run_summarization.py 32.8 KB
Newer Older
1
#!/usr/bin/env python
2
# coding=utf-8
3
# Copyright 2021 The HuggingFace Team. All rights reserved.
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Fine-tuning the library models for sequence to sequence.
"""
# You can also adapt this script on your own sequence to sequence task. Pointers for this are left as comments.

import logging
import os
import sys
24
import warnings
25
26
27
from dataclasses import dataclass, field
from typing import Optional

28
import datasets
29
import evaluate
30
import nltk  # Here to have a nice missing dependency error message early on
31
import numpy as np
32
from datasets import load_dataset
33
from filelock import FileLock
34
35
36
37
38
39
40
41

import transformers
from transformers import (
    AutoConfig,
    AutoModelForSeq2SeqLM,
    AutoTokenizer,
    DataCollatorForSeq2Seq,
    HfArgumentParser,
42
43
44
45
    MBart50Tokenizer,
    MBart50TokenizerFast,
    MBartTokenizer,
    MBartTokenizerFast,
46
47
48
49
    Seq2SeqTrainer,
    Seq2SeqTrainingArguments,
    set_seed,
)
50
from transformers.trainer_utils import get_last_checkpoint
51
from transformers.utils import check_min_version, is_offline_mode, send_example_telemetry
52
from transformers.utils.versions import require_version
53
54


55
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
Lysandre's avatar
Lysandre committed
56
check_min_version("4.34.0.dev0")
Sylvain Gugger's avatar
Sylvain Gugger committed
57

58
require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/summarization/requirements.txt")
59

60
61
logger = logging.getLogger(__name__)

62
63
try:
    nltk.data.find("tokenizers/punkt")
Stas Bekman's avatar
Stas Bekman committed
64
except (LookupError, OSError):
65
66
67
68
69
70
71
    if is_offline_mode():
        raise LookupError(
            "Offline mode: run this script without TRANSFORMERS_OFFLINE first to download nltk data files"
        )
    with FileLock(".lock") as lock:
        nltk.download("punkt", quiet=True)

72
73
74
# A list of all multilingual tokenizer which require lang attribute.
MULTILINGUAL_TOKENIZERS = [MBartTokenizer, MBartTokenizerFast, MBart50Tokenizer, MBart50TokenizerFast]

75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102

@dataclass
class ModelArguments:
    """
    Arguments pertaining to which model/config/tokenizer we are going to fine-tune from.
    """

    model_name_or_path: str = field(
        metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"}
    )
    config_name: Optional[str] = field(
        default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"}
    )
    tokenizer_name: Optional[str] = field(
        default=None, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"}
    )
    cache_dir: Optional[str] = field(
        default=None,
        metadata={"help": "Where to store the pretrained models downloaded from huggingface.co"},
    )
    use_fast_tokenizer: bool = field(
        default=True,
        metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."},
    )
    model_revision: str = field(
        default="main",
        metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."},
    )
103
104
    token: str = field(
        default=None,
105
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
106
            "help": (
107
108
                "The token to use as HTTP bearer authorization for remote files. If not specified, will use the token "
                "generated when running `huggingface-cli login` (stored in `~/.huggingface`)."
Sylvain Gugger's avatar
Sylvain Gugger committed
109
            )
110
111
        },
    )
112
113
114
115
116
117
    use_auth_token: bool = field(
        default=None,
        metadata={
            "help": "The `use_auth_token` argument is deprecated and will be removed in v4.34. Please use `token`."
        },
    )
118
119
120
121
122
123
124
125
126
127
    trust_remote_code: bool = field(
        default=False,
        metadata={
            "help": (
                "Whether or not to allow for custom models defined on the Hub in their own modeling files. This option"
                "should only be set to `True` for repositories you trust and in which you have read the code, as it will"
                "execute code present on the Hub on your local machine."
            )
        },
    )
128
129
130
    resize_position_embeddings: Optional[bool] = field(
        default=None,
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
131
132
133
134
            "help": (
                "Whether to automatically resize the position embeddings if `max_source_length` exceeds "
                "the model's position embeddings."
            )
135
136
        },
    )
137
138
139
140
141
142
143
144


