tokenization_auto.py 30.2 KB
Newer Older
thomwolf's avatar
thomwolf committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# coding=utf-8
# Copyright 2018 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Sylvain Gugger's avatar
Sylvain Gugger committed
15
""" Auto Tokenizer class."""
thomwolf's avatar
thomwolf committed
16

17
import importlib
18
19
import json
import os
20
from collections import OrderedDict
21
from typing import TYPE_CHECKING, Dict, Optional, Tuple, Union
thomwolf's avatar
thomwolf committed
22

Sylvain Gugger's avatar
Sylvain Gugger committed
23
from ...configuration_utils import PretrainedConfig
24
from ...dynamic_module_utils import get_class_from_dynamic_module
25
from ...tokenization_utils import PreTrainedTokenizer
26
from ...tokenization_utils_base import TOKENIZER_CONFIG_FILE
27
from ...tokenization_utils_fast import PreTrainedTokenizerFast
28
from ...utils import get_file_from_repo, is_sentencepiece_available, is_tokenizers_available, logging
29
30
from ..encoder_decoder import EncoderDecoderConfig
from .auto_factory import _LazyAutoMapping
31
from .configuration_auto import (
32
    CONFIG_MAPPING_NAMES,
33
    AutoConfig,
34
    config_class_to_model_type,
35
    model_type_to_module_name,
36
    replace_list_option_in_docstrings,
37
)
Aymeric Augustin's avatar
Aymeric Augustin committed
38

thomwolf's avatar
thomwolf committed
39

Lysandre Debut's avatar
Lysandre Debut committed
40
logger = logging.get_logger(__name__)
thomwolf's avatar
thomwolf committed
41

