"...git@developer.sourcefind.cn:renzhc/diffusers_dcu.git" did not exist on "d7280b74361695e38e04688b097bf1ab78e18bc3"
Commit b0f7db73 authored by Aymeric Augustin's avatar Aymeric Augustin
Browse files

Fix E741 flake8 warning (x14).

parent ea89bec1
...@@ -76,7 +76,7 @@ class SwagExample(object): ...@@ -76,7 +76,7 @@ class SwagExample(object):
return self.__repr__() return self.__repr__()
def __repr__(self): def __repr__(self):
l = [ attributes = [
"swag_id: {}".format(self.swag_id), "swag_id: {}".format(self.swag_id),
"context_sentence: {}".format(self.context_sentence), "context_sentence: {}".format(self.context_sentence),
"start_ending: {}".format(self.start_ending), "start_ending: {}".format(self.start_ending),
...@@ -87,9 +87,9 @@ class SwagExample(object): ...@@ -87,9 +87,9 @@ class SwagExample(object):
] ]
if self.label is not None: if self.label is not None:
l.append("label: {}".format(self.label)) attributes.append("label: {}".format(self.label))
return ", ".join(l) return ", ".join(attributes)
class InputFeatures(object): class InputFeatures(object):
......
...@@ -89,25 +89,25 @@ def load_tf_weights_in_xxx(model, config, tf_checkpoint_path): ...@@ -89,25 +89,25 @@ def load_tf_weights_in_xxx(model, config, tf_checkpoint_path):
pointer = model pointer = model
for m_name in name: for m_name in name:
if re.fullmatch(r"[A-Za-z]+_\d+", m_name): if re.fullmatch(r"[A-Za-z]+_\d+", m_name):
l = re.split(r"_(\d+)", m_name) scope_names = re.split(r"_(\d+)", m_name)
else: else:
l = [m_name] scope_names = [m_name]
if l[0] == "kernel" or l[0] == "gamma": if scope_names[0] == "kernel" or scope_names[0] == "gamma":
pointer = getattr(pointer, "weight") pointer = getattr(pointer, "weight")
elif l[0] == "output_bias" or l[0] == "beta": elif scope_names[0] == "output_bias" or scope_names[0] == "beta":
pointer = getattr(pointer, "bias") pointer = getattr(pointer, "bias")
elif l[0] == "output_weights": elif scope_names[0] == "output_weights":
pointer = getattr(pointer, "weight") pointer = getattr(pointer, "weight")
elif l[0] == "squad": elif scope_names[0] == "squad":
pointer = getattr(pointer, "classifier") pointer = getattr(pointer, "classifier")
else: else:
try: try:
pointer = getattr(pointer, l[0]) pointer = getattr(pointer, scope_names[0])
except AttributeError: except AttributeError:
logger.info("Skipping {}".format("/".join(name))) logger.info("Skipping {}".format("/".join(name)))
continue continue
if len(l) >= 2: if len(scope_names) >= 2:
num = int(l[1]) num = int(scope_names[1])
pointer = pointer[num] pointer = pointer[num]
if m_name[-11:] == "_embeddings": if m_name[-11:] == "_embeddings":
pointer = getattr(pointer, "weight") pointer = getattr(pointer, "weight")
......
...@@ -124,26 +124,26 @@ def load_tf_weights_in_albert(model, config, tf_checkpoint_path): ...@@ -124,26 +124,26 @@ def load_tf_weights_in_albert(model, config, tf_checkpoint_path):
pointer = model pointer = model
for m_name in name: for m_name in name:
if re.fullmatch(r"[A-Za-z]+_\d+", m_name): if re.fullmatch(r"[A-Za-z]+_\d+", m_name):
l = re.split(r"_(\d+)", m_name) scope_names = re.split(r"_(\d+)", m_name)
else: else:
l = [m_name] scope_names = [m_name]
if l[0] == "kernel" or l[0] == "gamma": if scope_names[0] == "kernel" or scope_names[0] == "gamma":
pointer = getattr(pointer, "weight") pointer = getattr(pointer, "weight")
elif l[0] == "output_bias" or l[0] == "beta": elif scope_names[0] == "output_bias" or scope_names[0] == "beta":
pointer = getattr(pointer, "bias") pointer = getattr(pointer, "bias")
elif l[0] == "output_weights": elif scope_names[0] == "output_weights":
pointer = getattr(pointer, "weight") pointer = getattr(pointer, "weight")
elif l[0] == "squad": elif scope_names[0] == "squad":
pointer = getattr(pointer, "classifier") pointer = getattr(pointer, "classifier")
else: else:
try: try:
pointer = getattr(pointer, l[0]) pointer = getattr(pointer, scope_names[0])
except AttributeError: except AttributeError:
logger.info("Skipping {}".format("/".join(name))) logger.info("Skipping {}".format("/".join(name)))
continue continue
if len(l) >= 2: if len(scope_names) >= 2:
num = int(l[1]) num = int(scope_names[1])
pointer = pointer[num] pointer = pointer[num]
if m_name[-11:] == "_embeddings": if m_name[-11:] == "_embeddings":
......