@dataclass
class DataTrainingArguments:
    """
    Arguments pertaining to what data we are going to input our model for training and eval.
    """

145
    lang: Optional[str] = field(default=None, metadata={"help": "Language id for summarization."})
146

147
148
149
150
151
152
153
154
155
156
157
158
159
160
    dataset_name: Optional[str] = field(
        default=None, metadata={"help": "The name of the dataset to use (via the datasets library)."}
    )
    dataset_config_name: Optional[str] = field(
        default=None, metadata={"help": "The configuration name of the dataset to use (via the datasets library)."}
    )
    text_column: Optional[str] = field(
        default=None,
        metadata={"help": "The name of the column in the datasets containing the full texts (for summarization)."},
    )
    summary_column: Optional[str] = field(
        default=None,
        metadata={"help": "The name of the column in the datasets containing the summaries (for summarization)."},
    )
161
162
163
    train_file: Optional[str] = field(
        default=None, metadata={"help": "The input training data file (a jsonlines or csv file)."}
    )
164
165
    validation_file: Optional[str] = field(
        default=None,
166
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
167
168
169
            "help": (
                "An optional input evaluation data file to evaluate the metrics (rouge) on (a jsonlines or csv file)."
            )
170
171
172
173
174
        },
    )
    test_file: Optional[str] = field(
        default=None,
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
175
            "help": "An optional input test data file to evaluate the metrics (rouge) on (a jsonlines or csv file)."
176
        },
177
178
179
180
181
182
183
184
185
186
187
    )
    overwrite_cache: bool = field(
        default=False, metadata={"help": "Overwrite the cached training and evaluation sets"}
    )
    preprocessing_num_workers: Optional[int] = field(
        default=None,
        metadata={"help": "The number of processes to use for the preprocessing."},
    )
    max_source_length: Optional[int] = field(
        default=1024,
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
188
189
190
191
            "help": (
                "The maximum total input sequence length after tokenization. Sequences longer "
                "than this will be truncated, sequences shorter will be padded."
            )
192
193
194
195
196
        },
    )
    max_target_length: Optional[int] = field(
        default=128,
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
197
198
199
200
            "help": (
                "The maximum total sequence length for target text after tokenization. Sequences longer "
                "than this will be truncated, sequences shorter will be padded."
            )
201
202
203
        },
    )
    val_max_target_length: Optional[int] = field(
204
        default=None,
205
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
206
207
208
209
210
211
            "help": (
                "The maximum total sequence length for validation target text after tokenization. Sequences longer "
                "than this will be truncated, sequences shorter will be padded. Will default to `max_target_length`."
                "This argument is also used to override the ``max_length`` param of ``model.generate``, which is used "
                "during ``evaluate`` and ``predict``."
            )
212
213
214
215
216
        },
    )
    pad_to_max_length: bool = field(
        default=False,
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
217
218
219
220
221
            "help": (
                "Whether to pad all samples to model maximum sentence length. "
                "If False, will pad the samples dynamically when batching to the maximum length in the batch. More "
                "efficient on GPU but very bad for TPU."
            )
222
223
224
225
226
        },
    )
    max_train_samples: Optional[int] = field(
        default=None,
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
227
228
229
230
            "help": (
                "For debugging purposes or quicker training, truncate the number of training examples to this "
                "value if set."
            )
231
232
        },
    )
233
    max_eval_samples: Optional[int] = field(
234
235
        default=None,
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
236
237
238
239
            "help": (
                "For debugging purposes or quicker training, truncate the number of evaluation examples to this "
                "value if set."
            )
240
241
        },
    )
242
    max_predict_samples: Optional[int] = field(
243
244
        default=None,
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
245
246
247
248
            "help": (
                "For debugging purposes or quicker training, truncate the number of prediction examples to this "
                "value if set."
            )
249
250
251
252
253
        },
    )
    num_beams: Optional[int] = field(
        default=None,
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
254
255
256
257
            "help": (
                "Number of beams to use for evaluation. This argument will be passed to ``model.generate``, "
                "which is used during ``evaluate`` and ``predict``."
            )
258
259
        },
    )
260
261
262
263
264
265
    ignore_pad_token_for_loss: bool = field(
        default=True,
        metadata={
            "help": "Whether to ignore the tokens corresponding to padded labels in the loss computation or not."
        },
    )
266
    source_prefix: Optional[str] = field(
267
268
269
270
271
272
        default="", metadata={"help": "A prefix to add before every source text (useful for T5 models)."}
    )