42
43
44
45
46
47
48
if TYPE_CHECKING:
    # This significantly improves completion suggestion performance when
    # the transformers package is used with Microsoft's Pylance language server.
    TOKENIZER_MAPPING_NAMES: OrderedDict[str, Tuple[Optional[str], Optional[str]]] = OrderedDict()
else:
    TOKENIZER_MAPPING_NAMES = OrderedDict(
        [
Gunjan Chhablani's avatar
Gunjan Chhablani committed
49
            ("plbart", ("PLBartTokenizer" if is_sentencepiece_available() else None, None)),
50
            ("realm", ("RealmTokenizer", "RealmTokenizerFast" if is_tokenizers_available() else None)),
Gunjan Chhablani's avatar
Gunjan Chhablani committed
51
            ("fnet", ("FNetTokenizer", "FNetTokenizerFast" if is_tokenizers_available() else None)),
52
53
            ("retribert", ("RetriBertTokenizer", "RetriBertTokenizerFast" if is_tokenizers_available() else None)),
            ("roformer", ("RoFormerTokenizer", "RoFormerTokenizerFast" if is_tokenizers_available() else None)),
54
            (
55
56
57
58
59
                "t5",
                (
                    "T5Tokenizer" if is_sentencepiece_available() else None,
                    "T5TokenizerFast" if is_tokenizers_available() else None,
                ),
60
61
            ),
            (
62
63
64
65
66
                "mt5",
                (
                    "MT5Tokenizer" if is_sentencepiece_available() else None,
                    "MT5TokenizerFast" if is_tokenizers_available() else None,
                ),
67
            ),
68
69
            ("mobilebert", ("MobileBertTokenizer", "MobileBertTokenizerFast" if is_tokenizers_available() else None)),
            ("distilbert", ("DistilBertTokenizer", "DistilBertTokenizerFast" if is_tokenizers_available() else None)),
70
            (
71
72
73
74
75
                "albert",
                (
                    "AlbertTokenizer" if is_sentencepiece_available() else None,
                    "AlbertTokenizerFast" if is_tokenizers_available() else None,
                ),
76
77
            ),
            (
78
79
80
81
82
                "camembert",
                (
                    "CamembertTokenizer" if is_sentencepiece_available() else None,
                    "CamembertTokenizerFast" if is_tokenizers_available() else None,
                ),
83
84
            ),
            (
85
86
87
88
89
                "pegasus",
                (
                    "PegasusTokenizer" if is_sentencepiece_available() else None,
                    "PegasusTokenizerFast" if is_tokenizers_available() else None,
                ),
90
91
            ),
            (
92
93
94
95
96
                "mbart",
                (
                    "MBartTokenizer" if is_sentencepiece_available() else None,
                    "MBartTokenizerFast" if is_tokenizers_available() else None,
                ),
97
98
            ),
            (
99
100
101
102
103
                "xlm-roberta",
                (
                    "XLMRobertaTokenizer" if is_sentencepiece_available() else None,
                    "XLMRobertaTokenizerFast" if is_tokenizers_available() else None,
                ),
104
            ),
105
106
            ("marian", ("MarianTokenizer" if is_sentencepiece_available() else None, None)),
            ("blenderbot-small", ("BlenderbotSmallTokenizer", None)),
107
            ("blenderbot", ("BlenderbotTokenizer", "BlenderbotTokenizerFast")),
NielsRogge's avatar
NielsRogge committed
108
            ("tapex", ("TapexTokenizer", None)),
109
110
111
            ("bart", ("BartTokenizer", "BartTokenizerFast")),
            ("longformer", ("LongformerTokenizer", "LongformerTokenizerFast" if is_tokenizers_available() else None)),
            ("roberta", ("RobertaTokenizer", "RobertaTokenizerFast" if is_tokenizers_available() else None)),
112
            (
113
114
115
116
117
                "reformer",
                (
                    "ReformerTokenizer" if is_sentencepiece_available() else None,
                    "ReformerTokenizerFast" if is_tokenizers_available() else None,
                ),
118
            ),
119
120
121
122
            ("electra", ("ElectraTokenizer", "ElectraTokenizerFast" if is_tokenizers_available() else None)),
            ("funnel", ("FunnelTokenizer", "FunnelTokenizerFast" if is_tokenizers_available() else None)),
            ("lxmert", ("LxmertTokenizer", "LxmertTokenizerFast" if is_tokenizers_available() else None)),
            ("layoutlm", ("LayoutLMTokenizer", "LayoutLMTokenizerFast" if is_tokenizers_available() else None)),
123
            ("layoutlmv2", ("LayoutLMv2Tokenizer", "LayoutLMv2TokenizerFast" if is_tokenizers_available() else None)),
124
            ("layoutxlm", ("LayoutXLMTokenizer", "LayoutXLMTokenizerFast" if is_tokenizers_available() else None)),
125
            (
126
127
128
129
130
                "dpr",
                (
                    "DPRQuestionEncoderTokenizer",
                    "DPRQuestionEncoderTokenizerFast" if is_tokenizers_available() else None,
                ),
131
132
            ),
            (
133
134
                "squeezebert",
                ("SqueezeBertTokenizer", "SqueezeBertTokenizerFast" if is_tokenizers_available() else None),
135
            ),
136
137
138
139
            ("bert", ("BertTokenizer", "BertTokenizerFast" if is_tokenizers_available() else None)),
            ("openai-gpt", ("OpenAIGPTTokenizer", "OpenAIGPTTokenizerFast" if is_tokenizers_available() else None)),
            ("gpt2", ("GPT2Tokenizer", "GPT2TokenizerFast" if is_tokenizers_available() else None)),
