test_modeling_common.py 40.4 KB
Newer Older
thomwolf's avatar
thomwolf committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# coding=utf-8
# Copyright 2019 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Aymeric Augustin's avatar
Aymeric Augustin committed
15

16
import copy
Aymeric Augustin's avatar
Aymeric Augustin committed
17
import logging
18
import os.path
Aymeric Augustin's avatar
Aymeric Augustin committed
19
import random
20
import tempfile
thomwolf's avatar
thomwolf committed
21
import unittest
22
from typing import List
thomwolf's avatar
thomwolf committed
23

24
from transformers import is_torch_available
25

26
from .utils import require_multigpu, require_torch, slow, torch_device
27

Aymeric Augustin's avatar
Aymeric Augustin committed
28

29
if is_torch_available():
thomwolf's avatar
thomwolf committed
30
    import torch
31
    import numpy as np
thomwolf's avatar
thomwolf committed
32

33
34
35
36
37
38
    from transformers import (
        AdaptiveEmbedding,
        PretrainedConfig,
        PreTrainedModel,
        BertModel,
        BertConfig,
39
        BERT_PRETRAINED_MODEL_ARCHIVE_LIST,
40
        MODEL_FOR_MULTIPLE_CHOICE_MAPPING,
41
        top_k_top_p_filtering,
42
    )
thomwolf's avatar
thomwolf committed
43

44

45
46
47
def _config_zero_init(config):
    configs_no_init = copy.deepcopy(config)
    for key in configs_no_init.__dict__.keys():
48
        if "_range" in key or "_std" in key or "initializer_factor" in key:
Lysandre Debut's avatar
Lysandre Debut committed
49
            setattr(configs_no_init, key, 1e-10)
50
51
    return configs_no_init

thomwolf's avatar
thomwolf committed
52

53
54
55
56
57
@require_torch
class ModelTesterMixin:

    model_tester = None
    all_model_classes = ()
58
    all_generative_model_classes = ()
Patrick von Platen's avatar
Patrick von Platen committed
59
60
61
62
    test_torchscript = True
    test_pruning = True
    test_resize_embeddings = True
    test_head_masking = True
63
    test_missing_keys = True
64
65
    is_encoder_decoder = False

66
67
68
69
    def _prepare_for_class(self, inputs_dict, model_class):
        if model_class in MODEL_FOR_MULTIPLE_CHOICE_MAPPING.values():
            return {
                k: v.unsqueeze(1).expand(-1, self.model_tester.num_choices, -1).contiguous()
Sylvain Gugger's avatar
Sylvain Gugger committed
70
71
                if isinstance(v, torch.Tensor) and v.ndim != 0
                else v
72
73
74
75
                for k, v in inputs_dict.items()
            }
        return inputs_dict

Patrick von Platen's avatar
Patrick von Platen committed
76
    def test_save_load(self):
77
78
79
80
81
82
83
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
            model.to(torch_device)
            model.eval()
            with torch.no_grad():
84
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))
85
            out_2 = outputs[0].cpu().numpy()
86
            out_2[np.isnan(out_2)] = 0
87

88
            with tempfile.TemporaryDirectory() as tmpdirname:
89
90
                model.save_pretrained(tmpdirname)
                model = model_class.from_pretrained(tmpdirname)
91
                model.to(torch_device)
92
                with torch.no_grad():
93
                    after_outputs = model(**self._prepare_for_class(inputs_dict, model_class))
thomwolf's avatar
thomwolf committed
94

95
96
97
                # Make sure we don't have nans
                out_1 = after_outputs[0].cpu().numpy()
                out_1[np.isnan(out_1)] = 0
thomwolf's avatar
thomwolf committed
98
99
                max_diff = np.amax(np.abs(out_1 - out_2))
                self.assertLessEqual(max_diff, 1e-5)
100

