test_modeling_distilbert.py 11.6 KB
Newer Older
LysandreJik's avatar
LysandreJik committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Aymeric Augustin's avatar
Aymeric Augustin committed
15

LysandreJik's avatar
LysandreJik committed
16

17
18
import unittest

19
from transformers import is_torch_available
20
from transformers.testing_utils import require_torch, slow, torch_device
thomwolf's avatar
thomwolf committed
21

22
from .test_configuration_common import ConfigTester
23
from .test_modeling_common import ModelTesterMixin, ids_tensor
Aymeric Augustin's avatar
Aymeric Augustin committed
24
25


26
if is_torch_available():
27
28
29
30
    from transformers import (
        DistilBertConfig,
        DistilBertModel,
        DistilBertForMaskedLM,
31
        DistilBertForMultipleChoice,
32
33
34
        DistilBertForTokenClassification,
        DistilBertForQuestionAnswering,
        DistilBertForSequenceClassification,
35
        DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST,
36
37
    )

thomwolf's avatar
thomwolf committed
38
    class DistilBertModelTester(object):
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
        def __init__(
            self,
            parent,
            batch_size=13,
            seq_length=7,
            is_training=True,
            use_input_mask=True,
            use_token_type_ids=False,
            use_labels=True,
            vocab_size=99,
            hidden_size=32,
            num_hidden_layers=5,
            num_attention_heads=4,
            intermediate_size=37,
            hidden_act="gelu",
            hidden_dropout_prob=0.1,
            attention_probs_dropout_prob=0.1,
            max_position_embeddings=512,
            type_vocab_size=16,
            type_sequence_label_size=2,
            initializer_range=0.02,
            num_labels=3,
            num_choices=4,
            scope=None,
        ):
LysandreJik's avatar
LysandreJik committed
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
            self.parent = parent
            self.batch_size = batch_size
            self.seq_length = seq_length
            self.is_training = is_training
            self.use_input_mask = use_input_mask
            self.use_token_type_ids = use_token_type_ids
            self.use_labels = use_labels
            self.vocab_size = vocab_size
            self.hidden_size = hidden_size
            self.num_hidden_layers = num_hidden_layers
            self.num_attention_heads = num_attention_heads
            self.intermediate_size = intermediate_size
            self.hidden_act = hidden_act
            self.hidden_dropout_prob = hidden_dropout_prob
            self.attention_probs_dropout_prob = attention_probs_dropout_prob
            self.max_position_embeddings = max_position_embeddings
            self.type_vocab_size = type_vocab_size
            self.type_sequence_label_size = type_sequence_label_size
            self.initializer_range = initializer_range
            self.num_labels = num_labels
            self.num_choices = num_choices
            self.scope = scope

        def prepare_config_and_inputs(self):
            input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)

            input_mask = None
            if self.use_input_mask:
                input_mask = ids_tensor([self.batch_size, self.seq_length], vocab_size=2)

            sequence_labels = None
            token_labels = None
            choice_labels = None
            if self.use_labels:
                sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size)
                token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels)
                choice_labels = ids_tensor([self.batch_size], self.num_choices)

thomwolf's avatar
thomwolf committed
102
            config = DistilBertConfig(
thomwolf's avatar
thomwolf committed
103
                vocab_size=self.vocab_size,
LysandreJik's avatar
LysandreJik committed
104
105
106
107
108
109
110
111
                dim=self.hidden_size,
                n_layers=self.num_hidden_layers,
                n_heads=self.num_attention_heads,
                hidden_dim=self.intermediate_size,
                hidden_act=self.hidden_act,
                dropout=self.hidden_dropout_prob,
                attention_dropout=self.attention_probs_dropout_prob,
                max_position_embeddings=self.max_position_embeddings,
112
113
                initializer_range=self.initializer_range,
            )
LysandreJik's avatar
LysandreJik committed
114
115
116
117

            return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels

        def check_loss_output(self, result):
118
            self.parent.assertListEqual(list(result["loss"].size()), [])
LysandreJik's avatar
LysandreJik committed
119