            ("transfo-xl", ("TransfoXLTokenizer", None)),
140
            (
141
142
143
144
145
                "xlnet",
                (
                    "XLNetTokenizer" if is_sentencepiece_available() else None,
                    "XLNetTokenizerFast" if is_tokenizers_available() else None,
                ),
146
            ),
147
148
149
150
151
152
            ("flaubert", ("FlaubertTokenizer", None)),
            ("xlm", ("XLMTokenizer", None)),
            ("ctrl", ("CTRLTokenizer", None)),
            ("fsmt", ("FSMTTokenizer", None)),
            ("bert-generation", ("BertGenerationTokenizer" if is_sentencepiece_available() else None, None)),
            ("deberta", ("DebertaTokenizer", "DebertaTokenizerFast" if is_tokenizers_available() else None)),
153
154
155
156
157
158
159
            (
                "deberta-v2",
                (
                    "DebertaV2Tokenizer" if is_sentencepiece_available() else None,
                    "DebertaV2TokenizerFast" if is_tokenizers_available() else None,
                ),
            ),
160
161
162
            ("rag", ("RagTokenizer", None)),
            ("xlm-prophetnet", ("XLMProphetNetTokenizer" if is_sentencepiece_available() else None, None)),
            ("speech_to_text", ("Speech2TextTokenizer" if is_sentencepiece_available() else None, None)),
163
            ("speech_to_text_2", ("Speech2Text2Tokenizer", None)),
164
165
166
167
168
169
            ("m2m_100", ("M2M100Tokenizer" if is_sentencepiece_available() else None, None)),
            ("prophetnet", ("ProphetNetTokenizer", None)),
            ("mpnet", ("MPNetTokenizer", "MPNetTokenizerFast" if is_tokenizers_available() else None)),
            ("tapas", ("TapasTokenizer", None)),
            ("led", ("LEDTokenizer", "LEDTokenizerFast" if is_tokenizers_available() else None)),
            ("convbert", ("ConvBertTokenizer", "ConvBertTokenizerFast" if is_tokenizers_available() else None)),
170
            (
171
172
173
174
175
                "big_bird",
                (
                    "BigBirdTokenizer" if is_sentencepiece_available() else None,
                    "BigBirdTokenizerFast" if is_tokenizers_available() else None,
                ),
176
            ),
177
            ("ibert", ("RobertaTokenizer", "RobertaTokenizerFast" if is_tokenizers_available() else None)),
178
            ("qdqbert", ("BertTokenizer", "BertTokenizerFast" if is_tokenizers_available() else None)),
179
180
181
182
            ("wav2vec2", ("Wav2Vec2CTCTokenizer", None)),
            ("hubert", ("Wav2Vec2CTCTokenizer", None)),
            ("gpt_neo", ("GPT2Tokenizer", "GPT2TokenizerFast" if is_tokenizers_available() else None)),
            ("luke", ("LukeTokenizer", None)),
Ryokan RI's avatar
Ryokan RI committed
183
            ("mluke", ("MLukeTokenizer" if is_sentencepiece_available() else None, None)),
184
185
186
187
            ("bigbird_pegasus", ("PegasusTokenizer", "PegasusTokenizerFast" if is_tokenizers_available() else None)),
            ("canine", ("CanineTokenizer", None)),
            ("bertweet", ("BertweetTokenizer", None)),
            ("bert-japanese", ("BertJapaneseTokenizer", None)),
Ori Ram's avatar
Ori Ram committed
188
            ("splinter", ("SplinterTokenizer", "SplinterTokenizerFast")),
189
            ("byt5", ("ByT5Tokenizer", None)),
190
            (
191
192
193
194
195
                "cpm",
                (
                    "CpmTokenizer" if is_sentencepiece_available() else None,
                    "CpmTokenizerFast" if is_tokenizers_available() else None,
                ),
196
            ),
197
198
            ("herbert", ("HerbertTokenizer", "HerbertTokenizerFast" if is_tokenizers_available() else None)),
            ("phobert", ("PhobertTokenizer", None)),
199
            ("bartpho", ("BartphoTokenizer", None)),
200
201
202
203
204
205
206
207
208
209
210
211
212
213
            (
                "barthez",
                (
                    "BarthezTokenizer" if is_sentencepiece_available() else None,
                    "BarthezTokenizerFast" if is_tokenizers_available() else None,
                ),
            ),
            (
                "mbart50",
                (
                    "MBart50Tokenizer" if is_sentencepiece_available() else None,
                    "MBart50TokenizerFast" if is_tokenizers_available() else None,
                ),
            ),
214
215
216
217
218
219
220
            (
                "rembert",
                (
                    "RemBertTokenizer" if is_sentencepiece_available() else None,
                    "RemBertTokenizerFast" if is_tokenizers_available() else None,
                ),
            ),
221
222
223
224
225
226
227
            (
                "clip",
                (
                    "CLIPTokenizer",
                    "CLIPTokenizerFast" if is_tokenizers_available() else None,
                ),
            ),
228
            ("wav2vec2_phoneme", ("Wav2Vec2PhonemeCTCTokenizer", None)),
229
230
231
232
233
234
235
            (
                "perceiver",
                (
                    "PerceiverTokenizer",
                    None,
                ),
            ),
236
237
238
239
240
241
242
            (
                "xglm",
                (
                    "XGLMTokenizer" if is_sentencepiece_available() else None,
                    "XGLMTokenizerFast" if is_tokenizers_available() else None,
                ),
            ),
243
244
        ]
    )
245