    forced_bos_token: Optional[str] = field(
        default=None,
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
273
274
275
276
277
            "help": (
                "The token to force as the first generated token after the decoder_start_token_id."
                "Useful for multilingual models like mBART where the first generated token"
                "needs to be the target language token (Usually it is the target language token)"
            )
278
        },
279
    )
280
281

    def __post_init__(self):
282
283
284
285
286
287
288
        if (
            self.dataset_name is None
            and self.train_file is None
            and self.validation_file is None
            and self.test_file is None
        ):
            raise ValueError("Need either a dataset name or a training, validation, or test file.")
289
290
291
292
293
294
295
        else:
            if self.train_file is not None:
                extension = self.train_file.split(".")[-1]
                assert extension in ["csv", "json"], "`train_file` should be a csv or a json file."
            if self.validation_file is not None:
                extension = self.validation_file.split(".")[-1]
                assert extension in ["csv", "json"], "`validation_file` should be a csv or a json file."
296
297
298
            if self.test_file is not None:
                extension = self.test_file.split(".")[-1]
                assert extension in ["csv", "json"], "`test_file` should be a csv or a json file."
299
300
        if self.val_max_target_length is None:
            self.val_max_target_length = self.max_target_length
301
302
303


summarization_name_mapping = {
304
305
    "amazon_reviews_multi": ("review_body", "review_title"),
    "big_patent": ("description", "abstract"),
306
    "cnn_dailymail": ("article", "highlights"),
307
308
309
310
311
312
    "orange_sum": ("text", "summary"),
    "pn_summary": ("article", "summary"),
    "psc": ("extract_text", "summary_text"),
    "samsum": ("dialogue", "summary"),
    "thaisum": ("body", "summary"),
    "xglue": ("news_body", "news_title"),
313
    "xsum": ("document", "summary"),
314
    "wiki_summary": ("article", "highlights"),
315
    "multi_news": ("document", "summary"),
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
}


def main():
    # See all possible arguments in src/transformers/training_args.py
    # or by passing the --help flag to this script.
    # We now keep distinct sets of args, for a cleaner separation of concerns.

    parser = HfArgumentParser((ModelArguments, DataTrainingArguments, Seq2SeqTrainingArguments))
    if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
        # If we pass only one argument to the script and it's the path to a json file,
        # let's parse it to get our arguments.
        model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1]))
    else:
        model_args, data_args, training_args = parser.parse_args_into_dataclasses()

332
333
334
335
336
337
    if model_args.use_auth_token is not None:
        warnings.warn("The `use_auth_token` argument is deprecated and will be removed in v4.34.", FutureWarning)
        if model_args.token is not None:
            raise ValueError("`token` and `use_auth_token` are both specified. Please set only the argument `token`.")
        model_args.token = model_args.use_auth_token

338
339
340
341
    # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The
    # information sent is the one passed as arguments along with your Python/PyTorch versions.
    send_example_telemetry("run_summarization", model_args, data_args)

342
343
    # Setup logging
    logging.basicConfig(
344
        format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
345
346
347
        datefmt="%m/%d/%Y %H:%M:%S",
        handlers=[logging.StreamHandler(sys.stdout)],
    )
348
349
350
351
352

    if training_args.should_log:
        # The default of training_args.log_level is passive, so we set log level at info here to have that default.
        transformers.utils.logging.set_verbosity_info()