...@@ -93,25 +93,25 @@ def load_tf_weights_in_bert(model, config, tf_checkpoint_path): ...@@ -93,25 +93,25 @@ def load_tf_weights_in_bert(model, config, tf_checkpoint_path):
pointer = model pointer = model
for m_name in name: for m_name in name:
if re.fullmatch(r"[A-Za-z]+_\d+", m_name): if re.fullmatch(r"[A-Za-z]+_\d+", m_name):
l = re.split(r"_(\d+)", m_name) scope_names = re.split(r"_(\d+)", m_name)
else: else:
l = [m_name] scope_names = [m_name]
if l[0] == "kernel" or l[0] == "gamma": if scope_names[0] == "kernel" or scope_names[0] == "gamma":
pointer = getattr(pointer, "weight") pointer = getattr(pointer, "weight")
elif l[0] == "output_bias" or l[0] == "beta": elif scope_names[0] == "output_bias" or scope_names[0] == "beta":
pointer = getattr(pointer, "bias") pointer = getattr(pointer, "bias")
elif l[0] == "output_weights": elif scope_names[0] == "output_weights":
pointer = getattr(pointer, "weight") pointer = getattr(pointer, "weight")
elif l[0] == "squad": elif scope_names[0] == "squad":
pointer = getattr(pointer, "classifier") pointer = getattr(pointer, "classifier")
else: else:
try: try:
pointer = getattr(pointer, l[0]) pointer = getattr(pointer, scope_names[0])
except AttributeError: except AttributeError:
logger.info("Skipping {}".format("/".join(name))) logger.info("Skipping {}".format("/".join(name)))
continue continue
if len(l) >= 2: if len(scope_names) >= 2:
num = int(l[1]) num = int(scope_names[1])
pointer = pointer[num] pointer = pointer[num]
if m_name[-11:] == "_embeddings": if m_name[-11:] == "_embeddings":
pointer = getattr(pointer, "weight") pointer = getattr(pointer, "weight")
......
...@@ -77,20 +77,20 @@ def load_tf_weights_in_gpt2(model, config, gpt2_checkpoint_path): ...@@ -77,20 +77,20 @@ def load_tf_weights_in_gpt2(model, config, gpt2_checkpoint_path):
pointer = model pointer = model
for m_name in name: for m_name in name:
if re.fullmatch(r"[A-Za-z]+\d+", m_name): if re.fullmatch(r"[A-Za-z]+\d+", m_name):
l = re.split(r"(\d+)", m_name) scope_names = re.split(r"(\d+)", m_name)
else: else:
l = [m_name] scope_names = [m_name]
if l[0] == "w" or l[0] == "g": if scope_names[0] == "w" or scope_names[0] == "g":
pointer = getattr(pointer, "weight") pointer = getattr(pointer, "weight")
elif l[0] == "b": elif scope_names[0] == "b":
pointer = getattr(pointer, "bias") pointer = getattr(pointer, "bias")
elif l[0] == "wpe" or l[0] == "wte": elif scope_names[0] == "wpe" or scope_names[0] == "wte":
pointer = getattr(pointer, l[0]) pointer = getattr(pointer, scope_names[0])
pointer = getattr(pointer, "weight") pointer = getattr(pointer, "weight")
else: else:
pointer = getattr(pointer, l[0]) pointer = getattr(pointer, scope_names[0])
if len(l) >= 2: if len(scope_names) >= 2:
num = int(l[1]) num = int(scope_names[1])
pointer = pointer[num] pointer = pointer[num]
try: try:
assert pointer.shape == array.shape assert pointer.shape == array.shape
......