246
247
248
TOKENIZER_MAPPING = _LazyAutoMapping(CONFIG_MAPPING_NAMES, TOKENIZER_MAPPING_NAMES)

CONFIG_TO_TYPE = {v: k for k, v in CONFIG_MAPPING_NAMES.items()}
249

250

251
def tokenizer_class_from_name(class_name: str):
252
253
254
255
256
    if class_name == "PreTrainedTokenizerFast":
        return PreTrainedTokenizerFast

    for module_name, tokenizers in TOKENIZER_MAPPING_NAMES.items():
        if class_name in tokenizers:
257
            module_name = model_type_to_module_name(module_name)
258

259
260
            module = importlib.import_module(f".{module_name}", "transformers.models")
            return getattr(module, class_name)
261

262
263
264
265
266
    for config, tokenizers in TOKENIZER_MAPPING._extra_content.items():
        for tokenizer in tokenizers:
            if getattr(tokenizer, "__name__", None) == class_name:
                return tokenizer

267
    return None
268
269


270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
def get_tokenizer_config(
    pretrained_model_name_or_path: Union[str, os.PathLike],
    cache_dir: Optional[Union[str, os.PathLike]] = None,
    force_download: bool = False,
    resume_download: bool = False,
    proxies: Optional[Dict[str, str]] = None,
    use_auth_token: Optional[Union[bool, str]] = None,
    revision: Optional[str] = None,
    local_files_only: bool = False,
    **kwargs,
):
    """
    Loads the tokenizer configuration from a pretrained model tokenizer configuration.

    Args:
285
        pretrained_model_name_or_path (`str` or `os.PathLike`):
286
287
            This can be either:

288
            - a string, the *model id* of a pretrained model configuration hosted inside a model repo on
Sylvain Gugger's avatar
Sylvain Gugger committed
289
290
              huggingface.co. Valid model ids can be located at the root-level, like `bert-base-uncased`, or namespaced
              under a user or organization name, like `dbmdz/bert-base-german-cased`.
291
292
            - a path to a *directory* containing a configuration file saved using the
              [`~PreTrainedTokenizer.save_pretrained`] method, e.g., `./my_model_directory/`.
293

294
        cache_dir (`str` or `os.PathLike`, *optional*):
295
296
            Path to a directory in which a downloaded pretrained model configuration should be cached if the standard
            cache should not be used.
297
        force_download (`bool`, *optional*, defaults to `False`):
298
299
            Whether or not to force to (re-)download the configuration files and override the cached versions if they
            exist.
300
        resume_download (`bool`, *optional*, defaults to `False`):
301
            Whether or not to delete incompletely received file. Attempts to resume the download if such a file exists.
302
        proxies (`Dict[str, str]`, *optional*):
Sylvain Gugger's avatar
Sylvain Gugger committed
303
304
            A dictionary of proxy servers to use by protocol or endpoint, e.g., `{'http': 'foo.bar:3128',
            'http://hostname': 'foo.bar:4012'}.` The proxies are used on each request.
305
        use_auth_token (`str` or *bool*, *optional*):
Sylvain Gugger's avatar
Sylvain Gugger committed
306
307
            The token to use as HTTP bearer authorization for remote files. If `True`, will use the token generated
            when running `transformers-cli login` (stored in `~/.huggingface`).
308
        revision (`str`, *optional*, defaults to `"main"`):
309
            The specific model version to use. It can be a branch name, a tag name, or a commit id, since we use a
310
            git-based system for storing models and other artifacts on huggingface.co, so `revision` can be any
311
            identifier allowed by git.
312
313
        local_files_only (`bool`, *optional*, defaults to `False`):
            If `True`, will only try to load the tokenizer configuration from local files.
314