120
121
122
        def create_and_check_distilbert_model(
            self, config, input_ids, input_mask, sequence_labels, token_labels, choice_labels
        ):
thomwolf's avatar
thomwolf committed
123
            model = DistilBertModel(config=config)
124
            model.to(torch_device)
LysandreJik's avatar
LysandreJik committed
125
            model.eval()
126
127
            (sequence_output,) = model(input_ids, input_mask)
            (sequence_output,) = model(input_ids)
LysandreJik's avatar
LysandreJik committed
128
129
130
131
132

            result = {
                "sequence_output": sequence_output,
            }
            self.parent.assertListEqual(
133
134
                list(result["sequence_output"].size()), [self.batch_size, self.seq_length, self.hidden_size]
            )
LysandreJik's avatar
LysandreJik committed
135

136
137
138
        def create_and_check_distilbert_for_masked_lm(
            self, config, input_ids, input_mask, sequence_labels, token_labels, choice_labels
        ):
thomwolf's avatar
thomwolf committed
139
            model = DistilBertForMaskedLM(config=config)
140
            model.to(torch_device)
LysandreJik's avatar
LysandreJik committed
141
            model.eval()
142
            loss, prediction_scores = model(input_ids, attention_mask=input_mask, labels=token_labels)
LysandreJik's avatar
LysandreJik committed
143
144
145
146
147
            result = {
                "loss": loss,
                "prediction_scores": prediction_scores,
            }
            self.parent.assertListEqual(
148
149
                list(result["prediction_scores"].size()), [self.batch_size, self.seq_length, self.vocab_size]
            )
LysandreJik's avatar
LysandreJik committed
150
151
            self.check_loss_output(result)

152
153
154
        def create_and_check_distilbert_for_question_answering(
            self, config, input_ids, input_mask, sequence_labels, token_labels, choice_labels
        ):
thomwolf's avatar
thomwolf committed
155
            model = DistilBertForQuestionAnswering(config=config)
156
            model.to(torch_device)
LysandreJik's avatar
LysandreJik committed
157
            model.eval()
158
159
160
            loss, start_logits, end_logits = model(
                input_ids, attention_mask=input_mask, start_positions=sequence_labels, end_positions=sequence_labels
            )
LysandreJik's avatar
LysandreJik committed
161
162
163
164
165
            result = {
                "loss": loss,
                "start_logits": start_logits,
                "end_logits": end_logits,
            }
166
167
            self.parent.assertListEqual(list(result["start_logits"].size()), [self.batch_size, self.seq_length])
            self.parent.assertListEqual(list(result["end_logits"].size()), [self.batch_size, self.seq_length])
LysandreJik's avatar
LysandreJik committed
168
169
            self.check_loss_output(result)

170
171
172
        def create_and_check_distilbert_for_sequence_classification(
            self, config, input_ids, input_mask, sequence_labels, token_labels, choice_labels
        ):
LysandreJik's avatar
LysandreJik committed
173
            config.num_labels = self.num_labels
thomwolf's avatar
thomwolf committed
174
            model = DistilBertForSequenceClassification(config)
175
            model.to(torch_device)
LysandreJik's avatar
LysandreJik committed
176
            model.eval()
177
            loss, logits = model(input_ids, attention_mask=input_mask, labels=sequence_labels)
LysandreJik's avatar
LysandreJik committed
178
179
180
181
            result = {
                "loss": loss,
                "logits": logits,
            }
182
            self.parent.assertListEqual(list(result["logits"].size()), [self.batch_size, self.num_labels])
LysandreJik's avatar
LysandreJik committed
183
184
            self.check_loss_output(result)

