tokenization_auto.py 30 KB
Newer Older
thomwolf's avatar
thomwolf committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# coding=utf-8
# Copyright 2018 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Sylvain Gugger's avatar
Sylvain Gugger committed
15
""" Auto Tokenizer class."""
thomwolf's avatar
thomwolf committed
16

17
import importlib
18
19
import json
import os
20
from collections import OrderedDict
21
from typing import TYPE_CHECKING, Dict, Optional, Tuple, Union
thomwolf's avatar
thomwolf committed
22

Sylvain Gugger's avatar
Sylvain Gugger committed
23
from ...configuration_utils import PretrainedConfig
24
from ...dynamic_module_utils import get_class_from_dynamic_module
25
from ...tokenization_utils import PreTrainedTokenizer
26
from ...tokenization_utils_base import TOKENIZER_CONFIG_FILE
27
from ...tokenization_utils_fast import PreTrainedTokenizerFast
28
from ...utils import get_file_from_repo, is_sentencepiece_available, is_tokenizers_available, logging
29
30
from ..encoder_decoder import EncoderDecoderConfig
from .auto_factory import _LazyAutoMapping
31
from .configuration_auto import (
32
    CONFIG_MAPPING_NAMES,
33
    AutoConfig,
34
    config_class_to_model_type,
35
    model_type_to_module_name,
36
    replace_list_option_in_docstrings,
37
)
Aymeric Augustin's avatar
Aymeric Augustin committed
38

thomwolf's avatar
thomwolf committed
39

Lysandre Debut's avatar
Lysandre Debut committed
40
logger = logging.get_logger(__name__)
thomwolf's avatar
thomwolf committed
41

