoder_config.num_layers = config.num_decoder_layers
1570
        self.decoder = T5Stack(decoder_config, self.shared)
1571

1572
        self.lm_head = nn.Linear(config.d_model, config.vocab_size, bias=False)
thomwolf's avatar
thomwolf committed
1573

1574
1575
        # Initialize weights and apply final processing
        self.post_init()
thomwolf's avatar
thomwolf committed
1576

1577
1578
1579
1580
1581
1582
        # Model parallel
        self.model_parallel = False
        self.device_map = None

    @add_start_docstrings(PARALLELIZE_DOCSTRING)
    def parallelize(self, device_map=None):
1583
1584
1585
1586
1587
1588
1589
        warnings.warn(
            "`T5ForConditionalGeneration.parallelize` is deprecated and will be removed in v5 of Transformers, you"
            " should load your model with `device_map='balanced'` in the call to `from_pretrained`. You can also"
            " provide your own `device_map` but it needs to be a dictionary module_name to device, so for instance"
            " {'encoder.block.0': 0, 'encoder.block.1': 1, ...}",
            FutureWarning,
        )
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
        self.device_map = (
            get_device_map(len(self.encoder.block), range(torch.cuda.device_count()))
            if device_map is None
            else device_map
        )
        assert_device_map(self.device_map, len(self.encoder.block))
        self.encoder.parallelize(self.device_map)
        self.decoder.parallelize(self.device_map)
        self.lm_head = self.lm_head.to(self.decoder.first_device)
        self.model_parallel = True

    @add_start_docstrings(DEPARALLELIZE_DOCSTRING)
    def deparallelize(self):
1603
1604
1605
1606
        warnings.warn(
            "Like `parallelize`, `deparallelize` is deprecated and will be removed in v5 of Transformers.",
            FutureWarning,
        )
1607
1608
1609
1610
1611
1612
1613
1614
1615
        self.encoder.deparallelize()
        self.decoder.deparallelize()
        self.encoder = self.encoder.to("cpu")
        self.decoder = self.decoder.to("cpu")
        self.lm_head = self.lm_head.to("cpu")
        self.model_parallel = False
        self.device_map = None
        torch.cuda.empty_cache()

1616
1617
1618
1619
1620
    def get_input_embeddings(self):
        return self.shared

    def set_input_embeddings(self, new_embeddings):
        self.shared = new_embeddings
1621
1622
        self.encoder.set_input_embeddings(new_embeddings)
        self.decoder.set_input_embeddings(new_embeddings)
1623

1624
1625
1626
1627
1628
    def _tie_weights(self):
        if self.config.tie_word_embeddings:
            self._tie_or_clone_weights(self.encoder.embed_tokens, self.shared)
            self._tie_or_clone_weights(self.decoder.embed_tokens, self.shared)

1629
1630
1631
    def set_output_embeddings(self, new_embeddings):
        self.lm_head = new_embeddings

thomwolf's avatar
thomwolf committed
1632
1633
1634
    def get_output_embeddings(self):
        return self.lm_head

1635
1636
    def get_encoder(self):
        return self.encoder
thomwolf's avatar
thomwolf committed
1637

1638
1639
1640
    def get_decoder(self):
        return self.decoder

1641
    @add_start_docstrings_to_model_forward(T5_INPUTS_DOCSTRING)
1642
    @replace_return_docstrings(output_type=Seq2SeqLMOutput, config_class=_CONFIG_FOR_DOC)
1643
1644
    def forward(
        self,
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
        input_ids: Optional[torch.LongTensor] = None,
        attention_mask: Optional[torch.FloatTensor] = None,
        decoder_input_ids: Optional[torch.LongTensor] = None,
        decoder_attention_mask: Optional[torch.BoolTensor] = None,
        head_mask: Optional[torch.FloatTensor] = None,
        decoder_head_mask: Optional[torch.FloatTensor] = None,
        cross_attn_head_mask: Optional[torch.Tensor] = None,
        encoder_outputs: Optional[Tuple[Tuple[torch.Tensor]]] = None,
        past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None,
        inputs_embeds: Optional[torch.FloatTensor] = None,
        decoder_inputs_embeds: Optional[torch.FloatTensor] = None,
        labels: Optional[torch.LongTensor] = None,
        use_cache: Optional[bool] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
    ) -> Union[Tuple[torch.FloatTensor], Seq2SeqLMOutput]:
Patrick von Platen's avatar
Patrick von Platen committed
1662
        r"""
1663
        labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Sylvain Gugger's avatar
Sylvain Gugger committed
1664
1665
            Labels for computing the sequence classification/regression loss. Indices should be in `[-100, 0, ...,
            config.vocab_size - 1]`. All labels set to `-100` are ignored (masked), the loss is only computed for
1666
            labels in `[0, ..., config.vocab_size]`
Lysandre's avatar
Lysandre committed
1667
1668
1669

