test_modeling_distilbert.py 10.9 KB
Newer Older
LysandreJik's avatar
LysandreJik committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Aymeric Augustin's avatar
Aymeric Augustin committed
15

LysandreJik's avatar
LysandreJik committed
16

17
18
import unittest

19
from transformers import is_torch_available
20
from transformers.testing_utils import require_torch, slow, torch_device
thomwolf's avatar
thomwolf committed
21

22
from .test_configuration_common import ConfigTester
23
from .test_modeling_common import ModelTesterMixin, ids_tensor
Aymeric Augustin's avatar
Aymeric Augustin committed
24
25


26
if is_torch_available():
27
28
29
30
    from transformers import (
        DistilBertConfig,
        DistilBertModel,
        DistilBertForMaskedLM,
31
        DistilBertForMultipleChoice,
32
33
34
        DistilBertForTokenClassification,
        DistilBertForQuestionAnswering,
        DistilBertForSequenceClassification,
35
        DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST,
36
37
    )

thomwolf's avatar
thomwolf committed
38
    class DistilBertModelTester(object):
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
        def __init__(
            self,
            parent,
            batch_size=13,
            seq_length=7,
            is_training=True,
            use_input_mask=True,
            use_token_type_ids=False,
            use_labels=True,
            vocab_size=99,
            hidden_size=32,
            num_hidden_layers=5,
            num_attention_heads=4,
            intermediate_size=37,
            hidden_act="gelu",
            hidden_dropout_prob=0.1,
            attention_probs_dropout_prob=0.1,
            max_position_embeddings=512,
            type_vocab_size=16,
            type_sequence_label_size=2,
            initializer_range=0.02,
            num_labels=3,
            num_choices=4,
            scope=None,
        ):
LysandreJik's avatar
LysandreJik committed
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
            self.parent = parent
            self.batch_size = batch_size
            self.seq_length = seq_length
            self.is_training = is_training
            self.use_input_mask = use_input_mask
            self.use_token_type_ids = use_token_type_ids
            self.use_labels = use_labels
            self.vocab_size = vocab_size
            self.hidden_size = hidden_size
            self.num_hidden_layers = num_hidden_layers
            self.num_attention_heads = num_attention_heads
            self.intermediate_size = intermediate_size
            self.hidden_act = hidden_act
            self.hidden_dropout_prob = hidden_dropout_prob
            self.attention_probs_dropout_prob = attention_probs_dropout_prob
            self.max_position_embeddings = max_position_embeddings
            self.type_vocab_size = type_vocab_size
            self.type_sequence_label_size = type_sequence_label_size
            self.initializer_range = initializer_range
            self.num_labels = num_labels
            self.num_choices = num_choices
            self.scope = scope

        def prepare_config_and_inputs(self):
            input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)

            input_mask = None
            if self.use_input_mask:
                input_mask = ids_tensor([self.batch_size, self.seq_length], vocab_size=2)

            sequence_labels = None
            token_labels = None
            choice_labels = None
            if self.use_labels:
                sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size)
                token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels)
                choice_labels = ids_tensor([self.batch_size], self.num_choices)

thomwolf's avatar
thomwolf committed
102
            config = DistilBertConfig(
thomwolf's avatar
thomwolf committed
103
                vocab_size=self.vocab_size,
LysandreJik's avatar
LysandreJik committed
104
105
106
107
108
109
110
111
                dim=self.hidden_size,
                n_layers=self.num_hidden_layers,
                n_heads=self.num_attention_heads,
                hidden_dim=self.intermediate_size,
                hidden_act=self.hidden_act,
                dropout=self.hidden_dropout_prob,
                attention_dropout=self.attention_probs_dropout_prob,
                max_position_embeddings=self.max_position_embeddings,
112
                initializer_range=self.initializer_range,
Sylvain Gugger's avatar
Sylvain Gugger committed
113
                return_dict=True,
114
            )
LysandreJik's avatar
LysandreJik committed
115
116
117
118

            return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels

        def check_loss_output(self, result):
119
            self.parent.assertListEqual(list(result["loss"].size()), [])
LysandreJik's avatar
LysandreJik committed
120