42
43
44
45
46
47
48
if TYPE_CHECKING:
    # This significantly improves completion suggestion performance when
    # the transformers package is used with Microsoft's Pylance language server.
    TOKENIZER_MAPPING_NAMES: OrderedDict[str, Tuple[Optional[str], Optional[str]]] = OrderedDict()
else:
    TOKENIZER_MAPPING_NAMES = OrderedDict(
        [
Gunjan Chhablani's avatar
Gunjan Chhablani committed
49
            ("plbart", ("PLBartTokenizer" if is_sentencepiece_available() else None, None)),
50
            ("realm", ("RealmTokenizer", "RealmTokenizerFast" if is_tokenizers_available() else None)),
Gunjan Chhablani's avatar
Gunjan Chhablani committed
51
            ("fnet", ("FNetTokenizer", "FNetTokenizerFast" if is_tokenizers_available() else None)),
52
53
            ("retribert", ("RetriBertTokenizer", "RetriBertTokenizerFast" if is_tokenizers_available() else None)),
            ("roformer", ("RoFormerTokenizer", "RoFormerTokenizerFast" if is_tokenizers_available() else None)),
54
            (
55
56
57
58
59
                "t5",
                (
                    "T5Tokenizer" if is_sentencepiece_available() else None,
                    "T5TokenizerFast" if is_tokenizers_available() else None,
                ),
60
61
            ),
            (
62
63
64
65
66
                "mt5",
                (
                    "MT5Tokenizer" if is_sentencepiece_available() else None,
                    "MT5TokenizerFast" if is_tokenizers_available() else None,
                ),
67
            ),
68
69
            ("mobilebert", ("MobileBertTokenizer", "MobileBertTokenizerFast" if is_tokenizers_available() else None)),
            ("distilbert", ("DistilBertTokenizer", "DistilBertTokenizerFast" if is_tokenizers_available() else None)),
70
            (
71
72
73
74
75
                "albert",
                (
                    "AlbertTokenizer" if is_sentencepiece_available() else None,
                    "AlbertTokenizerFast" if is_tokenizers_available() else None,
                ),
76
77
            ),
            (
78
79
80
81
82
                "camembert",
                (
                    "CamembertTokenizer" if is_sentencepiece_available() else None,
                    "CamembertTokenizerFast" if is_tokenizers_available() else None,
                ),
83
84
            ),
            (
85
86
87
88
89
                "pegasus",
                (
                    "PegasusTokenizer" if is_sentencepiece_available() else None,
                    "PegasusTokenizerFast" if is_tokenizers_available() else None,
                ),
90
91
            ),
            (
92
93
94
95
96
                "mbart",
                (
                    "MBartTokenizer" if is_sentencepiece_available() else None,
                    "MBartTokenizerFast" if is_tokenizers_available() else None,
                ),
97
98
            ),
            (
99
100
101
102
103
                "xlm-roberta",
                (
                    "XLMRobertaTokenizer" if is_sentencepiece_available() else None,
                    "XLMRobertaTokenizerFast" if is_tokenizers_available() else None,
                ),
104
            ),
105
106
            ("marian", ("MarianTokenizer" if is_sentencepiece_available() else None, None)),
            ("blenderbot-small", ("BlenderbotSmallTokenizer", None)),
107
            ("blenderbot", ("BlenderbotTokenizer", "BlenderbotTokenizerFast")),
108
109
110
            ("bart", ("BartTokenizer", "BartTokenizerFast")),
            ("longformer", ("LongformerTokenizer", "LongformerTokenizerFast" if is_tokenizers_available() else None)),
            ("roberta", ("RobertaTokenizer", "RobertaTokenizerFast" if is_tokenizers_available() else None)),
111
            (
112
113
114
115
116
                "reformer",
                (
                    "ReformerTokenizer" if is_sentencepiece_available() else None,
                    "ReformerTokenizerFast" if is_tokenizers_available() else None,
                ),
117
            ),
118
119
120
121
            ("electra", ("ElectraTokenizer", "ElectraTokenizerFast" if is_tokenizers_available() else None)),
            ("funnel", ("FunnelTokenizer", "FunnelTokenizerFast" if is_tokenizers_available() else None)),
            ("lxmert", ("LxmertTokenizer", "LxmertTokenizerFast" if is_tokenizers_available() else None)),
            ("layoutlm", ("LayoutLMTokenizer", "LayoutLMTokenizerFast" if is_tokenizers_available() else None)),
122
            ("layoutlmv2", ("LayoutLMv2Tokenizer", "LayoutLMv2TokenizerFast" if is_tokenizers_available() else None)),
123
            ("layoutxlm", ("LayoutXLMTokenizer", "LayoutXLMTokenizerFast" if is_tokenizers_available() else None)),
124
            (
125
126
127
128
129
                "dpr",
                (
                    "DPRQuestionEncoderTokenizer",
                    "DPRQuestionEncoderTokenizerFast" if is_tokenizers_available() else None,
                ),
130
131
            ),
            (
132
133
                "squeezebert",
                ("SqueezeBertTokenizer", "SqueezeBertTokenizerFast" if is_tokenizers_available() else None),
134
            ),
135
136
137
138
            ("bert", ("BertTokenizer", "BertTokenizerFast" if is_tokenizers_available() else None)),
            ("openai-gpt", ("OpenAIGPTTokenizer", "OpenAIGPTTokenizerFast" if is_tokenizers_available() else None)),