        Returns:

1670
        Examples:
Lysandre's avatar
Lysandre committed
1671

1672
        ```python
Sylvain Gugger's avatar
Sylvain Gugger committed
1673
        >>> from transformers import AutoTokenizer, T5ForConditionalGeneration
Lysandre's avatar
Lysandre committed
1674

1675
1676
        >>> tokenizer = AutoTokenizer.from_pretrained("google-t5/t5-small")
        >>> model = T5ForConditionalGeneration.from_pretrained("google-t5/t5-small")
1677
1678

        >>> # training
Sylvain Gugger's avatar
Sylvain Gugger committed
1679
1680
        >>> input_ids = tokenizer("The <extra_id_0> walks in <extra_id_1> park", return_tensors="pt").input_ids
        >>> labels = tokenizer("<extra_id_0> cute dog <extra_id_1> the <extra_id_2>", return_tensors="pt").input_ids
1681
1682
1683
1684
1685
        >>> outputs = model(input_ids=input_ids, labels=labels)
        >>> loss = outputs.loss
        >>> logits = outputs.logits

        >>> # inference
Sylvain Gugger's avatar
Sylvain Gugger committed
1686
1687
        >>> input_ids = tokenizer(
        ...     "summarize: studies have shown that owning a dog is good for you", return_tensors="pt"
1688
        ... ).input_ids  # Batch size 1
1689
1690
1691
1692
        >>> outputs = model.generate(input_ids)
        >>> print(tokenizer.decode(outputs[0], skip_special_tokens=True))
        >>> # studies have shown that owning a dog is good for you.
        ```"""
1693
        use_cache = use_cache if use_cache is not None else self.config.use_cache
1694
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1695

1696
1697
1698
1699
1700
1701
        # FutureWarning: head_mask was separated into two input args - head_mask, decoder_head_mask
        if head_mask is not None and decoder_head_mask is None:
            if self.config.num_layers == self.config.num_decoder_layers:
                warnings.warn(__HEAD_MASK_WARNING_MSG, FutureWarning)
                decoder_head_mask = head_mask

1702
        # Encode if needed (training, first prediction pass)
1703
        if encoder_outputs is None:
thomwolf's avatar
thomwolf committed
1704
            # Convert encoder inputs in embeddings if needed
1705
            encoder_outputs = self.encoder(
1706
1707
1708
1709
1710
                input_ids=input_ids,
                attention_mask=attention_mask,
                inputs_embeds=inputs_embeds,
                head_mask=head_mask,
                output_attentions=output_attentions,
Joseph Liu's avatar
Joseph Liu committed
1711
                output_hidden_states=output_hidden_states,
1712
                return_dict=return_dict,
1713
            )
1714
        elif return_dict and not isinstance(encoder_outputs, BaseModelOutput):
1715
1716
1717
1718
            encoder_outputs = BaseModelOutput(
                last_hidden_state=encoder_outputs[0],
                hidden_states=encoder_outputs[1] if len(encoder_outputs) > 1 else None,
                attentions=encoder_outputs[2] if len(encoder_outputs) > 2 else None,
1719
            )
thomwolf's avatar
thomwolf committed
1720

1721
        hidden_states = encoder_outputs[0]
1722

1723
1724
1725
        if self.model_parallel:
            torch.cuda.set_device(self.decoder.first_device)

Sylvain Gugger's avatar
Sylvain Gugger committed
1726
        if labels is not None and decoder_input_ids is None and decoder_inputs_embeds is None:
1727
            # get decoder inputs from shifting lm labels to the right
Sylvain Gugger's avatar
Sylvain Gugger committed
1728
            decoder_input_ids = self._shift_right(labels)
1729

1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
        # Set device for model parallelism
        if self.model_parallel:
            torch.cuda.set_device(self.decoder.first_device)
            hidden_states = hidden_states.to(self.decoder.first_device)
            if decoder_input_ids is not None:
                decoder_input_ids = decoder_input_ids.to(self.decoder.first_device)
            if attention_mask is not None:
                attention_mask = attention_mask.to(self.decoder.first_device)
            if decoder_attention_mask is not None:
                decoder_attention_mask = decoder_attention_mask.to(self.decoder.first_device)