Patrick von Platen's avatar
Patrick von Platen committed
101
    def test_initialization(self):
102
103
104
105
106
107
108
109
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        configs_no_init = _config_zero_init(config)
        for model_class in self.all_model_classes:
            model = model_class(config=configs_no_init)
            for name, param in model.named_parameters():
                if param.requires_grad:
                    self.assertIn(
Lysandre Debut's avatar
Lysandre Debut committed
110
                        ((param.data.mean() * 1e9).round() / 1e9).item(),
111
112
113
                        [0.0, 1.0],
                        msg="Parameter {} of model {} seems not properly initialized".format(name, model_class),
                    )
thomwolf's avatar
thomwolf committed
114

Patrick von Platen's avatar
Patrick von Platen committed
115
    def test_determinism(self):
116
117
118
119
120
121
122
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
            model.to(torch_device)
            model.eval()
            with torch.no_grad():
123
124
                first = model(**self._prepare_for_class(inputs_dict, model_class))[0]
                second = model(**self._prepare_for_class(inputs_dict, model_class))[0]
125
126
127
128
129
130
131
            out_1 = first.cpu().numpy()
            out_2 = second.cpu().numpy()
            out_1 = out_1[~np.isnan(out_1)]
            out_2 = out_2[~np.isnan(out_2)]
            max_diff = np.amax(np.abs(out_1 - out_2))
            self.assertLessEqual(max_diff, 1e-5)

Patrick von Platen's avatar
Patrick von Platen committed
132
    def test_attention_outputs(self):
133
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
sshleifer's avatar
sshleifer committed
134
        seq_len = getattr(self.model_tester, "seq_length", None)
sshleifer's avatar
sshleifer committed
135
136
        decoder_seq_length = getattr(self.model_tester, "decoder_seq_length", seq_len)
        encoder_seq_length = getattr(self.model_tester, "encoder_seq_length", seq_len)
137
138
        decoder_key_length = getattr(self.model_tester, "key_length", decoder_seq_length)
        encoder_key_length = getattr(self.model_tester, "key_length", encoder_seq_length)
Patrick von Platen's avatar
Patrick von Platen committed
139
140
141
        chunk_length = getattr(self.model_tester, "chunk_length", None)
        if chunk_length is not None and hasattr(self.model_tester, "num_hashes"):
            encoder_seq_length = encoder_seq_length * self.model_tester.num_hashes
142
143

        for model_class in self.all_model_classes:
144
            inputs_dict["output_attentions"] = True
145
146
147
148
149
            config.output_hidden_states = False
            model = model_class(config)
            model.to(torch_device)
            model.eval()
            with torch.no_grad():
150
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))
151
            attentions = outputs[-1]
152
153
154
155
156
157
158
159
160
161
            self.assertEqual(model.config.output_hidden_states, False)
            self.assertEqual(len(attentions), self.model_tester.num_hidden_layers)

            # check that output_attentions also work using config
            del inputs_dict["output_attentions"]
            config.output_attentions = True
            model = model_class(config)
            model.to(torch_device)
            model.eval()
            with torch.no_grad():
Sylvain Gugger's avatar
Sylvain Gugger committed
162
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))
163
            attentions = outputs[-1]
164
165
            self.assertEqual(model.config.output_hidden_states, False)
            self.assertEqual(len(attentions), self.model_tester.num_hidden_layers)
Patrick von Platen's avatar
Patrick von Platen committed
166
167
168
169
170
171
172
173
174
175
176

            if chunk_length is not None:
                self.assertListEqual(
                    list(attentions[0].shape[-4:]),
                    [self.model_tester.num_attention_heads, encoder_seq_length, chunk_length, encoder_key_length],
                )
            else:
                self.assertListEqual(
                    list(attentions[0].shape[-3:]),
                    [self.model_tester.num_attention_heads, encoder_seq_length, encoder_key_length],
                )
177
            out_len = len(outputs)
thomwolf's avatar
thomwolf committed
178

179
            if self.is_encoder_decoder:
180
                correct_outlen = 4
Sam Shleifer's avatar
Sam Shleifer committed
181
                decoder_attention_idx = 1
182