315
    <Tip>
316

317
    Passing `use_auth_token=True` is required when you want to use a private model.
318

319
    </Tip>
320
321

    Returns:
322
        `Dict`: The configuration of the tokenizer.
323

324
    Examples:
325

326
327
328
329
330
    ```python
    # Download configuration from huggingface.co and cache.
    tokenizer_config = get_tokenizer_config("bert-base-uncased")
    # This model does not have a tokenizer config so the result will be an empty dict.
    tokenizer_config = get_tokenizer_config("xlm-roberta-base")
331

332
333
    # Save a pretrained tokenizer locally and you can reload its config
    from transformers import AutoTokenizer
334

335
336
337
338
    tokenizer = AutoTokenizer.from_pretrained("bert-base-cased")
    tokenizer.save_pretrained("tokenizer-test")
    tokenizer_config = get_tokenizer_config("tokenizer-test")
    ```"""
339
340
341
342
343
344
345
346
347
348
349
350
    resolved_config_file = get_file_from_repo(
        pretrained_model_name_or_path,
        TOKENIZER_CONFIG_FILE,
        cache_dir=cache_dir,
        force_download=force_download,
        resume_download=resume_download,
        proxies=proxies,
        use_auth_token=use_auth_token,
        revision=revision,
        local_files_only=local_files_only,
    )
    if resolved_config_file is None:
351
352
353
354
355
356
357
        logger.info("Could not locate the tokenizer configuration file, will try to use the model config instead.")
        return {}

    with open(resolved_config_file, encoding="utf-8") as reader:
        return json.load(reader)


Julien Chaumond's avatar
Julien Chaumond committed
358
class AutoTokenizer:
359
    r"""
Sylvain Gugger's avatar
Sylvain Gugger committed
360
    This is a generic tokenizer class that will be instantiated as one of the tokenizer classes of the library when
361
    created with the [`AutoTokenizer.from_pretrained`] class method.
thomwolf's avatar
thomwolf committed
362

363
    This class cannot be instantiated directly using `__init__()` (throws an error).
thomwolf's avatar
thomwolf committed
364
    """
365

thomwolf's avatar
thomwolf committed
366
    def __init__(self):
367
368
369
370
        raise EnvironmentError(
            "AutoTokenizer is designed to be instantiated "
            "using the `AutoTokenizer.from_pretrained(pretrained_model_name_or_path)` method."
        )
thomwolf's avatar
thomwolf committed
371
372

    @classmethod
373
    @replace_list_option_in_docstrings(TOKENIZER_MAPPING_NAMES)
thomwolf's avatar
thomwolf committed
374
    def from_pretrained(cls, pretrained_model_name_or_path, *inputs, **kwargs):
375
376
        r"""
        Instantiate one of the tokenizer classes of the library from a pretrained model vocabulary.
thomwolf's avatar
thomwolf committed
377

Sylvain Gugger's avatar
Sylvain Gugger committed
378
379
380
        The tokenizer class to instantiate is selected based on the `model_type` property of the config object (either
        passed as an argument or loaded from `pretrained_model_name_or_path` if possible), or when it's missing, by
        falling back to using pattern matching on `pretrained_model_name_or_path`:
381

382
        List options
thomwolf's avatar
thomwolf committed
383
384

        Params:
385
            pretrained_model_name_or_path (`str` or `os.PathLike`):
386
387
                Can be either:

388
                    - A string, the *model id* of a predefined tokenizer hosted inside a model repo on huggingface.co.
Sylvain Gugger's avatar
Sylvain Gugger committed
389
390
                      Valid model ids can be located at the root-level, like `bert-base-uncased`, or namespaced under a
                      user or organization name, like `dbmdz/bert-base-german-cased`.
391
                    - A path to a *directory* containing vocabulary files required by the tokenizer, for instance saved
Sylvain Gugger's avatar
Sylvain Gugger committed
392
                      using the [`~PreTrainedTokenizer.save_pretrained`] method, e.g., `./my_model_directory/`.
393
                    - A path or url to a single saved vocabulary file if and only if the tokenizer only requires a
394
                      single vocabulary file (like Bert or XLNet), e.g.: `./my_model_directory/vocab.txt`. (Not
Sylvain Gugger's avatar
Sylvain Gugger committed
395
                      applicable to all derived classes)
396
397
398
            inputs (additional positional arguments, *optional*):
                Will be passed along to the Tokenizer `__init__()` method.
            config ([`PretrainedConfig`], *optional*)
399
                The configuration object used to dertermine the tokenizer class to instantiate.
400
            cache_dir (`str` or `os.PathLike`, *optional*):
401
402
                Path to a directory in which a downloaded pretrained model configuration should be cached if the
                standard cache should not be used.
403
            force_download (`bool`, *optional*, defaults to `False`):
404
405
                Whether or not to force the (re-)download the model weights and configuration files and override the
                cached versions if they exist.
406
            resume_download (`bool`, *optional*, defaults to `False`):
407
408
                Whether or not to delete incompletely received files. Will attempt to resume the download if such a
                file exists.
409
            proxies (`Dict[str, str]`, *optional*):
Sylvain Gugger's avatar
Sylvain Gugger committed
410
411
                A dictionary of proxy servers to use by protocol or endpoint, e.g., `{'http': 'foo.bar:3128',
                'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request.
412
            revision (`str`, *optional*, defaults to `"main"`):
Julien Chaumond's avatar
Julien Chaumond committed
413
                The specific model version to use. It can be a branch name, a tag name, or a commit id, since we use a
414
                git-based system for storing models and other artifacts on huggingface.co, so `revision` can be any
Julien Chaumond's avatar
Julien Chaumond committed
415
                identifier allowed by git.
416
            subfolder (`str`, *optional*):
417
418
                In case the relevant files are located inside a subfolder of the model repo on huggingface.co (e.g. for
                facebook/rag-token-base), specify it here.
419
            use_fast (`bool`, *optional*, defaults to `True`):
420
                Whether or not to try to load the fast version of the tokenizer.
421
            tokenizer_type (`str`, *optional*):
422
                Tokenizer type to be loaded.
423
            trust_remote_code (`bool`, *optional*, defaults to `False`):
424
                Whether or not to allow for custom models defined on the Hub in their own modeling files. This option
Sylvain Gugger's avatar
Sylvain Gugger committed
425
426
                should only be set to `True` for repositories you trust and in which you have read the code, as it will
                execute code present on the Hub on your local machine.
427
428
            kwargs (additional keyword arguments, *optional*):
                Will be passed to the Tokenizer `__init__()` method. Can be used to set special tokens like
Sylvain Gugger's avatar
Sylvain Gugger committed
429
430
                `bos_token`, `eos_token`, `unk_token`, `sep_token`, `pad_token`, `cls_token`, `mask_token`,
                `additional_special_tokens`. See parameters in the `__init__()` for more details.
thomwolf's avatar
thomwolf committed
431

432
        Examples:
433

434
435
        ```python
        >>> from transformers import AutoTokenizer
436

437
        >>> # Download vocabulary from huggingface.co and cache.
Sylvain Gugger's avatar
Sylvain Gugger committed
438
        >>> tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased")
439

440
        >>> # Download vocabulary from huggingface.co (user-uploaded) and cache.
Sylvain Gugger's avatar
Sylvain Gugger committed
441
        >>> tokenizer = AutoTokenizer.from_pretrained("dbmdz/bert-base-german-cased")
thomwolf's avatar
thomwolf committed
442

443
        >>> # If vocabulary files are in a directory (e.g. tokenizer was saved using *save_pretrained('./test/saved_model/')*)
Sylvain Gugger's avatar
Sylvain Gugger committed
444
        >>> tokenizer = AutoTokenizer.from_pretrained("./test/bert_saved_model/")
445
        ```"""
446
        config = kwargs.pop("config", None)
447
        kwargs["_from_auto"] = True
448

449
        use_fast = kwargs.pop("use_fast", True)
450
        tokenizer_type = kwargs.pop("tokenizer_type", None)
451
        trust_remote_code = kwargs.pop("trust_remote_code", False)
452