1741
        # Decode
1742
1743
1744
1745
        decoder_outputs = self.decoder(
            input_ids=decoder_input_ids,
            attention_mask=decoder_attention_mask,
            inputs_embeds=decoder_inputs_embeds,
1746
            past_key_values=past_key_values,
1747
1748
            encoder_hidden_states=hidden_states,
            encoder_attention_mask=attention_mask,
1749
            head_mask=decoder_head_mask,
1750
            cross_attn_head_mask=cross_attn_head_mask,
1751
            use_cache=use_cache,
1752
            output_attentions=output_attentions,
Joseph Liu's avatar
Joseph Liu committed
1753
            output_hidden_states=output_hidden_states,
1754
            return_dict=return_dict,
1755
        )
1756
1757

        sequence_output = decoder_outputs[0]
Patrick von Platen's avatar
Patrick von Platen committed
1758

1759
1760
1761
1762
1763
1764
        # Set device for model parallelism
        if self.model_parallel:
            torch.cuda.set_device(self.encoder.first_device)
            self.lm_head = self.lm_head.to(self.encoder.first_device)
            sequence_output = sequence_output.to(self.lm_head.weight.device)

Patrick von Platen's avatar
Patrick von Platen committed
1765
1766
1767
        if self.config.tie_word_embeddings:
            # Rescale output before projecting on vocab
            # See https://github.com/tensorflow/mesh/blob/fa19d69eafc9a482aff0b59ddd96b025c0cb207d/mesh_tensorflow/transformer/transformer.py#L586
1768
            sequence_output = sequence_output * (self.model_dim**-0.5)
Patrick von Platen's avatar
Patrick von Platen committed
1769

thomwolf's avatar
thomwolf committed
1770
        lm_logits = self.lm_head(sequence_output)
thomwolf's avatar
thomwolf committed
1771

1772
        loss = None
Sylvain Gugger's avatar
Sylvain Gugger committed
1773
        if labels is not None:
Lysandre's avatar
Lysandre committed
1774
            loss_fct = CrossEntropyLoss(ignore_index=-100)
1775
1776
            # move labels to correct device to enable PP
            labels = labels.to(lm_logits.device)
Sylvain Gugger's avatar
Sylvain Gugger committed
1777
            loss = loss_fct(lm_logits.view(-1, lm_logits.size(-1)), labels.view(-1))
1778
            # TODO(thom): Add z_loss https://github.com/tensorflow/mesh/blob/fa19d69eafc9a482aff0b59ddd96b025c0cb207d/mesh_tensorflow/layers.py#L666
thomwolf's avatar
thomwolf committed
1779

1780
        if not return_dict:
1781
1782
1783
1784
1785
1786
            output = (lm_logits,) + decoder_outputs[1:] + encoder_outputs
            return ((loss,) + output) if loss is not None else output

        return Seq2SeqLMOutput(
            loss=loss,
            logits=lm_logits,
1787
            past_key_values=decoder_outputs.past_key_values,
1788
1789
            decoder_hidden_states=decoder_outputs.hidden_states,
            decoder_attentions=decoder_outputs.attentions,
1790
            cross_attentions=decoder_outputs.cross_attentions,
1791
1792
1793
1794
            encoder_last_hidden_state=encoder_outputs.last_hidden_state,
            encoder_hidden_states=encoder_outputs.hidden_states,
            encoder_attentions=encoder_outputs.attentions,
        )
1795

1796
    def prepare_inputs_for_generation(
1797
1798
        self,
        input_ids,
1799
        past_key_values=None,
1800
1801
1802
        attention_mask=None,
        head_mask=None,
        decoder_head_mask=None,
1803
        decoder_attention_mask=None,
1804
1805
1806
        cross_attn_head_mask=None,
        use_cache=None,
        encoder_outputs=None,
1807
        **kwargs,
1808
    ):
1809
        # cut decoder_input_ids if past_key_values is used
1810
        if past_key_values is not None:
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
            past_length = past_key_values[0][0].shape[2]

            # Some generation methods already pass only the last input ID
            if input_ids.shape[1] > past_length:
                remove_prefix_length = past_length
            else:
                # Default to old behavior: keep only final ID
                remove_prefix_length = input_ids.shape[1] - 1

            input_ids = input_ids[:, remove_prefix_length:]
1821

1822
1823
        return {
            "decoder_input_ids": input_ids,
1824
            "past_key_values": past_key_values,
1825
1826
            "encoder_outputs": encoder_outputs,
            "attention_mask": attention_mask,
1827
1828
            "head_mask": head_mask,
            "decoder_head_mask": decoder_head_mask,
1829
            "decoder_attention_mask": decoder_attention_mask,
1830
            "cross_attn_head_mask": cross_attn_head_mask,
1831
            "use_cache": use_cache,
1832
1833
        }