183
                if "lm_labels" in inputs_dict:  # loss will come first
Sam Shleifer's avatar
Sam Shleifer committed
184
185
186
187
188
189
                    correct_outlen += 1  # compute loss
                    decoder_attention_idx += 1
                self.assertEqual(out_len, correct_outlen)

                decoder_attentions = outputs[decoder_attention_idx]
                self.assertIsInstance(decoder_attentions, (list, tuple))
190
                self.assertEqual(len(decoder_attentions), self.model_tester.num_hidden_layers)
thomwolf's avatar
thomwolf committed
191
                self.assertListEqual(
192
193
                    list(decoder_attentions[0].shape[-3:]),
                    [self.model_tester.num_attention_heads, decoder_seq_length, decoder_key_length],
194
                )
thomwolf's avatar
thomwolf committed
195

196
            # Check attention is always last and order is fine
197
            inputs_dict["output_attentions"] = True
thomwolf's avatar
thomwolf committed
198
            config.output_hidden_states = True
199
200
201
202
            model = model_class(config)
            model.to(torch_device)
            model.eval()
            with torch.no_grad():
203
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))
204
205
206
207
208
            self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1), len(outputs))
            self.assertEqual(model.config.output_hidden_states, True)

            self_attentions = outputs[-1]
            self.assertEqual(len(self_attentions), self.model_tester.num_hidden_layers)
Patrick von Platen's avatar
Patrick von Platen committed
209
210
211
212
213
214
215
216
217
218
            if chunk_length is not None:
                self.assertListEqual(
                    list(self_attentions[0].shape[-4:]),
                    [self.model_tester.num_attention_heads, encoder_seq_length, chunk_length, encoder_key_length],
                )
            else:
                self.assertListEqual(
                    list(self_attentions[0].shape[-3:]),
                    [self.model_tester.num_attention_heads, encoder_seq_length, encoder_key_length],
                )
thomwolf's avatar
thomwolf committed
219

Patrick von Platen's avatar
Patrick von Platen committed
220
    def test_torchscript(self):
221
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
thomwolf's avatar
thomwolf committed
222

223
        self._create_and_check_torchscript(config, inputs_dict)
thomwolf's avatar
thomwolf committed
224

Patrick von Platen's avatar
Patrick von Platen committed
225
    def test_torchscript_output_attentions(self):
226
227
228
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        config.output_attentions = True
        self._create_and_check_torchscript(config, inputs_dict)
thomwolf's avatar
thomwolf committed
229

Patrick von Platen's avatar
Patrick von Platen committed
230
    def test_torchscript_output_hidden_state(self):
231
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
232

233
234
        config.output_hidden_states = True
        self._create_and_check_torchscript(config, inputs_dict)
thomwolf's avatar
thomwolf committed
235

236
    def _create_and_check_torchscript(self, config, inputs_dict):
Patrick von Platen's avatar
Patrick von Platen committed
237
        if not self.test_torchscript:
238
            return
239

240
241
242
243
244
245
        configs_no_init = _config_zero_init(config)  # To be sure we have no Nan
        configs_no_init.torchscript = True
        for model_class in self.all_model_classes:
            model = model_class(config=configs_no_init)
            model.to(torch_device)
            model.eval()
246
            inputs = self._prepare_for_class(inputs_dict, model_class)["input_ids"]  # Let's keep only input_ids
thomwolf's avatar
thomwolf committed
247

248
249
250
251
            try:
                traced_gpt2 = torch.jit.trace(model, inputs)
            except RuntimeError:
                self.fail("Couldn't trace module.")
thomwolf's avatar
thomwolf committed
252

253
            with tempfile.TemporaryDirectory() as tmp_dir_name:
254
                pt_file_name = os.path.join(tmp_dir_name, "traced_model.pt")
thomwolf's avatar
thomwolf committed
255

256
257
258
259
                try:
                    torch.jit.save(traced_gpt2, pt_file_name)
                except Exception:
                    self.fail("Couldn't save module.")
thomwolf's avatar
thomwolf committed
260

261
262
263
264
                try:
                    loaded_model = torch.jit.load(pt_file_name)
                except Exception:
                    self.fail("Couldn't load module.")
LysandreJik's avatar
LysandreJik committed
265

266
267
            model.to(torch_device)
            model.eval()
thomwolf's avatar
thomwolf committed
268

269
270
            loaded_model.to(torch_device)
            loaded_model.eval()
thomwolf's avatar
thomwolf committed
271