353
354
355
356
357
358
    log_level = training_args.get_process_log_level()
    logger.setLevel(log_level)
    datasets.utils.logging.set_verbosity(log_level)
    transformers.utils.logging.set_verbosity(log_level)
    transformers.utils.logging.enable_default_handler()
    transformers.utils.logging.enable_explicit_format()
359
360
361
362

    # Log on each process the small summary:
    logger.warning(
        f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}"
363
        + f"distributed training: {training_args.parallel_mode.value == 'distributed'}, 16-bits training: {training_args.fp16}"
364
365
366
    )
    logger.info(f"Training/evaluation parameters {training_args}")

367
368
369
370
371
372
373
374
375
376
377
378
    if data_args.source_prefix is None and model_args.model_name_or_path in [
        "t5-small",
        "t5-base",
        "t5-large",
        "t5-3b",
        "t5-11b",
    ]:
        logger.warning(
            "You're running a t5 model but didn't provide a source prefix, which is the expected, e.g. with "
            "`--source_prefix 'summarize: ' `"
        )

379
380
381
382
383
384
385
386
387
    # Detecting last checkpoint.
    last_checkpoint = None
    if os.path.isdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir:
        last_checkpoint = get_last_checkpoint(training_args.output_dir)
        if last_checkpoint is None and len(os.listdir(training_args.output_dir)) > 0:
            raise ValueError(
                f"Output directory ({training_args.output_dir}) already exists and is not empty. "
                "Use --overwrite_output_dir to overcome."
            )
388
        elif last_checkpoint is not None and training_args.resume_from_checkpoint is None:
389
390
391
392
            logger.info(
                f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change "
                "the `--output_dir` or add `--overwrite_output_dir` to train from scratch."
            )
393
394
395
396
397
398
399
400

    # Set seed before initializing model.
    set_seed(training_args.seed)

    # Get the datasets: you can either provide your own CSV/JSON training and evaluation files (see below)
    # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/
    # (the dataset will be downloaded automatically from the datasets Hub).
    #
401
402
    # For CSV/JSON files this script will use the first column for the full texts and the second column for the
    # summaries (unless you specify column names for this with the `text_column` and `summary_column` arguments).
403
404
405
406
407
    #
    # In distributed training, the load_dataset function guarantee that only one local process can concurrently
    # download the dataset.
    if data_args.dataset_name is not None:
        # Downloading and loading a dataset from the hub.
408
        raw_datasets = load_dataset(
409
410
411
            data_args.dataset_name,
            data_args.dataset_config_name,
            cache_dir=model_args.cache_dir,
412
            token=model_args.token,
413
        )
414
415
416
417
418
419
420
421
    else:
        data_files = {}
        if data_args.train_file is not None:
            data_files["train"] = data_args.train_file
            extension = data_args.train_file.split(".")[-1]
        if data_args.validation_file is not None:
            data_files["validation"] = data_args.validation_file
            extension = data_args.validation_file.split(".")[-1]
422
423
424
        if data_args.test_file is not None:
            data_files["test"] = data_args.test_file
            extension = data_args.test_file.split(".")[-1]
425
426
427
428
        raw_datasets = load_dataset(
            extension,
            data_files=data_files,
            cache_dir=model_args.cache_dir,
429
            token=model_args.token,
430
        )
431
432
433
434
435
436
437
438
439
440
441
442
    # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at
    # https://huggingface.co/docs/datasets/loading_datasets.html.