            ("gpt2", ("GPT2Tokenizer", "GPT2TokenizerFast" if is_tokenizers_available() else None)),
            ("transfo-xl", ("TransfoXLTokenizer", None)),
139
            (
140
141
142
143
144
                "xlnet",
                (
                    "XLNetTokenizer" if is_sentencepiece_available() else None,
                    "XLNetTokenizerFast" if is_tokenizers_available() else None,
                ),
145
            ),
146
147
148
149
150
151
152
153
154
155
            ("flaubert", ("FlaubertTokenizer", None)),
            ("xlm", ("XLMTokenizer", None)),
            ("ctrl", ("CTRLTokenizer", None)),
            ("fsmt", ("FSMTTokenizer", None)),
            ("bert-generation", ("BertGenerationTokenizer" if is_sentencepiece_available() else None, None)),
            ("deberta", ("DebertaTokenizer", "DebertaTokenizerFast" if is_tokenizers_available() else None)),
            ("deberta-v2", ("DebertaV2Tokenizer" if is_sentencepiece_available() else None, None)),
            ("rag", ("RagTokenizer", None)),
            ("xlm-prophetnet", ("XLMProphetNetTokenizer" if is_sentencepiece_available() else None, None)),
            ("speech_to_text", ("Speech2TextTokenizer" if is_sentencepiece_available() else None, None)),
156
            ("speech_to_text_2", ("Speech2Text2Tokenizer", None)),
157
158
159
160
161
162
            ("m2m_100", ("M2M100Tokenizer" if is_sentencepiece_available() else None, None)),
            ("prophetnet", ("ProphetNetTokenizer", None)),
            ("mpnet", ("MPNetTokenizer", "MPNetTokenizerFast" if is_tokenizers_available() else None)),
            ("tapas", ("TapasTokenizer", None)),
            ("led", ("LEDTokenizer", "LEDTokenizerFast" if is_tokenizers_available() else None)),
            ("convbert", ("ConvBertTokenizer", "ConvBertTokenizerFast" if is_tokenizers_available() else None)),
163
            (
164
165
166
167
168
                "big_bird",
                (
                    "BigBirdTokenizer" if is_sentencepiece_available() else None,
                    "BigBirdTokenizerFast" if is_tokenizers_available() else None,
                ),
169
            ),
170
            ("ibert", ("RobertaTokenizer", "RobertaTokenizerFast" if is_tokenizers_available() else None)),
171
            ("qdqbert", ("BertTokenizer", "BertTokenizerFast" if is_tokenizers_available() else None)),
172
173
174
175
            ("wav2vec2", ("Wav2Vec2CTCTokenizer", None)),
            ("hubert", ("Wav2Vec2CTCTokenizer", None)),
            ("gpt_neo", ("GPT2Tokenizer", "GPT2TokenizerFast" if is_tokenizers_available() else None)),
            ("luke", ("LukeTokenizer", None)),
Ryokan RI's avatar
Ryokan RI committed
176
            ("mluke", ("MLukeTokenizer" if is_sentencepiece_available() else None, None)),
177
178
179
180
            ("bigbird_pegasus", ("PegasusTokenizer", "PegasusTokenizerFast" if is_tokenizers_available() else None)),
            ("canine", ("CanineTokenizer", None)),
            ("bertweet", ("BertweetTokenizer", None)),
            ("bert-japanese", ("BertJapaneseTokenizer", None)),
Ori Ram's avatar
Ori Ram committed
181
            ("splinter", ("SplinterTokenizer", "SplinterTokenizerFast")),
182
            ("byt5", ("ByT5Tokenizer", None)),
183
            (
184
185
186
187
188
                "cpm",
                (
                    "CpmTokenizer" if is_sentencepiece_available() else None,
                    "CpmTokenizerFast" if is_tokenizers_available() else None,
                ),
189
            ),
190
191
            ("herbert", ("HerbertTokenizer", "HerbertTokenizerFast" if is_tokenizers_available() else None)),
            ("phobert", ("PhobertTokenizer", None)),
192
            ("bartpho", ("BartphoTokenizer", None)),
193
194
195
196
197
198
199
200
201
202
203
204
205
206
            (
                "barthez",
                (
                    "BarthezTokenizer" if is_sentencepiece_available() else None,
                    "BarthezTokenizerFast" if is_tokenizers_available() else None,
                ),
            ),
            (
                "mbart50",
                (
                    "MBart50Tokenizer" if is_sentencepiece_available() else None,
                    "MBart50TokenizerFast" if is_tokenizers_available() else None,
                ),
            ),
207
208
209
210
211
212
213
            (
                "rembert",
                (
                    "RemBertTokenizer" if is_sentencepiece_available() else None,
                    "RemBertTokenizerFast" if is_tokenizers_available() else None,
                ),
            ),
214
215
216
217
218
219
220
            (
                "clip",
                (
                    "CLIPTokenizer",
                    "CLIPTokenizerFast" if is_tokenizers_available() else None,
                ),
            ),
221
            ("wav2vec2_phoneme", ("Wav2Vec2PhonemeCTCTokenizer", None)),
222
223
224
225
226
227
228
            (
                "perceiver",
                (
                    "PerceiverTokenizer",
                    None,
                ),
            ),
229
230
231
232
233
234
235
            (
                "xglm",
                (
                    "XGLMTokenizer" if is_sentencepiece_available() else None,
                    "XGLMTokenizerFast" if is_tokenizers_available() else None,
                ),
            ),
236
237
        ]
    )
238