272
273
274
275
            model_state_dict = model.state_dict()
            loaded_model_state_dict = loaded_model.state_dict()

            self.assertEqual(set(model_state_dict.keys()), set(loaded_model_state_dict.keys()))
thomwolf's avatar
thomwolf committed
276

277
            models_equal = True
278
279
            for layer_name, p1 in model_state_dict.items():
                p2 = loaded_model_state_dict[layer_name]
280
281
                if p1.data.ne(p2.data).sum() > 0:
                    models_equal = False
thomwolf's avatar
thomwolf committed
282

283
            self.assertTrue(models_equal)
thomwolf's avatar
thomwolf committed
284

Patrick von Platen's avatar
Patrick von Platen committed
285
286
    def test_headmasking(self):
        if not self.test_head_masking:
287
            return
288

289
290
291
        global_rng.seed(42)
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        global_rng.seed()
LysandreJik's avatar
LysandreJik committed
292

293
        inputs_dict["output_attentions"] = True
294
295
296
297
298
299
        config.output_hidden_states = True
        configs_no_init = _config_zero_init(config)  # To be sure we have no Nan
        for model_class in self.all_model_classes:
            model = model_class(config=configs_no_init)
            model.to(torch_device)
            model.eval()
LysandreJik's avatar
LysandreJik committed
300

301
302
303
            # Prepare head_mask
            # Set require_grad after having prepared the tensor to avoid error (leaf variable has been moved into the graph interior)
            head_mask = torch.ones(
304
                self.model_tester.num_hidden_layers, self.model_tester.num_attention_heads, device=torch_device,
305
306
307
308
            )
            head_mask[0, 0] = 0
            head_mask[-1, :-1] = 0
            head_mask.requires_grad_(requires_grad=True)
309
            inputs = self._prepare_for_class(inputs_dict, model_class).copy()
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
            inputs["head_mask"] = head_mask

            outputs = model(**inputs)

            # Test that we can get a gradient back for importance score computation
            output = sum(t.sum() for t in outputs[0])
            output = output.sum()
            output.backward()
            multihead_outputs = head_mask.grad

            attentions = outputs[-1]

            # Remove Nan
            for t in attentions:
                self.assertLess(
                    torch.sum(torch.isnan(t)), t.numel() / 4
                )  # Check we don't have more than 25% nans (arbitrary)
            attentions = [
                t.masked_fill(torch.isnan(t), 0.0) for t in attentions
            ]  # remove them (the test is less complete)

            self.assertIsNotNone(multihead_outputs)
            self.assertEqual(len(multihead_outputs), self.model_tester.num_hidden_layers)
            self.assertAlmostEqual(attentions[0][..., 0, :, :].flatten().sum().item(), 0.0)
            self.assertNotEqual(attentions[0][..., -1, :, :].flatten().sum().item(), 0.0)
            self.assertNotEqual(attentions[1][..., 0, :, :].flatten().sum().item(), 0.0)
            self.assertAlmostEqual(attentions[-1][..., -2, :, :].flatten().sum().item(), 0.0)
            self.assertNotEqual(attentions[-1][..., -1, :, :].flatten().sum().item(), 0.0)

Patrick von Platen's avatar
Patrick von Platen committed
339
340
    def test_head_pruning(self):
        if not self.test_pruning:
341
342
343
            return

        for model_class in self.all_model_classes:
344
            (config, inputs_dict,) = self.model_tester.prepare_config_and_inputs_for_common()
345

346
347
            if "head_mask" in inputs_dict:
                del inputs_dict["head_mask"]
348

349
            inputs_dict["output_attentions"] = True
350
351
352
353
            config.output_hidden_states = False
            model = model_class(config=config)
            model.to(torch_device)
            model.eval()
354
355
356
357
            heads_to_prune = {
                0: list(range(1, self.model_tester.num_attention_heads)),
                -1: [0],
            }
358
359
            model.prune_heads(heads_to_prune)
            with torch.no_grad():
360
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))
361

362
            attentions = outputs[-1]
363

364
365
366
            self.assertEqual(attentions[0].shape[-3], 1)
            self.assertEqual(attentions[1].shape[-3], self.model_tester.num_attention_heads)
            self.assertEqual(attentions[-1].shape[-3], self.model_tester.num_attention_heads - 1)
LysandreJik's avatar
LysandreJik committed
367