    # Load pretrained model and tokenizer
    #
    # Distributed training:
    # The .from_pretrained methods guarantee that only one local process can concurrently
    # download model & vocab.
    config = AutoConfig.from_pretrained(
        model_args.config_name if model_args.config_name else model_args.model_name_or_path,
        cache_dir=model_args.cache_dir,
        revision=model_args.model_revision,
443
        token=model_args.token,
444
        trust_remote_code=model_args.trust_remote_code,
445
446
447
448
449
450
    )
    tokenizer = AutoTokenizer.from_pretrained(
        model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path,
        cache_dir=model_args.cache_dir,
        use_fast=model_args.use_fast_tokenizer,
        revision=model_args.model_revision,
451
        token=model_args.token,
452
        trust_remote_code=model_args.trust_remote_code,
453
454
455
456
457
458
459
    )
    model = AutoModelForSeq2SeqLM.from_pretrained(
        model_args.model_name_or_path,
        from_tf=bool(".ckpt" in model_args.model_name_or_path),
        config=config,
        cache_dir=model_args.cache_dir,
        revision=model_args.model_revision,
460
        token=model_args.token,
461
        trust_remote_code=model_args.trust_remote_code,
462
463
    )

464
465
466
467
468
    # We resize the embeddings only when necessary to avoid index errors. If you are creating a model from scratch
    # on a small vocab and want a smaller embedding size, remove this test.
    embedding_size = model.get_input_embeddings().weight.shape[0]
    if len(tokenizer) > embedding_size:
        model.resize_token_embeddings(len(tokenizer))
Suraj Patil's avatar
Suraj Patil committed
469

470
471
472
473
474
475
    if model.config.decoder_start_token_id is None and isinstance(tokenizer, (MBartTokenizer, MBartTokenizerFast)):
        if isinstance(tokenizer, MBartTokenizer):
            model.config.decoder_start_token_id = tokenizer.lang_code_to_id[data_args.lang]
        else:
            model.config.decoder_start_token_id = tokenizer.convert_tokens_to_ids(data_args.lang)

476
477
478
    if model.config.decoder_start_token_id is None:
        raise ValueError("Make sure that `config.decoder_start_token_id` is correctly defined")

479
480
481
482
483
484
    if (
        hasattr(model.config, "max_position_embeddings")
        and model.config.max_position_embeddings < data_args.max_source_length
    ):
        if model_args.resize_position_embeddings is None:
            logger.warning(
Sylvain Gugger's avatar
Sylvain Gugger committed
485
486
                "Increasing the model's number of position embedding vectors from"
                f" {model.config.max_position_embeddings} to {data_args.max_source_length}."
487
488
489
490
491
492
            )
            model.resize_position_embeddings(data_args.max_source_length)
        elif model_args.resize_position_embeddings:
            model.resize_position_embeddings(data_args.max_source_length)
        else:
            raise ValueError(
Sylvain Gugger's avatar
Sylvain Gugger committed
493
494
495
496
                f"`--max_source_length` is set to {data_args.max_source_length}, but the model only has"
                f" {model.config.max_position_embeddings} position encodings. Consider either reducing"
                f" `--max_source_length` to {model.config.max_position_embeddings} or to automatically resize the"
                " model's position encodings by passing `--resize_position_embeddings`."
497
498
            )

499
    prefix = data_args.source_prefix if data_args.source_prefix is not None else ""
500

501
502
503
    # Preprocessing the datasets.
    # We need to tokenize inputs and targets.
    if training_args.do_train:
504
505
        if "train" not in raw_datasets:
            raise ValueError("--do_train requires a train dataset")
506
        column_names = raw_datasets["train"].column_names
507
    elif training_args.do_eval:
508
509
        if "validation" not in raw_datasets:
            raise ValueError("--do_eval requires a validation dataset")
510
        column_names = raw_datasets["validation"].column_names
511
    elif training_args.do_predict:
512
513
        if "test" not in raw_datasets:
            raise ValueError("--do_predict requires a test dataset")
514
        column_names = raw_datasets["test"].column_names
515
516
517
    else:
        logger.info("There is nothing to do. Please pass `do_train`, `do_eval` and/or `do_predict`.")
        return
518