121
122
123
        def create_and_check_distilbert_model(
            self, config, input_ids, input_mask, sequence_labels, token_labels, choice_labels
        ):
thomwolf's avatar
thomwolf committed
124
            model = DistilBertModel(config=config)
125
            model.to(torch_device)
LysandreJik's avatar
LysandreJik committed
126
            model.eval()
Sylvain Gugger's avatar
Sylvain Gugger committed
127
128
            result = model(input_ids, input_mask)
            result = model(input_ids)
LysandreJik's avatar
LysandreJik committed
129
            self.parent.assertListEqual(
Sylvain Gugger's avatar
Sylvain Gugger committed
130
                list(result["last_hidden_state"].size()), [self.batch_size, self.seq_length, self.hidden_size]
131
            )
LysandreJik's avatar
LysandreJik committed
132

133
134
135
        def create_and_check_distilbert_for_masked_lm(
            self, config, input_ids, input_mask, sequence_labels, token_labels, choice_labels
        ):
thomwolf's avatar
thomwolf committed
136
            model = DistilBertForMaskedLM(config=config)
137
            model.to(torch_device)
LysandreJik's avatar
LysandreJik committed
138
            model.eval()
Sylvain Gugger's avatar
Sylvain Gugger committed
139
            result = model(input_ids, attention_mask=input_mask, labels=token_labels)
LysandreJik's avatar
LysandreJik committed
140
            self.parent.assertListEqual(
Sylvain Gugger's avatar
Sylvain Gugger committed
141
                list(result["logits"].size()), [self.batch_size, self.seq_length, self.vocab_size]
142
            )
LysandreJik's avatar
LysandreJik committed
143
144
            self.check_loss_output(result)

145
146
147
        def create_and_check_distilbert_for_question_answering(
            self, config, input_ids, input_mask, sequence_labels, token_labels, choice_labels
        ):
thomwolf's avatar
thomwolf committed
148
            model = DistilBertForQuestionAnswering(config=config)
149
            model.to(torch_device)
LysandreJik's avatar
LysandreJik committed
150
            model.eval()
Sylvain Gugger's avatar
Sylvain Gugger committed
151
            result = model(
152
153
154
155
                input_ids, attention_mask=input_mask, start_positions=sequence_labels, end_positions=sequence_labels
            )
            self.parent.assertListEqual(list(result["start_logits"].size()), [self.batch_size, self.seq_length])
            self.parent.assertListEqual(list(result["end_logits"].size()), [self.batch_size, self.seq_length])
LysandreJik's avatar
LysandreJik committed
156
157
            self.check_loss_output(result)

158
159
160
        def create_and_check_distilbert_for_sequence_classification(
            self, config, input_ids, input_mask, sequence_labels, token_labels, choice_labels
        ):
LysandreJik's avatar
LysandreJik committed
161
            config.num_labels = self.num_labels
thomwolf's avatar
thomwolf committed
162
            model = DistilBertForSequenceClassification(config)
163
            model.to(torch_device)
LysandreJik's avatar
LysandreJik committed
164
            model.eval()
Sylvain Gugger's avatar
Sylvain Gugger committed
165
            result = model(input_ids, attention_mask=input_mask, labels=sequence_labels)
166
            self.parent.assertListEqual(list(result["logits"].size()), [self.batch_size, self.num_labels])
LysandreJik's avatar
LysandreJik committed
167
168
            self.check_loss_output(result)

169
170
171
        def create_and_check_distilbert_for_token_classification(
            self, config, input_ids, input_mask, sequence_labels, token_labels, choice_labels
        ):
172
173
            config.num_labels = self.num_labels
            model = DistilBertForTokenClassification(config=config)
174
            model.to(torch_device)
175
176
            model.eval()