Patrick von Platen's avatar
Patrick von Platen committed
368
369
    def test_head_pruning_save_load_from_pretrained(self):
        if not self.test_pruning:
370
            return
LysandreJik's avatar
LysandreJik committed
371

372
        for model_class in self.all_model_classes:
373
            (config, inputs_dict,) = self.model_tester.prepare_config_and_inputs_for_common()
374
375
376

            if "head_mask" in inputs_dict:
                del inputs_dict["head_mask"]
377

378
            inputs_dict["output_attentions"] = True
379
380
381
382
            config.output_hidden_states = False
            model = model_class(config=config)
            model.to(torch_device)
            model.eval()
383
384
385
386
            heads_to_prune = {
                0: list(range(1, self.model_tester.num_attention_heads)),
                -1: [0],
            }
387
            model.prune_heads(heads_to_prune)
388

389
            with tempfile.TemporaryDirectory() as temp_dir_name:
390
391
                model.save_pretrained(temp_dir_name)
                model = model_class.from_pretrained(temp_dir_name)
392
                model.to(torch_device)
393

394
            with torch.no_grad():
395
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))
396
397
398
399
            attentions = outputs[-1]
            self.assertEqual(attentions[0].shape[-3], 1)
            self.assertEqual(attentions[1].shape[-3], self.model_tester.num_attention_heads)
            self.assertEqual(attentions[-1].shape[-3], self.model_tester.num_attention_heads - 1)
400

Patrick von Platen's avatar
Patrick von Platen committed
401
402
    def test_head_pruning_save_load_from_config_init(self):
        if not self.test_pruning:
403
            return
404

405
        for model_class in self.all_model_classes:
406
            (config, inputs_dict,) = self.model_tester.prepare_config_and_inputs_for_common()
407

408
409
            if "head_mask" in inputs_dict:
                del inputs_dict["head_mask"]
410

411
            inputs_dict["output_attentions"] = True
412
            config.output_hidden_states = False
413

414
415
416
417
            heads_to_prune = {
                0: list(range(1, self.model_tester.num_attention_heads)),
                -1: [0],
            }
418
            config.pruned_heads = heads_to_prune
419

420
421
422
            model = model_class(config=config)
            model.to(torch_device)
            model.eval()
423

424
            with torch.no_grad():
425
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))
426
            attentions = outputs[-1]
427

428
429
430
            self.assertEqual(attentions[0].shape[-3], 1)
            self.assertEqual(attentions[1].shape[-3], self.model_tester.num_attention_heads)
            self.assertEqual(attentions[-1].shape[-3], self.model_tester.num_attention_heads - 1)
431

Patrick von Platen's avatar
Patrick von Platen committed
432
433
    def test_head_pruning_integration(self):
        if not self.test_pruning:
434
            return
435

436
        for model_class in self.all_model_classes:
437
            (config, inputs_dict,) = self.model_tester.prepare_config_and_inputs_for_common()
438

439
440
            if "head_mask" in inputs_dict:
                del inputs_dict["head_mask"]
441

442
            inputs_dict["output_attentions"] = True
443
            config.output_hidden_states = False
444

445
446
            heads_to_prune = {0: [0], 1: [1, 2]}
            config.pruned_heads = heads_to_prune
447

448
449
450
            model = model_class(config=config)
            model.to(torch_device)
            model.eval()
451

452
            with torch.no_grad():
453
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))
454
            attentions = outputs[-1]
455

456
457
458
459
            self.assertEqual(attentions[0].shape[-3], self.model_tester.num_attention_heads - 1)
            self.assertEqual(attentions[1].shape[-3], self.model_tester.num_attention_heads - 2)
            self.assertEqual(attentions[2].shape[-3], self.model_tester.num_attention_heads)
            self.assertEqual(attentions[3].shape[-3], self.model_tester.num_attention_heads)
thomwolf's avatar
thomwolf committed
460