185
186
187
        def create_and_check_distilbert_for_token_classification(
            self, config, input_ids, input_mask, sequence_labels, token_labels, choice_labels
        ):
188
189
            config.num_labels = self.num_labels
            model = DistilBertForTokenClassification(config=config)
190
            model.to(torch_device)
191
192
193
194
195
196
197
198
            model.eval()

            loss, logits = model(input_ids, attention_mask=input_mask, labels=token_labels)
            result = {
                "loss": loss,
                "logits": logits,
            }
            self.parent.assertListEqual(
199
200
                list(result["logits"].size()), [self.batch_size, self.seq_length, self.num_labels]
            )
201
202
            self.check_loss_output(result)

203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
        def create_and_check_distilbert_for_multiple_choice(
            self, config, input_ids, input_mask, sequence_labels, token_labels, choice_labels
        ):
            config.num_choices = self.num_choices
            model = DistilBertForMultipleChoice(config=config)
            model.to(torch_device)
            model.eval()
            multiple_choice_inputs_ids = input_ids.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous()
            multiple_choice_input_mask = input_mask.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous()
            loss, logits = model(
                multiple_choice_inputs_ids, attention_mask=multiple_choice_input_mask, labels=choice_labels,
            )
            result = {
                "loss": loss,
                "logits": logits,
            }
            self.parent.assertListEqual(list(result["logits"].size()), [self.batch_size, self.num_choices])
            self.check_loss_output(result)

LysandreJik's avatar
LysandreJik committed
222
223
224
        def prepare_config_and_inputs_for_common(self):
            config_and_inputs = self.prepare_config_and_inputs()
            (config, input_ids, input_mask, sequence_labels, token_labels, choice_labels) = config_and_inputs
225
            inputs_dict = {"input_ids": input_ids, "attention_mask": input_mask}
LysandreJik's avatar
LysandreJik committed
226
227
            return config, inputs_dict

228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248

@require_torch
class DistilBertModelTest(ModelTesterMixin, unittest.TestCase):

    all_model_classes = (
        (
            DistilBertModel,
            DistilBertForMaskedLM,
            DistilBertForMultipleChoice,
            DistilBertForQuestionAnswering,
            DistilBertForSequenceClassification,
            DistilBertForTokenClassification,
        )
        if is_torch_available()
        else None
    )
    test_pruning = True
    test_torchscript = True
    test_resize_embeddings = True
    test_head_masking = True

LysandreJik's avatar
LysandreJik committed
249
    def setUp(self):
250
        self.model_tester = DistilBertModelTester(self)
thomwolf's avatar
thomwolf committed
251
        self.config_tester = ConfigTester(self, config_class=DistilBertConfig, dim=37)
LysandreJik's avatar
LysandreJik committed
252
253
254
255

    def test_config(self):
        self.config_tester.run_common_tests()

thomwolf's avatar
thomwolf committed
256
    def test_distilbert_model(self):
LysandreJik's avatar
LysandreJik committed
257
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
thomwolf's avatar
thomwolf committed
258
        self.model_tester.create_and_check_distilbert_model(*config_and_inputs)
LysandreJik's avatar
LysandreJik committed
259
260
261

    def test_for_masked_lm(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
thomwolf's avatar
thomwolf committed
262
        self.model_tester.create_and_check_distilbert_for_masked_lm(*config_and_inputs)
LysandreJik's avatar
LysandreJik committed
263
264
265

    def test_for_question_answering(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
thomwolf's avatar
thomwolf committed
266
        self.model_tester.create_and_check_distilbert_for_question_answering(*config_and_inputs)
LysandreJik's avatar
LysandreJik committed
267
268
269

    def test_for_sequence_classification(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
thomwolf's avatar
thomwolf committed
270
        self.model_tester.create_and_check_distilbert_for_sequence_classification(*config_and_inputs)
LysandreJik's avatar
LysandreJik committed
271

272
273
274
275
    def test_for_token_classification(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_distilbert_for_token_classification(*config_and_inputs)

276
277
278
279
    def test_for_multiple_choice(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_distilbert_for_multiple_choice(*config_and_inputs)

280
281
282
283
284
    @slow
    def test_model_from_pretrained(self):
        for model_name in DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
            model = DistilBertModel.from_pretrained(model_name)
            self.assertIsNotNone(model)