1834
1835
1836
    def prepare_decoder_input_ids_from_labels(self, labels: torch.Tensor):
        return self._shift_right(labels)

1837
    def _reorder_cache(self, past_key_values, beam_idx):
1838
1839
        # if decoder past is not included in output
        # speedy decoding is disabled and no need to reorder
1840
        if past_key_values is None:
1841
            logger.warning("You might want to consider setting `use_cache=True` to speed up decoding")
1842
            return past_key_values
1843
1844

        reordered_decoder_past = ()
1845
        for layer_past_states in past_key_values:
1846
1847
1848
1849
1850
1851
            # get the correct batch idx from layer past batch dim
            # batch dim of `past` is at 2nd position
            reordered_layer_past_states = ()
            for layer_past_state in layer_past_states:
                # need to set correct `past` for each of the four key / value states
                reordered_layer_past_states = reordered_layer_past_states + (
1852
                    layer_past_state.index_select(0, beam_idx.to(layer_past_state.device)),
1853
1854
                )

1855
1856
1857
1858
1859
1860
1861
1862
            if reordered_layer_past_states[0].shape != layer_past_states[0].shape:
                raise ValueError(
                    f"reordered_layer_past_states[0] shape {reordered_layer_past_states[0].shape} and layer_past_states[0] shape {layer_past_states[0].shape} mismatched"
                )
            if len(reordered_layer_past_states) != len(layer_past_states):
                raise ValueError(
                    f"length of reordered_layer_past_states {len(reordered_layer_past_states)} and length of layer_past_states {len(layer_past_states)} mismatched"
                )
1863
1864

            reordered_decoder_past = reordered_decoder_past + (reordered_layer_past_states,)
1865
        return reordered_decoder_past
1866
1867
1868


@add_start_docstrings(
1869
    "The bare T5 Model transformer outputting encoder's raw hidden-states without any specific head on top.",
1870
1871
1872
    T5_START_DOCSTRING,
)
class T5EncoderModel(T5PreTrainedModel):
Sylvain Gugger's avatar
Sylvain Gugger committed
1873
    _tied_weights_keys = ["encoder.embed_tokens.weight"]
1874
    _keys_to_ignore_on_load_unexpected = [r"decoder"]
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884

    def __init__(self, config: T5Config):
        super().__init__(config)
        self.shared = nn.Embedding(config.vocab_size, config.d_model)

        encoder_config = copy.deepcopy(config)
        encoder_config.use_cache = False
        encoder_config.is_encoder_decoder = False
        self.encoder = T5Stack(encoder_config, self.shared)

1885
1886
        # Initialize weights and apply final processing
        self.post_init()
1887

Lysandre Debut's avatar
Lysandre Debut committed
1888
1889
1890
1891
        # Model parallel
        self.model_parallel = False
        self.device_map = None

1892
1893
    @add_start_docstrings(PARALLELIZE_DOCSTRING)
    def parallelize(self, device_map=None):
1894
1895
1896
1897
1898
1899
1900
        warnings.warn(
            "`T5EncoderModel.parallelize` is deprecated and will be removed in v5 of Transformers, you should load"
            " your model with `device_map='balanced'` in the call to `from_pretrained`. You can also provide your own"
            " `device_map` but it needs to be a dictionary module_name to device, so for instance {'block.0': 0,"
            " 'block.1': 1, ...}",
            FutureWarning,
        )
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
        self.device_map = (
            get_device_map(len(self.encoder.block), range(torch.cuda.device_count()))
            if device_map is None
            else device_map
        )
        assert_device_map(self.device_map, len(self.encoder.block))
        self.encoder.parallelize(self.device_map)
        self.model_parallel = True

    @add_start_docstrings(DEPARALLELIZE_DOCSTRING)
    def deparallelize(self):
1912
1913
1914
1915
        warnings.warn(
            "Like `parallelize`, `deparallelize` is deprecated and will be removed in v5 of Transformers.",
            FutureWarning,
        )
1916
1917
1918
1919
1920
1921
        self.encoder.deparallelize()
        self.encoder = self.encoder.to("cpu")
        self.model_parallel = False
        self.device_map = None
        torch.cuda.empty_cache()