239
240
241
TOKENIZER_MAPPING = _LazyAutoMapping(CONFIG_MAPPING_NAMES, TOKENIZER_MAPPING_NAMES)

CONFIG_TO_TYPE = {v: k for k, v in CONFIG_MAPPING_NAMES.items()}
242

243

244
def tokenizer_class_from_name(class_name: str):
245
246
247
248
249
    if class_name == "PreTrainedTokenizerFast":
        return PreTrainedTokenizerFast

    for module_name, tokenizers in TOKENIZER_MAPPING_NAMES.items():
        if class_name in tokenizers:
250
            module_name = model_type_to_module_name(module_name)
251

252
253
            module = importlib.import_module(f".{module_name}", "transformers.models")
            return getattr(module, class_name)
254

255
256
257
258
259
    for config, tokenizers in TOKENIZER_MAPPING._extra_content.items():
        for tokenizer in tokenizers:
            if getattr(tokenizer, "__name__", None) == class_name:
                return tokenizer

260
    return None
261
262


263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
def get_tokenizer_config(
    pretrained_model_name_or_path: Union[str, os.PathLike],
    cache_dir: Optional[Union[str, os.PathLike]] = None,
    force_download: bool = False,
    resume_download: bool = False,
    proxies: Optional[Dict[str, str]] = None,
    use_auth_token: Optional[Union[bool, str]] = None,
    revision: Optional[str] = None,
    local_files_only: bool = False,
    **kwargs,
):
    """
    Loads the tokenizer configuration from a pretrained model tokenizer configuration.

    Args:
278
        pretrained_model_name_or_path (`str` or `os.PathLike`):
279
280
            This can be either:

281
            - a string, the *model id* of a pretrained model configuration hosted inside a model repo on
Sylvain Gugger's avatar
Sylvain Gugger committed
282
283
              huggingface.co. Valid model ids can be located at the root-level, like `bert-base-uncased`, or namespaced
              under a user or organization name, like `dbmdz/bert-base-german-cased`.
284
285
            - a path to a *directory* containing a configuration file saved using the
              [`~PreTrainedTokenizer.save_pretrained`] method, e.g., `./my_model_directory/`.
286

287
        cache_dir (`str` or `os.PathLike`, *optional*):
288
289
            Path to a directory in which a downloaded pretrained model configuration should be cached if the standard
            cache should not be used.
290
        force_download (`bool`, *optional*, defaults to `False`):
291
292
            Whether or not to force to (re-)download the configuration files and override the cached versions if they
            exist.
293
        resume_download (`bool`, *optional*, defaults to `False`):
294
            Whether or not to delete incompletely received file. Attempts to resume the download if such a file exists.
295
        proxies (`Dict[str, str]`, *optional*):
Sylvain Gugger's avatar
Sylvain Gugger committed
296
297
            A dictionary of proxy servers to use by protocol or endpoint, e.g., `{'http': 'foo.bar:3128',
            'http://hostname': 'foo.bar:4012'}.` The proxies are used on each request.
298
        use_auth_token (`str` or *bool*, *optional*):
Sylvain Gugger's avatar
Sylvain Gugger committed
299
300
            The token to use as HTTP bearer authorization for remote files. If `True`, will use the token generated
            when running `transformers-cli login` (stored in `~/.huggingface`).
301
        revision (`str`, *optional*, defaults to `"main"`):
302
            The specific model version to use. It can be a branch name, a tag name, or a commit id, since we use a
303
            git-based system for storing models and other artifacts on huggingface.co, so `revision` can be any
304
            identifier allowed by git.
305
306
        local_files_only (`bool`, *optional*, defaults to `False`):
            If `True`, will only try to load the tokenizer configuration from local files.
307