519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
    if isinstance(tokenizer, tuple(MULTILINGUAL_TOKENIZERS)):
        assert (
            data_args.lang is not None
        ), f"{tokenizer.__class__.__name__} is a multilingual tokenizer which requires --lang argument"

        tokenizer.src_lang = data_args.lang
        tokenizer.tgt_lang = data_args.lang

        # For multilingual translation models like mBART-50 and M2M100 we need to force the target language token
        # as the first generated token. We ask the user to explicitly provide this as --forced_bos_token argument.
        forced_bos_token_id = (
            tokenizer.lang_code_to_id[data_args.forced_bos_token] if data_args.forced_bos_token is not None else None
        )
        model.config.forced_bos_token_id = forced_bos_token_id

534
535
536
537
    # Get the column names for input/target.
    dataset_columns = summarization_name_mapping.get(data_args.dataset_name, None)
    if data_args.text_column is None:
        text_column = dataset_columns[0] if dataset_columns is not None else column_names[0]
538
    else:
539
540
541
542
543
544
545
546
547
548
549
550
551
        text_column = data_args.text_column
        if text_column not in column_names:
            raise ValueError(
                f"--text_column' value '{data_args.text_column}' needs to be one of: {', '.join(column_names)}"
            )
    if data_args.summary_column is None:
        summary_column = dataset_columns[1] if dataset_columns is not None else column_names[1]
    else:
        summary_column = data_args.summary_column
        if summary_column not in column_names:
            raise ValueError(
                f"--summary_column' value '{data_args.summary_column}' needs to be one of: {', '.join(column_names)}"
            )
552
553
554
555
556

    # Temporarily set max_target_length for training.
    max_target_length = data_args.max_target_length
    padding = "max_length" if data_args.pad_to_max_length else False

557
    if training_args.label_smoothing_factor > 0 and not hasattr(model, "prepare_decoder_input_ids_from_labels"):
558
        logger.warning(
559
560
561
562
            "label_smoothing is enabled but the `prepare_decoder_input_ids_from_labels` method is not defined for"
            f"`{model.__class__.__name__}`. This will lead to loss being calculated twice and will take up more memory"
        )

563
    def preprocess_function(examples):
564
        # remove pairs where at least one record is None
565

566
567
        inputs, targets = [], []
        for i in range(len(examples[text_column])):
568
            if examples[text_column][i] and examples[summary_column][i]:
569
570
571
                inputs.append(examples[text_column][i])
                targets.append(examples[summary_column][i])

572
        inputs = [prefix + inp for inp in inputs]
573
574
        model_inputs = tokenizer(inputs, max_length=data_args.max_source_length, padding=padding, truncation=True)

575
576
        # Tokenize targets with the `text_target` keyword argument
        labels = tokenizer(text_target=targets, max_length=max_target_length, padding=padding, truncation=True)
577
578
579
580
581
582
583
584
585
586
587
588

        # If we are padding here, replace all tokenizer.pad_token_id in the labels by -100 when we want to ignore
        # padding in the loss.
        if padding == "max_length" and data_args.ignore_pad_token_for_loss:
            labels["input_ids"] = [
                [(l if l != tokenizer.pad_token_id else -100) for l in label] for label in labels["input_ids"]
            ]

        model_inputs["labels"] = labels["input_ids"]
        return model_inputs

    if training_args.do_train:
589
        train_dataset = raw_datasets["train"]
590
        if data_args.max_train_samples is not None:
591
592
            max_train_samples = min(len(train_dataset), data_args.max_train_samples)
            train_dataset = train_dataset.select(range(max_train_samples))
593
594
595
596
597
598
599
600
601
        with training_args.main_process_first(desc="train dataset map pre-processing"):
            train_dataset = train_dataset.map(
                preprocess_function,
                batched=True,
                num_proc=data_args.preprocessing_num_workers,
                remove_columns=column_names,
                load_from_cache_file=not data_args.overwrite_cache,
                desc="Running tokenizer on train dataset",
            )
602
603
604

    if training_args.do_eval:
        max_target_length = data_args.val_max_target_length
605
        eval_dataset = raw_datasets["validation"]
606
        if data_args.max_eval_samples is not None:
607
608
            max_eval_samples = min(len(eval_dataset), data_args.max_eval_samples)
            eval_dataset = eval_dataset.select(range(max_eval_samples))
609
610
611
612
613
614
615
616
617
        with training_args.main_process_first(desc="validation dataset map pre-processing"):
            eval_dataset = eval_dataset.map(
                preprocess_function,
                batched=True,
                num_proc=data_args.preprocessing_num_workers,
                remove_columns=column_names,
                load_from_cache_file=not data_args.overwrite_cache,
                desc="Running tokenizer on validation dataset",
            )
618