1922
1923
1924
1925
1926
1927
1928
    def get_input_embeddings(self):
        return self.shared

    def set_input_embeddings(self, new_embeddings):
        self.shared = new_embeddings
        self.encoder.set_input_embeddings(new_embeddings)

1929
1930
1931
1932
    def _tie_weights(self):
        if self.config.tie_word_embeddings:
            self._tie_or_clone_weights(self.encoder.embed_tokens, self.shared)

1933
1934
1935
1936
1937
1938
1939
1940
1941
    def get_encoder(self):
        return self.encoder

    def _prune_heads(self, heads_to_prune):
        """
        Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
        class PreTrainedModel
        """
        for layer, heads in heads_to_prune.items():
1942
            self.encoder.block[layer].layer[0].SelfAttention.prune_heads(heads)
1943
1944
1945
1946
1947

    @add_start_docstrings_to_model_forward(T5_ENCODER_INPUTS_DOCSTRING)
    @replace_return_docstrings(output_type=BaseModelOutput, config_class=_CONFIG_FOR_DOC)
    def forward(
        self,
1948
1949
1950
1951
1952
1953
1954
1955
        input_ids: Optional[torch.LongTensor] = None,
        attention_mask: Optional[torch.FloatTensor] = None,
        head_mask: Optional[torch.FloatTensor] = None,
        inputs_embeds: Optional[torch.FloatTensor] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
    ) -> Union[Tuple[torch.FloatTensor], BaseModelOutput]:
1956
1957
1958
        r"""
        Returns:

1959
        Example:
1960

1961
        ```python
Sylvain Gugger's avatar
Sylvain Gugger committed
1962
        >>> from transformers import AutoTokenizer, T5EncoderModel
Sylvain Gugger's avatar
Sylvain Gugger committed
1963

1964
1965
        >>> tokenizer = AutoTokenizer.from_pretrained("google-t5/t5-small")
        >>> model = T5EncoderModel.from_pretrained("google-t5/t5-small")
Sylvain Gugger's avatar
Sylvain Gugger committed
1966
1967
        >>> input_ids = tokenizer(
        ...     "Studies have been shown that owning a dog is good for you", return_tensors="pt"
1968
        ... ).input_ids  # Batch size 1
1969
1970
1971
        >>> outputs = model(input_ids=input_ids)
        >>> last_hidden_states = outputs.last_hidden_state
        ```"""
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        encoder_outputs = self.encoder(
            input_ids=input_ids,
            attention_mask=attention_mask,
            inputs_embeds=inputs_embeds,
            head_mask=head_mask,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )

        return encoder_outputs
1985
1986


1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
@add_start_docstrings(
    """
    T5 model with a sequence classification/head on top (a linear layer on top of the pooled output) e.g. for GLUE
    tasks.
    """,
    T5_START_DOCSTRING,
)
class T5ForSequenceClassification(T5PreTrainedModel):
    _keys_to_ignore_on_load_unexpected = ["decoder.block.0.layer.1.EncDecAttention.relative_attention_bias.weight"]
    _tied_weights_keys = ["encoder.embed_tokens.weight", "decoder.embed_tokens.weight"]

    def __init__(self, config: T5Config):
        super().__init__(config)
        self.transformer = T5Model(config)
        self.classification_head = T5ClassificationHead(config)

        # Initialize weights and apply final processing
        self.post_init()

        self.model_parallel = False

    @add_start_docstrings_to_model_forward(T5_INPUTS_DOCSTRING)
    @replace_return_docstrings(output_type=Seq2SeqSequenceClassifierOutput, config_class=_CONFIG_FOR_DOC)
    def forward(
        self,
        input_ids: torch.LongTensor = None,
        attention_mask: Optional[torch.Tensor] = None,
        decoder_input_ids: Optional[torch.LongTensor] = None,
        decoder_attention_mask: Optional[torch.LongTensor] = None,
        head_mask: Optional[torch.Tensor] = None,
        decoder_head_mask: Optional[torch.Tensor] = None,
        cross_attn_head_mask: Optional[torch.Tensor] = None,
        encoder_outputs: Optional[List[torch.FloatTensor]] = None,
        inputs_embeds: Optional[torch.FloatTensor] = None,
        decoder_inputs_embeds: Optional[torch.FloatTensor] = None,
        labels: Optional[torch.LongTensor] = None,
        use_cache: Optional[bool] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
    ) -> Union[Tuple, Seq2SeqSequenceClassifierOutput]:
        r"""
        labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
            Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
            config.num_labels - 1]`. If `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
        Returns:
        """
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict
        if labels is not None:
            use_cache = False

        if input_ids is None and inputs_embeds is not None:
            raise NotImplementedError(
                f"Passing input embeddings is currently not supported for {self.__class__.__name__}"
            )