453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
        # First, let's see whether the tokenizer_type is passed so that we can leverage it
        if tokenizer_type is not None:
            tokenizer_class = None
            tokenizer_class_tuple = TOKENIZER_MAPPING_NAMES.get(tokenizer_type, None)

            if tokenizer_class_tuple is None:
                raise ValueError(
                    f"Passed `tokenizer_type` {tokenizer_type} does not exist. `tokenizer_type` should be one of "
                    f"{', '.join(c for c in TOKENIZER_MAPPING_NAMES.keys())}."
                )

            tokenizer_class_name, tokenizer_fast_class_name = tokenizer_class_tuple

            if use_fast and tokenizer_fast_class_name is not None:
                tokenizer_class = tokenizer_class_from_name(tokenizer_fast_class_name)

            if tokenizer_class is None:
                tokenizer_class = tokenizer_class_from_name(tokenizer_class_name)

            if tokenizer_class is None:
                raise ValueError(f"Tokenizer class {tokenizer_class_name} is not currently imported.")

            return tokenizer_class.from_pretrained(pretrained_model_name_or_path, *inputs, **kwargs)

        # Next, let's try to use the tokenizer_config file to get the tokenizer class.
478
479
        tokenizer_config = get_tokenizer_config(pretrained_model_name_or_path, **kwargs)
        config_tokenizer_class = tokenizer_config.get("tokenizer_class")
480
481
482
483
484
485
486
        tokenizer_auto_map = None
        if "auto_map" in tokenizer_config:
            if isinstance(tokenizer_config["auto_map"], (tuple, list)):
                # Legacy format for dynamic tokenizers
                tokenizer_auto_map = tokenizer_config["auto_map"]
            else:
                tokenizer_auto_map = tokenizer_config["auto_map"].get("AutoTokenizer", None)
487
488
489
490

        # If that did not work, let's try to use the config.
        if config_tokenizer_class is None:
            if not isinstance(config, PretrainedConfig):
491
492
493
                config = AutoConfig.from_pretrained(
                    pretrained_model_name_or_path, trust_remote_code=trust_remote_code, **kwargs
                )
494
            config_tokenizer_class = config.tokenizer_class
495
496
            if hasattr(config, "auto_map") and "AutoTokenizer" in config.auto_map:
                tokenizer_auto_map = config.auto_map["AutoTokenizer"]
497
498
499

        # If we have the tokenizer class from the tokenizer config or the model config we're good!
        if config_tokenizer_class is not None:
500
            tokenizer_class = None
501
502
503
504
505
506
507
508
            if tokenizer_auto_map is not None:
                if not trust_remote_code:
                    raise ValueError(
                        f"Loading {pretrained_model_name_or_path} requires you to execute the tokenizer file in that repo "
                        "on your local machine. Make sure you have read the code there to avoid malicious use, then set "
                        "the option `trust_remote_code=True` to remove this error."
                    )
                if kwargs.get("revision", None) is None:
509
                    logger.warning(
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
                        "Explicitly passing a `revision` is encouraged when loading a model with custom code to ensure "
                        "no malicious code has been contributed in a newer revision."
                    )

                if use_fast and tokenizer_auto_map[1] is not None:
                    class_ref = tokenizer_auto_map[1]
                else:
                    class_ref = tokenizer_auto_map[0]

                module_file, class_name = class_ref.split(".")
                tokenizer_class = get_class_from_dynamic_module(
                    pretrained_model_name_or_path, module_file + ".py", class_name, **kwargs
                )

            elif use_fast and not config_tokenizer_class.endswith("Fast"):
525
                tokenizer_class_candidate = f"{config_tokenizer_class}Fast"
526
527
                tokenizer_class = tokenizer_class_from_name(tokenizer_class_candidate)
            if tokenizer_class is None:
528
                tokenizer_class_candidate = config_tokenizer_class
529
530
                tokenizer_class = tokenizer_class_from_name(tokenizer_class_candidate)