308
    <Tip>
309

310
    Passing `use_auth_token=True` is required when you want to use a private model.
311

312
    </Tip>
313
314

    Returns:
315
        `Dict`: The configuration of the tokenizer.
316

317
    Examples:
318

319
320
321
322
323
    ```python
    # Download configuration from huggingface.co and cache.
    tokenizer_config = get_tokenizer_config("bert-base-uncased")
    # This model does not have a tokenizer config so the result will be an empty dict.
    tokenizer_config = get_tokenizer_config("xlm-roberta-base")
324

325
326
    # Save a pretrained tokenizer locally and you can reload its config
    from transformers import AutoTokenizer
327

328
329
330
331
    tokenizer = AutoTokenizer.from_pretrained("bert-base-cased")
    tokenizer.save_pretrained("tokenizer-test")
    tokenizer_config = get_tokenizer_config("tokenizer-test")
    ```"""
332
333
334
335
336
337
338
339
340
341
342
343
    resolved_config_file = get_file_from_repo(
        pretrained_model_name_or_path,
        TOKENIZER_CONFIG_FILE,
        cache_dir=cache_dir,
        force_download=force_download,
        resume_download=resume_download,
        proxies=proxies,
        use_auth_token=use_auth_token,
        revision=revision,
        local_files_only=local_files_only,
    )
    if resolved_config_file is None:
344
345
346
347
348
349
350
        logger.info("Could not locate the tokenizer configuration file, will try to use the model config instead.")
        return {}

    with open(resolved_config_file, encoding="utf-8") as reader:
        return json.load(reader)


Julien Chaumond's avatar
Julien Chaumond committed
351
class AutoTokenizer:
352
    r"""
Sylvain Gugger's avatar
Sylvain Gugger committed
353
    This is a generic tokenizer class that will be instantiated as one of the tokenizer classes of the library when
354
    created with the [`AutoTokenizer.from_pretrained`] class method.
thomwolf's avatar
thomwolf committed
355

356
    This class cannot be instantiated directly using `__init__()` (throws an error).
thomwolf's avatar
thomwolf committed
357
    """
358

thomwolf's avatar
thomwolf committed
359
    def __init__(self):
360
361
362
363
        raise EnvironmentError(
            "AutoTokenizer is designed to be instantiated "
            "using the `AutoTokenizer.from_pretrained(pretrained_model_name_or_path)` method."
        )
thomwolf's avatar
thomwolf committed
364
365

    @classmethod
366
    @replace_list_option_in_docstrings(TOKENIZER_MAPPING_NAMES)
thomwolf's avatar
thomwolf committed
367
    def from_pretrained(cls, pretrained_model_name_or_path, *inputs, **kwargs):
368
369
        r"""
        Instantiate one of the tokenizer classes of the library from a pretrained model vocabulary.
thomwolf's avatar
thomwolf committed
370

Sylvain Gugger's avatar
Sylvain Gugger committed
371
372
373
        The tokenizer class to instantiate is selected based on the `model_type` property of the config object (either
        passed as an argument or loaded from `pretrained_model_name_or_path` if possible), or when it's missing, by
        falling back to using pattern matching on `pretrained_model_name_or_path`:
374

375
        List options
thomwolf's avatar
thomwolf committed
376
377

        Params:
378
            pretrained_model_name_or_path (`str` or `os.PathLike`):
379
380
                Can be either:

381
                    - A string, the *model id* of a predefined tokenizer hosted inside a model repo on huggingface.co.
Sylvain Gugger's avatar
Sylvain Gugger committed
382
383
                      Valid model ids can be located at the root-level, like `bert-base-uncased`, or namespaced under a
                      user or organization name, like `dbmdz/bert-base-german-cased`.
384
                    - A path to a *directory* containing vocabulary files required by the tokenizer, for instance saved
Sylvain Gugger's avatar
Sylvain Gugger committed
385
                      using the [`~PreTrainedTokenizer.save_pretrained`] method, e.g., `./my_model_directory/`.
386
                    - A path or url to a single saved vocabulary file if and only if the tokenizer only requires a
387
                      single vocabulary file (like Bert or XLNet), e.g.: `./my_model_directory/vocab.txt`. (Not
Sylvain Gugger's avatar
Sylvain Gugger committed
388
                      applicable to all derived classes)
389
390
391
            inputs (additional positional arguments, *optional*):
                Will be passed along to the Tokenizer `__init__()` method.
            config ([`PretrainedConfig`], *optional*)
392
                The configuration object used to dertermine the tokenizer class to instantiate.
393
            cache_dir (`str` or `os.PathLike`, *optional*):
394
395
                Path to a directory in which a downloaded pretrained model configuration should be cached if the
                standard cache should not be used.
396
            force_download (`bool`, *optional*, defaults to `False`):
397
398
                Whether or not to force the (re-)download the model weights and configuration files and override the
                cached versions if they exist.
399
            resume_download (`bool`, *optional*, defaults to `False`):
400
401
                Whether or not to delete incompletely received files. Will attempt to resume the download if such a
                file exists.
402
            proxies (`Dict[str, str]`, *optional*):
Sylvain Gugger's avatar
Sylvain Gugger committed
403
404
                A dictionary of proxy servers to use by protocol or endpoint, e.g., `{'http': 'foo.bar:3128',
                'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request.
405
            revision (`str`, *optional*, defaults to `"main"`):
Julien Chaumond's avatar
Julien Chaumond committed
406
                The specific model version to use. It can be a branch name, a tag name, or a commit id, since we use a
407
                git-based system for storing models and other artifacts on huggingface.co, so `revision` can be any
Julien Chaumond's avatar
Julien Chaumond committed
408
                identifier allowed by git.
409
            subfolder (`str`, *optional*):
410
411
                In case the relevant files are located inside a subfolder of the model repo on huggingface.co (e.g. for
                facebook/rag-token-base), specify it here.
412
            use_fast (`bool`, *optional*, defaults to `True`):
413
                Whether or not to try to load the fast version of the tokenizer.
414
            tokenizer_type (`str`, *optional*):
415
                Tokenizer type to be loaded.
416
            trust_remote_code (`bool`, *optional*, defaults to `False`):
417
                Whether or not to allow for custom models defined on the Hub in their own modeling files. This option
Sylvain Gugger's avatar
Sylvain Gugger committed
418
419
                should only be set to `True` for repositories you trust and in which you have read the code, as it will
                execute code present on the Hub on your local machine.
420
421
            kwargs (additional keyword arguments, *optional*):
                Will be passed to the Tokenizer `__init__()` method. Can be used to set special tokens like
Sylvain Gugger's avatar
Sylvain Gugger committed
422
423
                `bos_token`, `eos_token`, `unk_token`, `sep_token`, `pad_token`, `cls_token`, `mask_token`,
                `additional_special_tokens`. See parameters in the `__init__()` for more details.
thomwolf's avatar
thomwolf committed
424

425
        Examples:
426

427
428
        ```python
        >>> from transformers import AutoTokenizer
429

430
        >>> # Download vocabulary from huggingface.co and cache.
Sylvain Gugger's avatar
Sylvain Gugger committed
431
        >>> tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased")
432

433
        >>> # Download vocabulary from huggingface.co (user-uploaded) and cache.
Sylvain Gugger's avatar
Sylvain Gugger committed
434
        >>> tokenizer = AutoTokenizer.from_pretrained("dbmdz/bert-base-german-cased")
thomwolf's avatar
thomwolf committed
435

436
        >>> # If vocabulary files are in a directory (e.g. tokenizer was saved using *save_pretrained('./test/saved_model/')*)
Sylvain Gugger's avatar
Sylvain Gugger committed
437
        >>> tokenizer = AutoTokenizer.from_pretrained("./test/bert_saved_model/")
438
        ```"""
439
        config = kwargs.pop("config", None)
440
        kwargs["_from_auto"] = True
441

442
        use_fast = kwargs.pop("use_fast", True)
443
        tokenizer_type = kwargs.pop("tokenizer_type", None)
444
        trust_remote_code = kwargs.pop("trust_remote_code", False)
445