        # Copied from models.bart.modeling_bart.BartModel.forward different to other models, T5 automatically creates
        # decoder_input_ids from input_ids if no decoder_input_ids are provided
        if decoder_input_ids is None and decoder_inputs_embeds is None:
            if input_ids is None:
                raise ValueError(
                    "If no `decoder_input_ids` or `decoder_inputs_embeds` are "
                    "passed, `input_ids` cannot be `None`. Please pass either "
                    "`input_ids` or `decoder_input_ids` or `decoder_inputs_embeds`."
                )
            decoder_input_ids = self._shift_right(input_ids)

        outputs = self.transformer(
            input_ids,
            attention_mask=attention_mask,
            decoder_input_ids=decoder_input_ids,
            decoder_attention_mask=decoder_attention_mask,
            head_mask=head_mask,
            decoder_head_mask=decoder_head_mask,
            cross_attn_head_mask=cross_attn_head_mask,
            encoder_outputs=encoder_outputs,
            inputs_embeds=inputs_embeds,
            decoder_inputs_embeds=decoder_inputs_embeds,
            use_cache=use_cache,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )
        sequence_output = outputs[0]

        eos_mask = input_ids.eq(self.config.eos_token_id).to(sequence_output.device)

        if len(torch.unique_consecutive(eos_mask.sum(1))) > 1:
            raise ValueError("All examples must have the same number of <eos> tokens.")
        batch_size, _, hidden_size = sequence_output.shape
        sentence_representation = sequence_output[eos_mask, :].view(batch_size, -1, hidden_size)[:, -1, :]
        logits = self.classification_head(sentence_representation)

        loss = None
        if labels is not None:
            labels = labels.to(logits.device)
            if self.config.problem_type is None:
                if self.config.num_labels == 1:
                    self.config.problem_type = "regression"
                elif self.config.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
                    self.config.problem_type = "single_label_classification"
                else:
                    self.config.problem_type = "multi_label_classification"

            if self.config.problem_type == "regression":
                loss_fct = MSELoss()
                if self.config.num_labels == 1:
                    loss = loss_fct(logits.squeeze(), labels.squeeze())
                else:
                    loss = loss_fct(logits, labels)
            elif self.config.problem_type == "single_label_classification":
                loss_fct = CrossEntropyLoss()
                loss = loss_fct(logits.view(-1, self.config.num_labels), labels.view(-1))
            elif self.config.problem_type == "multi_label_classification":
                loss_fct = BCEWithLogitsLoss()
                loss = loss_fct(logits, labels)
        if not return_dict:
            output = (logits,) + outputs[1:]
            return ((loss,) + output) if loss is not None else output

        return Seq2SeqSequenceClassifierOutput(
            loss=loss,
            logits=logits,
            past_key_values=outputs.past_key_values,
            decoder_hidden_states=outputs.decoder_hidden_states,
            decoder_attentions=outputs.decoder_attentions,
            cross_attentions=outputs.cross_attentions,
            encoder_last_hidden_state=outputs.encoder_last_hidden_state,
            encoder_hidden_states=outputs.encoder_hidden_states,
            encoder_attentions=outputs.encoder_attentions,
        )


2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
@add_start_docstrings(
    """
    T5 Encoder Model with a token classification head on top (a linear layer on top of the hidden-states output)
    e.g. for Named-Entity-Recognition (NER) tasks.
    """,
    T5_START_DOCSTRING,
)
class T5ForTokenClassification(T5PreTrainedModel):
    _tied_weights_keys = ["transformer.encoder.embed_tokens.weight"]

    def __init__(self, config: T5Config):
        super().__init__(config)
        self.num_labels = config.num_labels

        self.transformer = T5EncoderModel(config)
        self.dropout = nn.Dropout(config.classifier_dropout)
        self.classifier = nn.Linear(config.hidden_size, config.num_labels)

