test_modeling_distilbert.py 10.3 KB
Newer Older
LysandreJik's avatar
LysandreJik committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Aymeric Augustin's avatar
Aymeric Augustin committed
15
from __future__ import absolute_import, division, print_function
LysandreJik's avatar
LysandreJik committed
16

17
from transformers import is_torch_available
thomwolf's avatar
thomwolf committed
18

19
20
from .test_configuration_common import ConfigTester
from .test_modeling_common import CommonTestCases, ids_tensor
21
from .utils import require_torch, torch_device
Aymeric Augustin's avatar
Aymeric Augustin committed
22
23


24
if is_torch_available():
25
26
27
28
29
30
31
32
33
    from transformers import (
        DistilBertConfig,
        DistilBertModel,
        DistilBertForMaskedLM,
        DistilBertForTokenClassification,
        DistilBertForQuestionAnswering,
        DistilBertForSequenceClassification,
    )

LysandreJik's avatar
LysandreJik committed
34

35
@require_torch
thomwolf's avatar
thomwolf committed
36
class DistilBertModelTest(CommonTestCases.CommonModelTester):
LysandreJik's avatar
LysandreJik committed
37

38
39
40
41
42
    all_model_classes = (
        (DistilBertModel, DistilBertForMaskedLM, DistilBertForQuestionAnswering, DistilBertForSequenceClassification)
        if is_torch_available()
        else None
    )
43
44
45
46
    test_pruning = True
    test_torchscript = True
    test_resize_embeddings = True
    test_head_masking = True
LysandreJik's avatar
LysandreJik committed
47

thomwolf's avatar
thomwolf committed
48
    class DistilBertModelTester(object):
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
        def __init__(
            self,
            parent,
            batch_size=13,
            seq_length=7,
            is_training=True,
            use_input_mask=True,
            use_token_type_ids=False,
            use_labels=True,
            vocab_size=99,
            hidden_size=32,
            num_hidden_layers=5,
            num_attention_heads=4,
            intermediate_size=37,
            hidden_act="gelu",
            hidden_dropout_prob=0.1,
            attention_probs_dropout_prob=0.1,
            max_position_embeddings=512,
            type_vocab_size=16,
            type_sequence_label_size=2,
            initializer_range=0.02,
            num_labels=3,
            num_choices=4,
            scope=None,
        ):
LysandreJik's avatar
LysandreJik committed
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
            self.parent = parent
            self.batch_size = batch_size
            self.seq_length = seq_length
            self.is_training = is_training
            self.use_input_mask = use_input_mask
            self.use_token_type_ids = use_token_type_ids
            self.use_labels = use_labels
            self.vocab_size = vocab_size
            self.hidden_size = hidden_size
            self.num_hidden_layers = num_hidden_layers
            self.num_attention_heads = num_attention_heads
            self.intermediate_size = intermediate_size
            self.hidden_act = hidden_act
            self.hidden_dropout_prob = hidden_dropout_prob
            self.attention_probs_dropout_prob = attention_probs_dropout_prob
            self.max_position_embeddings = max_position_embeddings
            self.type_vocab_size = type_vocab_size
            self.type_sequence_label_size = type_sequence_label_size
            self.initializer_range = initializer_range
            self.num_labels = num_labels
            self.num_choices = num_choices
            self.scope = scope

        def prepare_config_and_inputs(self):
            input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)

            input_mask = None
            if self.use_input_mask:
                input_mask = ids_tensor([self.batch_size, self.seq_length], vocab_size=2)

            sequence_labels = None
            token_labels = None
            choice_labels = None
            if self.use_labels:
                sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size)
                token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels)
                choice_labels = ids_tensor([self.batch_size], self.num_choices)

thomwolf's avatar
thomwolf committed
112
            config = DistilBertConfig(
thomwolf's avatar
thomwolf committed
113
                vocab_size=self.vocab_size,
LysandreJik's avatar
LysandreJik committed
114
115
116
117
118
119
120
121
                dim=self.hidden_size,
                n_layers=self.num_hidden_layers,
                n_heads=self.num_attention_heads,
                hidden_dim=self.intermediate_size,
                hidden_act=self.hidden_act,
                dropout=self.hidden_dropout_prob,
                attention_dropout=self.attention_probs_dropout_prob,
                max_position_embeddings=self.max_position_embeddings,
122
123
                initializer_range=self.initializer_range,
            )
LysandreJik's avatar
LysandreJik committed
124
125
126
127

            return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels

        def check_loss_output(self, result):
128
            self.parent.assertListEqual(list(result["loss"].size()), [])
LysandreJik's avatar
LysandreJik committed
129

130
131
132
        def create_and_check_distilbert_model(
            self, config, input_ids, input_mask, sequence_labels, token_labels, choice_labels
        ):
thomwolf's avatar
thomwolf committed
133
            model = DistilBertModel(config=config)
134
            model.to(torch_device)
LysandreJik's avatar
LysandreJik committed
135
            model.eval()
136
137
            (sequence_output,) = model(input_ids, input_mask)
            (sequence_output,) = model(input_ids)
LysandreJik's avatar
LysandreJik committed
138
139
140
141
142

            result = {
                "sequence_output": sequence_output,
            }
            self.parent.assertListEqual(
143
144
                list(result["sequence_output"].size()), [self.batch_size, self.seq_length, self.hidden_size]
            )
LysandreJik's avatar
LysandreJik committed
145

146
147
148
        def create_and_check_distilbert_for_masked_lm(
            self, config, input_ids, input_mask, sequence_labels, token_labels, choice_labels
        ):
thomwolf's avatar
thomwolf committed
149
            model = DistilBertForMaskedLM(config=config)
150
            model.to(torch_device)
LysandreJik's avatar
LysandreJik committed
151
            model.eval()
152
            loss, prediction_scores = model(input_ids, attention_mask=input_mask, masked_lm_labels=token_labels)
LysandreJik's avatar
LysandreJik committed
153
154
155
156
157
            result = {
                "loss": loss,
                "prediction_scores": prediction_scores,
            }
            self.parent.assertListEqual(
158
159
                list(result["prediction_scores"].size()), [self.batch_size, self.seq_length, self.vocab_size]
            )
LysandreJik's avatar
LysandreJik committed
160
161
            self.check_loss_output(result)

162
163
164
        def create_and_check_distilbert_for_question_answering(
            self, config, input_ids, input_mask, sequence_labels, token_labels, choice_labels
        ):
thomwolf's avatar
thomwolf committed
165
            model = DistilBertForQuestionAnswering(config=config)
166
            model.to(torch_device)
LysandreJik's avatar
LysandreJik committed
167
            model.eval()
168
169
170
            loss, start_logits, end_logits = model(
                input_ids, attention_mask=input_mask, start_positions=sequence_labels, end_positions=sequence_labels
            )
LysandreJik's avatar
LysandreJik committed
171
172
173
174
175
            result = {
                "loss": loss,
                "start_logits": start_logits,
                "end_logits": end_logits,
            }
176
177
            self.parent.assertListEqual(list(result["start_logits"].size()), [self.batch_size, self.seq_length])
            self.parent.assertListEqual(list(result["end_logits"].size()), [self.batch_size, self.seq_length])
LysandreJik's avatar
LysandreJik committed
178
179
            self.check_loss_output(result)

180
181
182
        def create_and_check_distilbert_for_sequence_classification(
            self, config, input_ids, input_mask, sequence_labels, token_labels, choice_labels
        ):
LysandreJik's avatar
LysandreJik committed
183
            config.num_labels = self.num_labels
thomwolf's avatar
thomwolf committed
184
            model = DistilBertForSequenceClassification(config)
185
            model.to(torch_device)
LysandreJik's avatar
LysandreJik committed
186
            model.eval()
187
            loss, logits = model(input_ids, attention_mask=input_mask, labels=sequence_labels)
LysandreJik's avatar
LysandreJik committed
188
189
190
191
            result = {
                "loss": loss,
                "logits": logits,
            }
192
            self.parent.assertListEqual(list(result["logits"].size()), [self.batch_size, self.num_labels])
LysandreJik's avatar
LysandreJik committed
193
194
            self.check_loss_output(result)

195
196
197
        def create_and_check_distilbert_for_token_classification(
            self, config, input_ids, input_mask, sequence_labels, token_labels, choice_labels
        ):
198
199
            config.num_labels = self.num_labels
            model = DistilBertForTokenClassification(config=config)
200
            model.to(torch_device)
201
202
203
204
205
206
207
208
            model.eval()

            loss, logits = model(input_ids, attention_mask=input_mask, labels=token_labels)
            result = {
                "loss": loss,
                "logits": logits,
            }
            self.parent.assertListEqual(
209
210
                list(result["logits"].size()), [self.batch_size, self.seq_length, self.num_labels]
            )
211
212
            self.check_loss_output(result)

LysandreJik's avatar
LysandreJik committed
213
214
215
        def prepare_config_and_inputs_for_common(self):
            config_and_inputs = self.prepare_config_and_inputs()
            (config, input_ids, input_mask, sequence_labels, token_labels, choice_labels) = config_and_inputs
216
            inputs_dict = {"input_ids": input_ids, "attention_mask": input_mask}
LysandreJik's avatar
LysandreJik committed
217
218
219
            return config, inputs_dict

    def setUp(self):
thomwolf's avatar
thomwolf committed
220
221
        self.model_tester = DistilBertModelTest.DistilBertModelTester(self)
        self.config_tester = ConfigTester(self, config_class=DistilBertConfig, dim=37)
LysandreJik's avatar
LysandreJik committed
222
223
224
225

    def test_config(self):
        self.config_tester.run_common_tests()

thomwolf's avatar
thomwolf committed
226
    def test_distilbert_model(self):
LysandreJik's avatar
LysandreJik committed
227
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
thomwolf's avatar
thomwolf committed
228
        self.model_tester.create_and_check_distilbert_model(*config_and_inputs)
LysandreJik's avatar
LysandreJik committed
229
230
231

    def test_for_masked_lm(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
thomwolf's avatar
thomwolf committed
232
        self.model_tester.create_and_check_distilbert_for_masked_lm(*config_and_inputs)
LysandreJik's avatar
LysandreJik committed
233
234
235

    def test_for_question_answering(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
thomwolf's avatar
thomwolf committed
236
        self.model_tester.create_and_check_distilbert_for_question_answering(*config_and_inputs)
LysandreJik's avatar
LysandreJik committed
237
238
239

    def test_for_sequence_classification(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
thomwolf's avatar
thomwolf committed
240
        self.model_tester.create_and_check_distilbert_for_sequence_classification(*config_and_inputs)
LysandreJik's avatar
LysandreJik committed
241

242
243
244
245
    def test_for_token_classification(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_distilbert_for_token_classification(*config_and_inputs)

246
    # @slow
LysandreJik's avatar
LysandreJik committed
247
    # def test_model_from_pretrained(self):
thomwolf's avatar
thomwolf committed
248
    #     for model_name in list(DISTILBERT_PRETRAINED_MODEL_ARCHIVE_MAP.keys())[:1]:
249
    #         model = DistilBertModel.from_pretrained(model_name, cache_dir=CACHE_DIR)
LysandreJik's avatar
LysandreJik committed
250
    #         self.assertIsNotNone(model)