446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
        # First, let's see whether the tokenizer_type is passed so that we can leverage it
        if tokenizer_type is not None:
            tokenizer_class = None
            tokenizer_class_tuple = TOKENIZER_MAPPING_NAMES.get(tokenizer_type, None)

            if tokenizer_class_tuple is None:
                raise ValueError(
                    f"Passed `tokenizer_type` {tokenizer_type} does not exist. `tokenizer_type` should be one of "
                    f"{', '.join(c for c in TOKENIZER_MAPPING_NAMES.keys())}."
                )

            tokenizer_class_name, tokenizer_fast_class_name = tokenizer_class_tuple

            if use_fast and tokenizer_fast_class_name is not None:
                tokenizer_class = tokenizer_class_from_name(tokenizer_fast_class_name)

            if tokenizer_class is None:
                tokenizer_class = tokenizer_class_from_name(tokenizer_class_name)

            if tokenizer_class is None:
                raise ValueError(f"Tokenizer class {tokenizer_class_name} is not currently imported.")

            return tokenizer_class.from_pretrained(pretrained_model_name_or_path, *inputs, **kwargs)

        # Next, let's try to use the tokenizer_config file to get the tokenizer class.
471
472
        tokenizer_config = get_tokenizer_config(pretrained_model_name_or_path, **kwargs)
        config_tokenizer_class = tokenizer_config.get("tokenizer_class")
473
474
475
476
477
478
479
        tokenizer_auto_map = None
        if "auto_map" in tokenizer_config:
            if isinstance(tokenizer_config["auto_map"], (tuple, list)):
                # Legacy format for dynamic tokenizers
                tokenizer_auto_map = tokenizer_config["auto_map"]
            else:
                tokenizer_auto_map = tokenizer_config["auto_map"].get("AutoTokenizer", None)
480
481
482
483

        # If that did not work, let's try to use the config.
        if config_tokenizer_class is None:
            if not isinstance(config, PretrainedConfig):
484
485
486
                config = AutoConfig.from_pretrained(
                    pretrained_model_name_or_path, trust_remote_code=trust_remote_code, **kwargs
                )
487
            config_tokenizer_class = config.tokenizer_class
488
489
            if hasattr(config, "auto_map") and "AutoTokenizer" in config.auto_map:
                tokenizer_auto_map = config.auto_map["AutoTokenizer"]
490
491
492

        # If we have the tokenizer class from the tokenizer config or the model config we're good!
        if config_tokenizer_class is not None:
493
            tokenizer_class = None
494
495
496
497
498
499
500
501
            if tokenizer_auto_map is not None:
                if not trust_remote_code:
                    raise ValueError(
                        f"Loading {pretrained_model_name_or_path} requires you to execute the tokenizer file in that repo "
                        "on your local machine. Make sure you have read the code there to avoid malicious use, then set "
                        "the option `trust_remote_code=True` to remove this error."
                    )
                if kwargs.get("revision", None) is None:
502
                    logger.warning(
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
                        "Explicitly passing a `revision` is encouraged when loading a model with custom code to ensure "
                        "no malicious code has been contributed in a newer revision."
                    )

                if use_fast and tokenizer_auto_map[1] is not None:
                    class_ref = tokenizer_auto_map[1]
                else:
                    class_ref = tokenizer_auto_map[0]

                module_file, class_name = class_ref.split(".")
                tokenizer_class = get_class_from_dynamic_module(
                    pretrained_model_name_or_path, module_file + ".py", class_name, **kwargs
                )

            elif use_fast and not config_tokenizer_class.endswith("Fast"):
518
                tokenizer_class_candidate = f"{config_tokenizer_class}Fast"
519
520
                tokenizer_class = tokenizer_class_from_name(tokenizer_class_candidate)
            if tokenizer_class is None:
521
                tokenizer_class_candidate = config_tokenizer_class
522
523
                tokenizer_class = tokenizer_class_from_name(tokenizer_class_candidate)

524
            if tokenizer_class is None:
525
                raise ValueError(
526
                    f"Tokenizer class {tokenizer_class_candidate} does not exist or is not currently imported."
527
                )
528
529
            return tokenizer_class.from_pretrained(pretrained_model_name_or_path, *inputs, **kwargs)