        # Initialize weights and apply final processing
        self.post_init()

    @add_start_docstrings_to_model_forward(T5_INPUTS_DOCSTRING)
    @replace_return_docstrings(output_type=TokenClassifierOutput, config_class=_CONFIG_FOR_DOC)
    def forward(
        self,
        input_ids: Optional[torch.Tensor] = None,
        attention_mask: Optional[torch.Tensor] = None,
        head_mask: Optional[torch.Tensor] = None,
        inputs_embeds: Optional[torch.Tensor] = None,
        labels: Optional[torch.Tensor] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
    ) -> Union[Tuple[torch.Tensor], TokenClassifierOutput]:
        r"""
        labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
            Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`.
        Returns:
        """
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        outputs = self.transformer(
            input_ids,
            attention_mask=attention_mask,
            head_mask=head_mask,
            inputs_embeds=inputs_embeds,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )

        hidden_states = outputs[0]
        hidden_states = self.dropout(hidden_states)
        logits = self.classifier(hidden_states)

        loss = None
        if labels is not None:
            loss_fct = CrossEntropyLoss()
            loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))

        if not return_dict:
            output = (logits, outputs[2:-1])
            return ((loss,) + output) if loss is not None else output

        return TokenClassifierOutput(
            loss=loss,
            logits=logits,
            hidden_states=outputs.hidden_states,
            attentions=outputs.attentions,
        )


2192
2193
2194
2195
2196
2197
2198
2199
@add_start_docstrings(
    """
    T5 Model with a span classification head on top for extractive question-answering tasks like SQuAD (linear layers
    on top of the hidden-states output to compute `span start logits` and `span end logits`).
    """,
    T5_START_DOCSTRING,
)
class T5ForQuestionAnswering(T5PreTrainedModel):
Sylvain Gugger's avatar
Sylvain Gugger committed
2200
    _keys_to_ignore_on_load_unexpected = ["decoder.block.0.layer.1.EncDecAttention.relative_attention_bias.weight"]
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
    _tied_weights_keys = ["encoder.embed_tokens.weight", "decoder.embed_tokens.weight"]

    def __init__(self, config: T5Config):
        super().__init__(config)
        self.model_dim = config.d_model

        self.shared = nn.Embedding(config.vocab_size, config.d_model)

        encoder_config = copy.deepcopy(config)
        encoder_config.is_decoder = False
        encoder_config.use_cache = False
        encoder_config.is_encoder_decoder = False
        self.encoder = T5Stack(encoder_config, self.shared)

        decoder_config = copy.deepcopy(config)
        decoder_config.is_decoder = True
        decoder_config.is_encoder_decoder = False
        decoder_config.num_layers = config.num_decoder_layers
        self.decoder = T5Stack(decoder_config, self.shared)

        self.num_labels = config.num_labels
        self.qa_outputs = nn.Linear(config.hidden_size, config.num_labels)

        # Initialize weights and apply final processing
        self.post_init()

2227
2228
        self.model_parallel = False

2229
2230
2231
2232
2233
2234
2235
2236
    def get_input_embeddings(self):
        return self.shared

    def set_input_embeddings(self, new_embeddings):
        self.shared = new_embeddings
        self.encoder.set_input_embeddings(new_embeddings)
        self.decoder.set_input_embeddings(new_embeddings)

2237
2238
2239
2240
2241
    def _tie_weights(self):
        if self.config.tie_word_embeddings:
            self._tie_or_clone_weights(self.encoder.embed_tokens, self.shared)
            self._tie_or_clone_weights(self.decoder.embed_tokens, self.shared)

2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
    def get_encoder(self):
        return self.encoder

    def get_decoder(self):
        return self.decoder

    @add_start_docstrings_to_model_forward(T5_INPUTS_DOCSTRING)
    @replace_return_docstrings(output_type=Seq2SeqQuestionAnsweringModelOutput, config_class=_CONFIG_FOR_DOC)
    def forward(
        self,
        input_ids: Optional[torch.LongTensor] = None,
        attention_mask: Optional[torch.FloatTensor] = None,
        decoder_input_ids: Optional[torch.LongTensor] = None,
        decoder_attention_mask: Optional[torch.BoolTensor] = None,
        head_mask: Optional[torch.FloatTensor] = None,
        decoder_head_mask: Optional[torch.FloatTensor] = None,
        cross_attn_head_mask: Optional[torch.Tensor] = None,
        encoder_outputs: Optional[Tuple[Tuple[torch.Tensor]]] = None,
        start_positions: Optional[torch.LongTensor] = None,
        end_positions: Optional[torch.LongTensor] = None,
        inputs_embeds: Optional[torch.FloatTensor] = None,
        decoder_inputs_embeds: Optional[torch.FloatTensor] = None,
        use_cache: Optional[bool] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
    ) -> Union[Tuple[torch.FloatTensor], Seq2SeqQuestionAnsweringModelOutput]:
        r"""
        start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
            Labels for position (index) of the start of the labelled span for computing the token classification loss.
            Positions are clamped to the length of the sequence (*sequence_length*). Position outside of the sequence
            are not taken into account for computing the loss.
        end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
            Labels for position (index) of the end of the labelled span for computing the token classification loss.
            Positions are clamped to the length of the sequence (*sequence_length*). Position outside of the sequence
            are not taken into account for computing the loss.
        Returns:
        """
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict
        use_cache = use_cache if use_cache is not None else self.config.use_cache
        if start_positions is not None and end_positions is not None:
            use_cache = False