531
            if tokenizer_class is None:
532
                raise ValueError(
533
                    f"Tokenizer class {tokenizer_class_candidate} does not exist or is not currently imported."
534
                )
535
536
            return tokenizer_class.from_pretrained(pretrained_model_name_or_path, *inputs, **kwargs)

537
        # Otherwise we have to be creative.
538
539
540
        # if model is an encoder decoder, the encoder tokenizer class is used by default
        if isinstance(config, EncoderDecoderConfig):
            if type(config.decoder) is not type(config.encoder):  # noqa: E721
541
                logger.warning(
542
                    f"The encoder model config class: {config.encoder.__class__} is different from the decoder model "
543
                    f"config class: {config.decoder.__class__}. It is not recommended to use the "
544
545
                    "`AutoTokenizer.from_pretrained()` method in this case. Please use the encoder and decoder "
                    "specific tokenizer classes."
546
547
548
                )
            config = config.encoder

549
550
        model_type = config_class_to_model_type(type(config).__name__)
        if model_type is not None:
551
            tokenizer_class_py, tokenizer_class_fast = TOKENIZER_MAPPING[type(config)]
552
            if tokenizer_class_fast and (use_fast or tokenizer_class_py is None):
553
554
                return tokenizer_class_fast.from_pretrained(pretrained_model_name_or_path, *inputs, **kwargs)
            else:
555
556
557
558
559
560
561
                if tokenizer_class_py is not None:
                    return tokenizer_class_py.from_pretrained(pretrained_model_name_or_path, *inputs, **kwargs)
                else:
                    raise ValueError(
                        "This tokenizer cannot be instantiated. Please make sure you have `sentencepiece` installed "
                        "in order to use this tokenizer."
                    )
562

563
        raise ValueError(
564
565
            f"Unrecognized configuration class {config.__class__} to build an AutoTokenizer.\n"
            f"Model type should be one of {', '.join(c.__name__ for c in TOKENIZER_MAPPING.keys())}."
566
        )
567
568
569
570
571
572
573

    def register(config_class, slow_tokenizer_class=None, fast_tokenizer_class=None):
        """
        Register a new tokenizer in this mapping.


        Args:
574
            config_class ([`PretrainedConfig`]):
575
                The configuration corresponding to the model to register.
576
            slow_tokenizer_class ([`PretrainedTokenizer`], *optional*):
577
                The slow tokenizer to register.
578
            slow_tokenizer_class ([`PretrainedTokenizerFast`], *optional*):
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
                The fast tokenizer to register.
        """
        if slow_tokenizer_class is None and fast_tokenizer_class is None:
            raise ValueError("You need to pass either a `slow_tokenizer_class` or a `fast_tokenizer_class")
        if slow_tokenizer_class is not None and issubclass(slow_tokenizer_class, PreTrainedTokenizerFast):
            raise ValueError("You passed a fast tokenizer in the `slow_tokenizer_class`.")
        if fast_tokenizer_class is not None and issubclass(fast_tokenizer_class, PreTrainedTokenizer):
            raise ValueError("You passed a slow tokenizer in the `fast_tokenizer_class`.")

        if (
            slow_tokenizer_class is not None
            and fast_tokenizer_class is not None
            and issubclass(fast_tokenizer_class, PreTrainedTokenizerFast)
            and fast_tokenizer_class.slow_tokenizer_class != slow_tokenizer_class
        ):
            raise ValueError(
                "The fast tokenizer class you are passing has a `slow_tokenizer_class` attribute that is not "
                "consistent with the slow tokenizer class you passed (fast tokenizer has "
                f"{fast_tokenizer_class.slow_tokenizer_class} and you passed {slow_tokenizer_class}. Fix one of those "
                "so they match!"
            )

        # Avoid resetting a set slow/fast tokenizer if we are passing just the other ones.
        if config_class in TOKENIZER_MAPPING._extra_content:
            existing_slow, existing_fast = TOKENIZER_MAPPING[config_class]
            if slow_tokenizer_class is None:
                slow_tokenizer_class = existing_slow
            if fast_tokenizer_class is None:
                fast_tokenizer_class = existing_fast

        TOKENIZER_MAPPING.register(config_class, (slow_tokenizer_class, fast_tokenizer_class))