...@@ -90,19 +90,19 @@ def load_tf_weights_in_openai_gpt(model, config, openai_checkpoint_folder_path): ...@@ -90,19 +90,19 @@ def load_tf_weights_in_openai_gpt(model, config, openai_checkpoint_folder_path):
pointer = model pointer = model
for m_name in name: for m_name in name:
if re.fullmatch(r"[A-Za-z]+\d+", m_name): if re.fullmatch(r"[A-Za-z]+\d+", m_name):
l = re.split(r"(\d+)", m_name) scope_names = re.split(r"(\d+)", m_name)
else: else:
l = [m_name] scope_names = [m_name]
if l[0] == "g": if scope_names[0] == "g":
pointer = getattr(pointer, "weight") pointer = getattr(pointer, "weight")
elif l[0] == "b": elif scope_names[0] == "b":
pointer = getattr(pointer, "bias") pointer = getattr(pointer, "bias")
elif l[0] == "w": elif scope_names[0] == "w":
pointer = getattr(pointer, "weight") pointer = getattr(pointer, "weight")
else: else:
pointer = getattr(pointer, l[0]) pointer = getattr(pointer, scope_names[0])
if len(l) >= 2: if len(scope_names) >= 2:
num = int(l[1]) num = int(scope_names[1])
pointer = pointer[num] pointer = pointer[num]
try: try:
assert pointer.shape == array.shape assert pointer.shape == array.shape
......
...@@ -95,29 +95,29 @@ def load_tf_weights_in_t5(model, config, tf_checkpoint_path): ...@@ -95,29 +95,29 @@ def load_tf_weights_in_t5(model, config, tf_checkpoint_path):
array = tf_weights[txt_name] array = tf_weights[txt_name]
for m_name in name: for m_name in name:
if re.fullmatch(r"[A-Za-z]+_\d+", m_name): if re.fullmatch(r"[A-Za-z]+_\d+", m_name):
l = re.split(r"_(\d+)", m_name) scope_names = re.split(r"_(\d+)", m_name)
else: else:
l = [m_name] scope_names = [m_name]
if l[0] in ["kernel", "scale", "embedding"]: if scope_names[0] in ["kernel", "scale", "embedding"]:
pointer = getattr(pointer, "weight") pointer = getattr(pointer, "weight")
# elif l[0] == 'scale': # elif scope_names[0] == 'scale':
# pointer = getattr(pointer, 'weight') # pointer = getattr(pointer, 'weight')
# elif l[0] == 'output_bias' or l[0] == 'beta': # elif scope_names[0] == 'output_bias' or scope_names[0] == 'beta':
# pointer = getattr(pointer, 'bias') # pointer = getattr(pointer, 'bias')
# elif l[0] == 'squad': # elif scope_names[0] == 'squad':
# pointer = getattr(pointer, 'classifier') # pointer = getattr(pointer, 'classifier')
else: else:
try: try:
pointer = getattr(pointer, l[0]) pointer = getattr(pointer, scope_names[0])
except AttributeError: except AttributeError:
logger.info("Skipping {}".format("/".join(name))) logger.info("Skipping {}".format("/".join(name)))
continue continue
if len(l) >= 2: if len(scope_names) >= 2:
num = int(l[1]) num = int(scope_names[1])
pointer = pointer[num] pointer = pointer[num]
if l[0] not in ["kernel", "scale", "embedding"]: if scope_names[0] not in ["kernel", "scale", "embedding"]:
pointer = getattr(pointer, "weight") pointer = getattr(pointer, "weight")
if l[0] != "embedding": if scope_names[0] != "embedding":
logger.info("Transposing numpy weight of shape {} for {}".format(array.shape, name)) logger.info("Transposing numpy weight of shape {} for {}".format(array.shape, name))
array = np.transpose(array) array = np.transpose(array)
try: try:
......
...@@ -160,8 +160,8 @@ class T5Tokenizer(PreTrainedTokenizer): ...@@ -160,8 +160,8 @@ class T5Tokenizer(PreTrainedTokenizer):
def _convert_token_to_id(self, token): def _convert_token_to_id(self, token):
""" Converts a token (str/unicode) in an id using the vocab. """ """ Converts a token (str/unicode) in an id using the vocab. """
if token.startswith("<extra_id_"): if token.startswith("<extra_id_"):
l = re.match(r"<extra_id_(\d+)>", token) match = re.match(r"<extra_id_(\d+)>", token)
num = int(l.group(1)) num = int(match.group(1))
return self.vocab_size - num - 1 return self.vocab_size - num - 1
return self.sp_model.piece_to_id(token) return self.sp_model.piece_to_id(token)
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment