test_modeling_distilbert.py 11.5 KB
Newer Older
LysandreJik's avatar
LysandreJik committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Aymeric Augustin's avatar
Aymeric Augustin committed
15

LysandreJik's avatar
LysandreJik committed
16

17
18
import unittest

19
from transformers import is_torch_available
thomwolf's avatar
thomwolf committed
20

21
from .test_configuration_common import ConfigTester
22
from .test_modeling_common import ModelTesterMixin, ids_tensor
23
from .utils import require_torch, torch_device
Aymeric Augustin's avatar
Aymeric Augustin committed
24
25


26
if is_torch_available():
27
28
29
30
    from transformers import (
        DistilBertConfig,
        DistilBertModel,
        DistilBertForMaskedLM,
31
        DistilBertForMultipleChoice,
32
33
34
35
36
        DistilBertForTokenClassification,
        DistilBertForQuestionAnswering,
        DistilBertForSequenceClassification,
    )

LysandreJik's avatar
LysandreJik committed
37

38
@require_torch
39
class DistilBertModelTest(ModelTesterMixin, unittest.TestCase):
LysandreJik's avatar
LysandreJik committed
40

41
    all_model_classes = (
42
43
44
        (
            DistilBertModel,
            DistilBertForMaskedLM,
45
            DistilBertForMultipleChoice,
46
47
48
49
            DistilBertForQuestionAnswering,
            DistilBertForSequenceClassification,
            DistilBertForTokenClassification,
        )
50
51
52
        if is_torch_available()
        else None
    )
53
54
55
56
    test_pruning = True
    test_torchscript = True
    test_resize_embeddings = True
    test_head_masking = True
LysandreJik's avatar
LysandreJik committed
57

thomwolf's avatar
thomwolf committed
58
    class DistilBertModelTester(object):
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
        def __init__(
            self,
            parent,
            batch_size=13,
            seq_length=7,
            is_training=True,
            use_input_mask=True,
            use_token_type_ids=False,
            use_labels=True,
            vocab_size=99,
            hidden_size=32,
            num_hidden_layers=5,
            num_attention_heads=4,
            intermediate_size=37,
            hidden_act="gelu",
            hidden_dropout_prob=0.1,
            attention_probs_dropout_prob=0.1,
            max_position_embeddings=512,
            type_vocab_size=16,
            type_sequence_label_size=2,
            initializer_range=0.02,
            num_labels=3,
            num_choices=4,
            scope=None,
        ):
LysandreJik's avatar
LysandreJik committed
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
            self.parent = parent
            self.batch_size = batch_size
            self.seq_length = seq_length
            self.is_training = is_training
            self.use_input_mask = use_input_mask
            self.use_token_type_ids = use_token_type_ids
            self.use_labels = use_labels
            self.vocab_size = vocab_size
            self.hidden_size = hidden_size
            self.num_hidden_layers = num_hidden_layers
            self.num_attention_heads = num_attention_heads
            self.intermediate_size = intermediate_size
            self.hidden_act = hidden_act
            self.hidden_dropout_prob = hidden_dropout_prob
            self.attention_probs_dropout_prob = attention_probs_dropout_prob
            self.max_position_embeddings = max_position_embeddings
            self.type_vocab_size = type_vocab_size
            self.type_sequence_label_size = type_sequence_label_size
            self.initializer_range = initializer_range
            self.num_labels = num_labels
            self.num_choices = num_choices
            self.scope = scope

        def prepare_config_and_inputs(self):
            input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)

            input_mask = None
            if self.use_input_mask:
                input_mask = ids_tensor([self.batch_size, self.seq_length], vocab_size=2)

            sequence_labels = None
            token_labels = None
            choice_labels = None
            if self.use_labels:
                sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size)
                token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels)
                choice_labels = ids_tensor([self.batch_size], self.num_choices)

thomwolf's avatar
thomwolf committed
122
            config = DistilBertConfig(
thomwolf's avatar
thomwolf committed
123
                vocab_size=self.vocab_size,
LysandreJik's avatar
LysandreJik committed
124
125
126
127
128
129
130
131
                dim=self.hidden_size,
                n_layers=self.num_hidden_layers,
                n_heads=self.num_attention_heads,
                hidden_dim=self.intermediate_size,
                hidden_act=self.hidden_act,
                dropout=self.hidden_dropout_prob,
                attention_dropout=self.attention_probs_dropout_prob,
                max_position_embeddings=self.max_position_embeddings,
132
133
                initializer_range=self.initializer_range,
            )
LysandreJik's avatar
LysandreJik committed
134
135
136
137

            return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels

        def check_loss_output(self, result):
138
            self.parent.assertListEqual(list(result["loss"].size()), [])
LysandreJik's avatar
LysandreJik committed
139

140
141
142
        def create_and_check_distilbert_model(
            self, config, input_ids, input_mask, sequence_labels, token_labels, choice_labels
        ):
thomwolf's avatar
thomwolf committed
143
            model = DistilBertModel(config=config)
144
            model.to(torch_device)
LysandreJik's avatar
LysandreJik committed
145
            model.eval()
146
147
            (sequence_output,) = model(input_ids, input_mask)
            (sequence_output,) = model(input_ids)
LysandreJik's avatar
LysandreJik committed
148
149
150
151
152

            result = {
                "sequence_output": sequence_output,
            }
            self.parent.assertListEqual(
153
154
                list(result["sequence_output"].size()), [self.batch_size, self.seq_length, self.hidden_size]
            )
LysandreJik's avatar
LysandreJik committed
155

156
157
158
        def create_and_check_distilbert_for_masked_lm(
            self, config, input_ids, input_mask, sequence_labels, token_labels, choice_labels
        ):
thomwolf's avatar
thomwolf committed
159
            model = DistilBertForMaskedLM(config=config)
160
            model.to(torch_device)
LysandreJik's avatar
LysandreJik committed
161
            model.eval()
162
            loss, prediction_scores = model(input_ids, attention_mask=input_mask, labels=token_labels)
LysandreJik's avatar
LysandreJik committed
163
164
165
166
167
            result = {
                "loss": loss,
                "prediction_scores": prediction_scores,
            }
            self.parent.assertListEqual(
168
169
                list(result["prediction_scores"].size()), [self.batch_size, self.seq_length, self.vocab_size]
            )
LysandreJik's avatar
LysandreJik committed
170
171
            self.check_loss_output(result)

172
173
174
        def create_and_check_distilbert_for_question_answering(
            self, config, input_ids, input_mask, sequence_labels, token_labels, choice_labels
        ):
thomwolf's avatar
thomwolf committed
175
            model = DistilBertForQuestionAnswering(config=config)
176
            model.to(torch_device)
LysandreJik's avatar
LysandreJik committed
177
            model.eval()
178
179
180
            loss, start_logits, end_logits = model(
                input_ids, attention_mask=input_mask, start_positions=sequence_labels, end_positions=sequence_labels
            )
LysandreJik's avatar
LysandreJik committed
181
182
183
184
185
            result = {
                "loss": loss,
                "start_logits": start_logits,
                "end_logits": end_logits,
            }
186
187
            self.parent.assertListEqual(list(result["start_logits"].size()), [self.batch_size, self.seq_length])
            self.parent.assertListEqual(list(result["end_logits"].size()), [self.batch_size, self.seq_length])
LysandreJik's avatar
LysandreJik committed
188
189
            self.check_loss_output(result)

190
191
192
        def create_and_check_distilbert_for_sequence_classification(
            self, config, input_ids, input_mask, sequence_labels, token_labels, choice_labels
        ):
LysandreJik's avatar
LysandreJik committed
193
            config.num_labels = self.num_labels
thomwolf's avatar
thomwolf committed
194
            model = DistilBertForSequenceClassification(config)
195
            model.to(torch_device)
LysandreJik's avatar
LysandreJik committed
196
            model.eval()
197
            loss, logits = model(input_ids, attention_mask=input_mask, labels=sequence_labels)
LysandreJik's avatar
LysandreJik committed
198
199
200
201
            result = {
                "loss": loss,
                "logits": logits,
            }
202
            self.parent.assertListEqual(list(result["logits"].size()), [self.batch_size, self.num_labels])
LysandreJik's avatar
LysandreJik committed
203
204
            self.check_loss_output(result)