461
            with tempfile.TemporaryDirectory() as temp_dir_name:
462
463
                model.save_pretrained(temp_dir_name)
                model = model_class.from_pretrained(temp_dir_name)
464
                model.to(torch_device)
thomwolf's avatar
thomwolf committed
465

466
            with torch.no_grad():
467
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))
468
            attentions = outputs[-1]
LysandreJik's avatar
LysandreJik committed
469

470
471
472
473
            self.assertEqual(attentions[0].shape[-3], self.model_tester.num_attention_heads - 1)
            self.assertEqual(attentions[1].shape[-3], self.model_tester.num_attention_heads - 2)
            self.assertEqual(attentions[2].shape[-3], self.model_tester.num_attention_heads)
            self.assertEqual(attentions[3].shape[-3], self.model_tester.num_attention_heads)
thomwolf's avatar
thomwolf committed
474

475
476
            heads_to_prune = {0: [0], 2: [1, 2]}
            model.prune_heads(heads_to_prune)
477

478
            with torch.no_grad():
479
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))
480
            attentions = outputs[-1]
481

482
483
484
485
            self.assertEqual(attentions[0].shape[-3], self.model_tester.num_attention_heads - 1)
            self.assertEqual(attentions[1].shape[-3], self.model_tester.num_attention_heads - 2)
            self.assertEqual(attentions[2].shape[-3], self.model_tester.num_attention_heads - 2)
            self.assertEqual(attentions[3].shape[-3], self.model_tester.num_attention_heads)
486

487
            self.assertDictEqual(model.config.pruned_heads, {0: [0], 1: [1, 2], 2: [1, 2]})
thomwolf's avatar
thomwolf committed
488

Patrick von Platen's avatar
Patrick von Platen committed
489
    def test_hidden_states_output(self):
490
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
thomwolf's avatar
thomwolf committed
491

492
493
494
        for model_class in self.all_model_classes:
            config.output_hidden_states = True
            model = model_class(config)
495
            model.to(torch_device)
thomwolf's avatar
thomwolf committed
496
            model.eval()
thomwolf's avatar
thomwolf committed
497
            with torch.no_grad():
498
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))
499
500
501
            hidden_states = outputs[-1]
            self.assertEqual(model.config.output_hidden_states, True)
            self.assertEqual(len(hidden_states), self.model_tester.num_hidden_layers + 1)
Patrick von Platen's avatar
Patrick von Platen committed
502
503
504
505
506
507
508
509

            if hasattr(self.model_tester, "encoder_seq_length"):
                seq_length = self.model_tester.encoder_seq_length
                if hasattr(self.model_tester, "chunk_length") and self.model_tester.chunk_length > 1:
                    seq_length = seq_length * self.model_tester.chunk_length
            else:
                seq_length = self.model_tester.seq_length

510
            self.assertListEqual(
Patrick von Platen's avatar
Patrick von Platen committed
511
                list(hidden_states[0].shape[-2:]), [seq_length, self.model_tester.hidden_size],
512
            )
thomwolf's avatar
thomwolf committed
513

Patrick von Platen's avatar
Patrick von Platen committed
514
    def test_resize_tokens_embeddings(self):
515
        (original_config, inputs_dict,) = self.model_tester.prepare_config_and_inputs_for_common()
Patrick von Platen's avatar
Patrick von Platen committed
516
        if not self.test_resize_embeddings:
517
518
519
520
521
            return

        for model_class in self.all_model_classes:
            config = copy.deepcopy(original_config)
            model = model_class(config)
522
            model.to(torch_device)
523

Patrick von Platen's avatar
Patrick von Platen committed
524
525
526
            if self.model_tester.is_training is False:
                model.eval()

527
528
529
530
531
532
533
534
535
536
            model_vocab_size = config.vocab_size
            # Retrieve the embeddings and clone theme
            model_embed = model.resize_token_embeddings(model_vocab_size)
            cloned_embeddings = model_embed.weight.clone()