619
620
    if training_args.do_predict:
        max_target_length = data_args.val_max_target_length
621
        predict_dataset = raw_datasets["test"]
622
        if data_args.max_predict_samples is not None:
623
624
            max_predict_samples = min(len(predict_dataset), data_args.max_predict_samples)
            predict_dataset = predict_dataset.select(range(max_predict_samples))
625
626
627
628
629
630
631
632
633
        with training_args.main_process_first(desc="prediction dataset map pre-processing"):
            predict_dataset = predict_dataset.map(
                preprocess_function,
                batched=True,
                num_proc=data_args.preprocessing_num_workers,
                remove_columns=column_names,
                load_from_cache_file=not data_args.overwrite_cache,
                desc="Running tokenizer on prediction dataset",
            )
634

635
636
    # Data collator
    label_pad_token_id = -100 if data_args.ignore_pad_token_for_loss else tokenizer.pad_token_id
637
638
639
640
641
642
    data_collator = DataCollatorForSeq2Seq(
        tokenizer,
        model=model,
        label_pad_token_id=label_pad_token_id,
        pad_to_multiple_of=8 if training_args.fp16 else None,
    )
643
644

    # Metric
645
    metric = evaluate.load("rouge")
646

647
648
649
650
651
    def postprocess_text(preds, labels):
        preds = [pred.strip() for pred in preds]
        labels = [label.strip() for label in labels]

        # rougeLSum expects newline after each sentence
652
653
        preds = ["\n".join(nltk.sent_tokenize(pred)) for pred in preds]
        labels = ["\n".join(nltk.sent_tokenize(label)) for label in labels]
654
655
656

        return preds, labels

657
658
659
660
    def compute_metrics(eval_preds):
        preds, labels = eval_preds
        if isinstance(preds, tuple):
            preds = preds[0]
661
662
        # Replace -100s used for padding as we can't decode them
        preds = np.where(preds != -100, preds, tokenizer.pad_token_id)
663
        decoded_preds = tokenizer.batch_decode(preds, skip_special_tokens=True)
664
        labels = np.where(labels != -100, labels, tokenizer.pad_token_id)
665
666
667
        decoded_labels = tokenizer.batch_decode(labels, skip_special_tokens=True)

        # Some simple post-processing
668
        decoded_preds, decoded_labels = postprocess_text(decoded_preds, decoded_labels)
669

670
        result = metric.compute(predictions=decoded_preds, references=decoded_labels, use_stemmer=True)
671
        result = {k: round(v * 100, 4) for k, v in result.items()}
672
673
674
675
        prediction_lens = [np.count_nonzero(pred != tokenizer.pad_token_id) for pred in preds]
        result["gen_len"] = np.mean(prediction_lens)
        return result

676
    # Override the decoding parameters of Seq2SeqTrainer
677
678
679
680
681
682
683
684
    training_args.generation_max_length = (
        training_args.generation_max_length
        if training_args.generation_max_length is not None
        else data_args.val_max_target_length
    )
    training_args.generation_num_beams = (
        data_args.num_beams if data_args.num_beams is not None else training_args.generation_num_beams
    )
685

686
687
688
689
690
691
692
693
694
695
696
697
698
    # Initialize our Trainer
    trainer = Seq2SeqTrainer(
        model=model,
        args=training_args,
        train_dataset=train_dataset if training_args.do_train else None,
        eval_dataset=eval_dataset if training_args.do_eval else None,
        tokenizer=tokenizer,
        data_collator=data_collator,
        compute_metrics=compute_metrics if training_args.predict_with_generate else None,
    )