205
206
207
        def create_and_check_distilbert_for_token_classification(
            self, config, input_ids, input_mask, sequence_labels, token_labels, choice_labels
        ):
208
209
            config.num_labels = self.num_labels
            model = DistilBertForTokenClassification(config=config)
210
            model.to(torch_device)
211
212
213
214
215
216
217
218
            model.eval()

            loss, logits = model(input_ids, attention_mask=input_mask, labels=token_labels)
            result = {
                "loss": loss,
                "logits": logits,
            }
            self.parent.assertListEqual(
219
220
                list(result["logits"].size()), [self.batch_size, self.seq_length, self.num_labels]
            )
221
222
            self.check_loss_output(result)

223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
        def create_and_check_distilbert_for_multiple_choice(
            self, config, input_ids, input_mask, sequence_labels, token_labels, choice_labels
        ):
            config.num_choices = self.num_choices
            model = DistilBertForMultipleChoice(config=config)
            model.to(torch_device)
            model.eval()
            multiple_choice_inputs_ids = input_ids.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous()
            multiple_choice_input_mask = input_mask.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous()
            loss, logits = model(
                multiple_choice_inputs_ids, attention_mask=multiple_choice_input_mask, labels=choice_labels,
            )
            result = {
                "loss": loss,
                "logits": logits,
            }
            self.parent.assertListEqual(list(result["logits"].size()), [self.batch_size, self.num_choices])
            self.check_loss_output(result)

LysandreJik's avatar
LysandreJik committed
242
243
244
        def prepare_config_and_inputs_for_common(self):
            config_and_inputs = self.prepare_config_and_inputs()
            (config, input_ids, input_mask, sequence_labels, token_labels, choice_labels) = config_and_inputs
245
            inputs_dict = {"input_ids": input_ids, "attention_mask": input_mask}
LysandreJik's avatar
LysandreJik committed
246
247
248
            return config, inputs_dict

    def setUp(self):
thomwolf's avatar
thomwolf committed
249
250
        self.model_tester = DistilBertModelTest.DistilBertModelTester(self)
        self.config_tester = ConfigTester(self, config_class=DistilBertConfig, dim=37)
LysandreJik's avatar
LysandreJik committed
251
252
253
254

    def test_config(self):
        self.config_tester.run_common_tests()

thomwolf's avatar
thomwolf committed
255
    def test_distilbert_model(self):
LysandreJik's avatar
LysandreJik committed
256
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
thomwolf's avatar
thomwolf committed
257
        self.model_tester.create_and_check_distilbert_model(*config_and_inputs)
LysandreJik's avatar
LysandreJik committed
258
259
260

    def test_for_masked_lm(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
thomwolf's avatar
thomwolf committed
261
        self.model_tester.create_and_check_distilbert_for_masked_lm(*config_and_inputs)
LysandreJik's avatar
LysandreJik committed
262
263
264

    def test_for_question_answering(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
thomwolf's avatar
thomwolf committed
265
        self.model_tester.create_and_check_distilbert_for_question_answering(*config_and_inputs)
LysandreJik's avatar
LysandreJik committed
266
267
268

    def test_for_sequence_classification(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
thomwolf's avatar
thomwolf committed
269
        self.model_tester.create_and_check_distilbert_for_sequence_classification(*config_and_inputs)
LysandreJik's avatar
LysandreJik committed
270

271
272
273
274
    def test_for_token_classification(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_distilbert_for_token_classification(*config_and_inputs)

275
276
277
278
    def test_for_multiple_choice(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_distilbert_for_multiple_choice(*config_and_inputs)

279
    # @slow
LysandreJik's avatar
LysandreJik committed
280
    # def test_model_from_pretrained(self):
281
    #     for model_name in DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
282
    #         model = DistilBertModel.from_pretrained(model_name)
LysandreJik's avatar
LysandreJik committed
283
    #         self.assertIsNotNone(model)