530
        # Otherwise we have to be creative.
531
532
533
        # if model is an encoder decoder, the encoder tokenizer class is used by default
        if isinstance(config, EncoderDecoderConfig):
            if type(config.decoder) is not type(config.encoder):  # noqa: E721
534
                logger.warning(
535
                    f"The encoder model config class: {config.encoder.__class__} is different from the decoder model "
536
                    f"config class: {config.decoder.__class__}. It is not recommended to use the "
537
538
                    "`AutoTokenizer.from_pretrained()` method in this case. Please use the encoder and decoder "
                    "specific tokenizer classes."
539
540
541
                )
            config = config.encoder

542
543
        model_type = config_class_to_model_type(type(config).__name__)
        if model_type is not None:
544
            tokenizer_class_py, tokenizer_class_fast = TOKENIZER_MAPPING[type(config)]
545
            if tokenizer_class_fast and (use_fast or tokenizer_class_py is None):
546
547
                return tokenizer_class_fast.from_pretrained(pretrained_model_name_or_path, *inputs, **kwargs)
            else:
548
549
550
551
552
553
554
                if tokenizer_class_py is not None:
                    return tokenizer_class_py.from_pretrained(pretrained_model_name_or_path, *inputs, **kwargs)
                else:
                    raise ValueError(
                        "This tokenizer cannot be instantiated. Please make sure you have `sentencepiece` installed "
                        "in order to use this tokenizer."
                    )
555

556
        raise ValueError(
557
558
            f"Unrecognized configuration class {config.__class__} to build an AutoTokenizer.\n"
            f"Model type should be one of {', '.join(c.__name__ for c in TOKENIZER_MAPPING.keys())}."
559
        )
560
561
562
563
564
565
566

    def register(config_class, slow_tokenizer_class=None, fast_tokenizer_class=None):
        """
        Register a new tokenizer in this mapping.


        Args:
567
            config_class ([`PretrainedConfig`]):
568
                The configuration corresponding to the model to register.
569
            slow_tokenizer_class ([`PretrainedTokenizer`], *optional*):
570
                The slow tokenizer to register.
571
            slow_tokenizer_class ([`PretrainedTokenizerFast`], *optional*):
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
                The fast tokenizer to register.
        """
        if slow_tokenizer_class is None and fast_tokenizer_class is None:
            raise ValueError("You need to pass either a `slow_tokenizer_class` or a `fast_tokenizer_class")
        if slow_tokenizer_class is not None and issubclass(slow_tokenizer_class, PreTrainedTokenizerFast):
            raise ValueError("You passed a fast tokenizer in the `slow_tokenizer_class`.")
        if fast_tokenizer_class is not None and issubclass(fast_tokenizer_class, PreTrainedTokenizer):
            raise ValueError("You passed a slow tokenizer in the `fast_tokenizer_class`.")

        if (
            slow_tokenizer_class is not None
            and fast_tokenizer_class is not None
            and issubclass(fast_tokenizer_class, PreTrainedTokenizerFast)
            and fast_tokenizer_class.slow_tokenizer_class != slow_tokenizer_class
        ):
            raise ValueError(
                "The fast tokenizer class you are passing has a `slow_tokenizer_class` attribute that is not "
                "consistent with the slow tokenizer class you passed (fast tokenizer has "
                f"{fast_tokenizer_class.slow_tokenizer_class} and you passed {slow_tokenizer_class}. Fix one of those "
                "so they match!"
            )

        # Avoid resetting a set slow/fast tokenizer if we are passing just the other ones.
        if config_class in TOKENIZER_MAPPING._extra_content:
            existing_slow, existing_fast = TOKENIZER_MAPPING[config_class]
            if slow_tokenizer_class is None:
                slow_tokenizer_class = existing_slow
            if fast_tokenizer_class is None:
                fast_tokenizer_class = existing_fast

        TOKENIZER_MAPPING.register(config_class, (slow_tokenizer_class, fast_tokenizer_class))