Sylvain Gugger's avatar
Sylvain Gugger committed
177
            result = model(input_ids, attention_mask=input_mask, labels=token_labels)
178
            self.parent.assertListEqual(
179
180
                list(result["logits"].size()), [self.batch_size, self.seq_length, self.num_labels]
            )
181
182
            self.check_loss_output(result)

183
184
185
186
187
188
189
190
191
        def create_and_check_distilbert_for_multiple_choice(
            self, config, input_ids, input_mask, sequence_labels, token_labels, choice_labels
        ):
            config.num_choices = self.num_choices
            model = DistilBertForMultipleChoice(config=config)
            model.to(torch_device)
            model.eval()
            multiple_choice_inputs_ids = input_ids.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous()
            multiple_choice_input_mask = input_mask.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous()
Sylvain Gugger's avatar
Sylvain Gugger committed
192
            result = model(
193
194
195
196
197
                multiple_choice_inputs_ids, attention_mask=multiple_choice_input_mask, labels=choice_labels,
            )
            self.parent.assertListEqual(list(result["logits"].size()), [self.batch_size, self.num_choices])
            self.check_loss_output(result)

LysandreJik's avatar
LysandreJik committed
198
199
200
        def prepare_config_and_inputs_for_common(self):
            config_and_inputs = self.prepare_config_and_inputs()
            (config, input_ids, input_mask, sequence_labels, token_labels, choice_labels) = config_and_inputs
201
            inputs_dict = {"input_ids": input_ids, "attention_mask": input_mask}
LysandreJik's avatar
LysandreJik committed
202
203
            return config, inputs_dict

204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224

@require_torch
class DistilBertModelTest(ModelTesterMixin, unittest.TestCase):

    all_model_classes = (
        (
            DistilBertModel,
            DistilBertForMaskedLM,
            DistilBertForMultipleChoice,
            DistilBertForQuestionAnswering,
            DistilBertForSequenceClassification,
            DistilBertForTokenClassification,
        )
        if is_torch_available()
        else None
    )
    test_pruning = True
    test_torchscript = True
    test_resize_embeddings = True
    test_head_masking = True

LysandreJik's avatar
LysandreJik committed
225
    def setUp(self):
226
        self.model_tester = DistilBertModelTester(self)
thomwolf's avatar
thomwolf committed
227
        self.config_tester = ConfigTester(self, config_class=DistilBertConfig, dim=37)
LysandreJik's avatar
LysandreJik committed
228
229
230
231

    def test_config(self):
        self.config_tester.run_common_tests()

thomwolf's avatar
thomwolf committed
232
    def test_distilbert_model(self):
LysandreJik's avatar
LysandreJik committed
233
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
thomwolf's avatar
thomwolf committed
234
        self.model_tester.create_and_check_distilbert_model(*config_and_inputs)
LysandreJik's avatar
LysandreJik committed
235
236
237

    def test_for_masked_lm(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
thomwolf's avatar
thomwolf committed
238
        self.model_tester.create_and_check_distilbert_for_masked_lm(*config_and_inputs)
LysandreJik's avatar
LysandreJik committed
239
240
241

    def test_for_question_answering(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
thomwolf's avatar
thomwolf committed
242
        self.model_tester.create_and_check_distilbert_for_question_answering(*config_and_inputs)
LysandreJik's avatar
LysandreJik committed
243
244
245

    def test_for_sequence_classification(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
thomwolf's avatar
thomwolf committed
246
        self.model_tester.create_and_check_distilbert_for_sequence_classification(*config_and_inputs)
LysandreJik's avatar
LysandreJik committed
247

248
249
250
251
    def test_for_token_classification(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_distilbert_for_token_classification(*config_and_inputs)

252
253
254
255
    def test_for_multiple_choice(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_distilbert_for_multiple_choice(*config_and_inputs)

256
257
258
259
260
    @slow
    def test_model_from_pretrained(self):
        for model_name in DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
            model = DistilBertModel.from_pretrained(model_name)
            self.assertIsNotNone(model)