    # Training
    if training_args.do_train:
699
700
701
702
        checkpoint = None
        if training_args.resume_from_checkpoint is not None:
            checkpoint = training_args.resume_from_checkpoint
        elif last_checkpoint is not None:
703
704
            checkpoint = last_checkpoint
        train_result = trainer.train(resume_from_checkpoint=checkpoint)
705
706
        trainer.save_model()  # Saves the tokenizer too for easy upload

707
708
709
710
711
        metrics = train_result.metrics
        max_train_samples = (
            data_args.max_train_samples if data_args.max_train_samples is not None else len(train_dataset)
        )
        metrics["train_samples"] = min(max_train_samples, len(train_dataset))
712

713
714
715
        trainer.log_metrics("train", metrics)
        trainer.save_metrics("train", metrics)
        trainer.save_state()
716
717

    # Evaluation
718
    results = {}
719
720
    if training_args.do_eval:
        logger.info("*** Evaluate ***")
721
722
723
724
725
726
727
        if isinstance(eval_dataset, dict):
            metrics = {}
            for eval_ds_name, eval_ds in eval_dataset.items():
                dataset_metrics = trainer.evaluate(eval_dataset=eval_ds, metric_key_prefix=f"eval_{eval_ds_name}")
                metrics.update(dataset_metrics)
        else:
            metrics = trainer.evaluate(metric_key_prefix="eval")
728
729
        max_eval_samples = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(eval_dataset)
        metrics["eval_samples"] = min(max_eval_samples, len(eval_dataset))
730

731
732
        trainer.log_metrics("eval", metrics)
        trainer.save_metrics("eval", metrics)
733

734
    if training_args.do_predict:
735
        logger.info("*** Predict ***")
736

737
        predict_results = trainer.predict(predict_dataset, metric_key_prefix="predict")
738
739
740
741
742
        metrics = predict_results.metrics
        max_predict_samples = (
            data_args.max_predict_samples if data_args.max_predict_samples is not None else len(predict_dataset)
        )
        metrics["predict_samples"] = min(max_predict_samples, len(predict_dataset))
743

744
745
        trainer.log_metrics("predict", metrics)
        trainer.save_metrics("predict", metrics)
746

747
        if trainer.is_world_process_zero():
748
            if training_args.predict_with_generate:
749
750
                predictions = predict_results.predictions
                predictions = np.where(predictions != -100, predictions, tokenizer.pad_token_id)
751
                predictions = tokenizer.batch_decode(
752
                    predictions, skip_special_tokens=True, clean_up_tokenization_spaces=True
753
                )
754
755
756
757
                predictions = [pred.strip() for pred in predictions]
                output_prediction_file = os.path.join(training_args.output_dir, "generated_predictions.txt")
                with open(output_prediction_file, "w") as writer:
                    writer.write("\n".join(predictions))
758

759
760
761
762
763
764
765
766
    kwargs = {"finetuned_from": model_args.model_name_or_path, "tasks": "summarization"}
    if data_args.dataset_name is not None:
        kwargs["dataset_tags"] = data_args.dataset_name
        if data_args.dataset_config_name is not None:
            kwargs["dataset_args"] = data_args.dataset_config_name
            kwargs["dataset"] = f"{data_args.dataset_name} {data_args.dataset_config_name}"
        else:
            kwargs["dataset"] = data_args.dataset_name
Sylvain Gugger's avatar
Sylvain Gugger committed
767

768
769
770
    if data_args.lang is not None:
        kwargs["language"] = data_args.lang

771
    if training_args.push_to_hub:
Sylvain Gugger's avatar
Sylvain Gugger committed
772
        trainer.push_to_hub(**kwargs)
773
774
    else:
        trainer.create_model_card(**kwargs)
Sylvain Gugger's avatar
Sylvain Gugger committed
775

776
777
    return results

778
779
780
781
782
783
784
785

def _mp_fn(index):
    # For xla_spawn (TPUs)
    main()


if __name__ == "__main__":
    main()