            # Check that resizing the token embeddings with a larger vocab size increases the model's vocab size
            model_embed = model.resize_token_embeddings(model_vocab_size + 10)
            self.assertEqual(model.config.vocab_size, model_vocab_size + 10)
            # Check that it actually resizes the embeddings matrix
            self.assertEqual(model_embed.weight.shape[0], cloned_embeddings.shape[0] + 10)
537
            # Check that the model can still do a forward pass successfully (every parameter should be resized)
538
            model(**self._prepare_for_class(inputs_dict, model_class))
539
540
541
542
543
544
545

            # Check that resizing the token embeddings with a smaller vocab size decreases the model's vocab size
            model_embed = model.resize_token_embeddings(model_vocab_size - 15)
            self.assertEqual(model.config.vocab_size, model_vocab_size - 15)
            # Check that it actually resizes the embeddings matrix
            self.assertEqual(model_embed.weight.shape[0], cloned_embeddings.shape[0] - 15)

546
547
548
            # Check that the model can still do a forward pass successfully (every parameter should be resized)
            # Input ids should be clamped to the maximum size of the vocabulary
            inputs_dict["input_ids"].clamp_(max=model_vocab_size - 15 - 1)
549
            model(**self._prepare_for_class(inputs_dict, model_class))
550

551
552
553
554
555
556
557
558
            # Check that adding and removing tokens has not modified the first part of the embedding matrix.
            models_equal = True
            for p1, p2 in zip(cloned_embeddings, model_embed.weight):
                if p1.data.ne(p2.data).sum() > 0:
                    models_equal = False

            self.assertTrue(models_equal)

Patrick von Platen's avatar
Patrick von Platen committed
559
    def test_model_common_attributes(self):
560
561
562
563
564
565
566
567
568
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
            self.assertIsInstance(model.get_input_embeddings(), (torch.nn.Embedding, AdaptiveEmbedding))
            model.set_input_embeddings(torch.nn.Embedding(10, 10))
            x = model.get_output_embeddings()
            self.assertTrue(x is None or isinstance(x, torch.nn.Linear))

569
    def test_correct_missing_keys(self):
570
571
        if not self.test_missing_keys:
            return
572
573
574
575
576
577
578
579
580
581
582
583
584
585
        config, _ = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
            base_model_prefix = model.base_model_prefix

            if hasattr(model, base_model_prefix):
                with tempfile.TemporaryDirectory() as temp_dir_name:
                    model.base_model.save_pretrained(temp_dir_name)
                    model, loading_info = model_class.from_pretrained(temp_dir_name, output_loading_info=True)

                    with self.subTest(msg="Missing keys for {}".format(model.__class__.__name__)):
                        self.assertGreater(len(loading_info["missing_keys"]), 0)

586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
    def test_tie_model_weights(self):
        if not self.test_torchscript:
            return

        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        def check_same_values(layer_1, layer_2):
            equal = True
            for p1, p2 in zip(layer_1.weight, layer_2.weight):
                if p1.data.ne(p2.data).sum() > 0:
                    equal = False
            return equal

        for model_class in self.all_model_classes:
            config.torchscript = True
            model_not_tied = model_class(config)
            if model_not_tied.get_output_embeddings() is None:
                continue

            params_not_tied = list(model_not_tied.parameters())

            config_tied = copy.deepcopy(config)
            config_tied.torchscript = False
            model_tied = model_class(config_tied)
            params_tied = list(model_tied.parameters())

            # Check that the embedding layer and decoding layer are the same in size and in value
            self.assertGreater(len(params_not_tied), len(params_tied))
            # self.assertTrue(check_same_values(embeddings, decoding))

            # # Check that after modification, they remain the same.
            # embeddings.weight.data.div_(2)
            # # Check that the embedding layer and decoding layer are the same in size and in value
            # self.assertTrue(embeddings.weight.shape, decoding.weight.shape)
            # self.assertTrue(check_same_values(embeddings, decoding))

            # # Check that after modification, they remain the same.
            # decoding.weight.data.div_(4)
            # # Check that the embedding layer and decoding layer are the same in size and in value
            # self.assertTrue(embeddings.weight.shape, decoding.weight.shape)
            # self.assertTrue(check_same_values(embeddings, decoding))

            # Check that after resize they remain tied.
            model_tied.resize_token_embeddings(config.vocab_size + 10)
            params_tied_2 = list(model_tied.parameters())
            self.assertGreater(len(params_not_tied), len(params_tied))
            self.assertEqual(len(params_tied_2), len(params_tied))