        # Copied from models.bart.modeling_bart.BartModel.forward
        #   different to other models, T5 automatically creates decoder_input_ids from
        #   input_ids if no decoder_input_ids are provided
        if decoder_input_ids is None and decoder_inputs_embeds is None:
            if input_ids is None:
                raise ValueError(
                    "If no `decoder_input_ids` or `decoder_inputs_embeds` are "
                    "passed, `input_ids` cannot be `None`. Please pass either "
                    "`input_ids` or `decoder_input_ids` or `decoder_inputs_embeds`."
                )
            decoder_input_ids = self._shift_right(input_ids)

        use_cache = use_cache if use_cache is not None else self.config.use_cache
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        # FutureWarning: head_mask was separated into two input args - head_mask, decoder_head_mask
        if head_mask is not None and decoder_head_mask is None:
            if self.config.num_layers == self.config.num_decoder_layers:
                warnings.warn(__HEAD_MASK_WARNING_MSG, FutureWarning)
                decoder_head_mask = head_mask

        # Encode if needed (training, first prediction pass)
        if encoder_outputs is None:
            encoder_outputs = self.encoder(
                input_ids=input_ids,
                attention_mask=attention_mask,
                inputs_embeds=inputs_embeds,
                head_mask=head_mask,
                output_attentions=output_attentions,
                output_hidden_states=output_hidden_states,
                return_dict=return_dict,
            )
        elif return_dict and not isinstance(encoder_outputs, BaseModelOutput):
            encoder_outputs = BaseModelOutput(
                last_hidden_state=encoder_outputs[0],
                hidden_states=encoder_outputs[1] if len(encoder_outputs) > 1 else None,
                attentions=encoder_outputs[2] if len(encoder_outputs) > 2 else None,
            )

        hidden_states = encoder_outputs[0]

        # Decode
        decoder_outputs = self.decoder(
            input_ids=decoder_input_ids,
            attention_mask=decoder_attention_mask,
            inputs_embeds=decoder_inputs_embeds,
            past_key_values=None,
            encoder_hidden_states=hidden_states,
            encoder_attention_mask=attention_mask,
            head_mask=decoder_head_mask,
            cross_attn_head_mask=cross_attn_head_mask,
            use_cache=use_cache,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )

        sequence_output = decoder_outputs[0]

        logits = self.qa_outputs(sequence_output)
        start_logits, end_logits = logits.split(1, dim=-1)
        start_logits = start_logits.squeeze(-1).contiguous()
        end_logits = end_logits.squeeze(-1).contiguous()

        total_loss = None
        if start_positions is not None and end_positions is not None:
            # If we are on multi-GPU, split add a dimension
            if len(start_positions.size()) > 1:
                start_positions = start_positions.squeeze(-1).to(start_logits.device)
            if len(end_positions.size()) > 1:
                end_positions = end_positions.squeeze(-1).to(end_logits.device)
            # sometimes the start/end positions are outside our model inputs, we ignore these terms
            ignored_index = start_logits.size(1)
            start_positions = start_positions.clamp(0, ignored_index)
            end_positions = end_positions.clamp(0, ignored_index)

            loss_fct = CrossEntropyLoss(ignore_index=ignored_index)
            start_loss = loss_fct(start_logits, start_positions)
            end_loss = loss_fct(end_logits, end_positions)
            total_loss = (start_loss + end_loss) / 2

        if not return_dict:
            output = (start_logits, end_logits) + decoder_outputs[1:] + encoder_outputs
            return ((total_loss,) + output) if total_loss is not None else output

        return Seq2SeqQuestionAnsweringModelOutput(
            loss=total_loss,
            start_logits=start_logits,
            end_logits=end_logits,
            past_key_values=decoder_outputs.past_key_values,
            decoder_hidden_states=decoder_outputs.hidden_states,
            decoder_attentions=decoder_outputs.attentions,
            cross_attentions=decoder_outputs.cross_attentions,
            encoder_last_hidden_state=encoder_outputs.last_hidden_state,
            encoder_hidden_states=encoder_outputs.hidden_states,
            encoder_attentions=encoder_outputs.attentions,
        )