            # decoding.weight.data.mul_(20)
            # # Check that the embedding layer and decoding layer are the same in size and in value
            # self.assertTrue(model.transformer.wte.weight.shape, model.lm_head.weight.shape)
            # self.assertTrue(check_same_values(model.transformer.wte, model.lm_head))

Patrick von Platen's avatar
Patrick von Platen committed
639
    def test_inputs_embeds(self):
Sam Shleifer's avatar
Sam Shleifer committed
640

641
642
643
644
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
645
            model.to(torch_device)
thomwolf's avatar
thomwolf committed
646
            model.eval()
647

648
649
650
651
652
653
654
655
656
657
            inputs = copy.deepcopy(self._prepare_for_class(inputs_dict, model_class))
            if not self.is_encoder_decoder:
                input_ids = inputs["input_ids"]
                del inputs["input_ids"]
            else:
                encoder_input_ids = inputs["input_ids"]
                decoder_input_ids = inputs.get("decoder_input_ids", encoder_input_ids)
                del inputs["input_ids"]
                inputs.pop("decoder_input_ids", None)

658
659
            wte = model.get_input_embeddings()
            if not self.is_encoder_decoder:
660
                inputs["inputs_embeds"] = wte(input_ids)
661
            else:
662
663
                inputs["inputs_embeds"] = wte(encoder_input_ids)
                inputs["decoder_inputs_embeds"] = wte(decoder_input_ids)
664

thomwolf's avatar
thomwolf committed
665
            with torch.no_grad():
666
                model(**inputs)
667

668
    def test_lm_head_model_random_no_beam_search_generate(self):
669
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
670
        input_ids = inputs_dict["input_ids"] if "input_ids" in inputs_dict else inputs_dict["inputs"]
671

Patrick von Platen's avatar
Patrick von Platen committed
672
673
674
        # make sure that input_ids is at most of size 15
        input_ids = input_ids[..., :15]

675
        # iterate over all generative models
676
        for model_class in self.all_generative_model_classes:
677
            model = model_class(config).to(torch_device)
Patrick von Platen's avatar
Patrick von Platen committed
678
            model.eval()
679
680

            if config.bos_token_id is None:
681
                # if bos token id is not defined, model needs input_ids
682
                with self.assertRaises(AssertionError):
683
                    model.generate(do_sample=True, max_length=5)
684
                # num_return_sequences = 1
685
                self._check_generated_ids(model.generate(input_ids, do_sample=True))
686
            else:
687
                # num_return_sequences = 1
688
                self._check_generated_ids(model.generate(do_sample=True, max_length=5))
689

690
            with self.assertRaises(AssertionError):
691
                # generating multiple sequences when no beam search generation
692
693
694
                # is not allowed as it would always generate the same sequences
                model.generate(input_ids, do_sample=False, num_return_sequences=2)

695
696
            # num_return_sequences > 1, sample
            self._check_generated_ids(model.generate(input_ids, do_sample=True, num_return_sequences=2))
697
698

            # check bad words tokens language generation
699
            # create list of 1-seq bad token and list of 2-seq of bad tokens
700
701
702
703
            bad_words_ids = [
                self._generate_random_bad_tokens(1, model.config),
                self._generate_random_bad_tokens(2, model.config),
            ]
704
            output_tokens = model.generate(
705
                input_ids, do_sample=True, bad_words_ids=bad_words_ids, num_return_sequences=2
706
            )
707
            # only count generated tokens
708
709
            generated_ids = output_tokens[:, input_ids.shape[-1] :]
            self.assertFalse(self._check_match_tokens(generated_ids.tolist(), bad_words_ids))
710

711
712
    def test_lm_head_model_random_beam_search_generate(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
713
714
715
        input_ids = (inputs_dict["input_ids"] if "input_ids" in inputs_dict else inputs_dict["inputs"]).to(
            torch_device
        )
716

Patrick von Platen's avatar
Patrick von Platen committed
717
718
719
        # make sure that input_ids is at most of size 15
        input_ids = input_ids[..., :15]

720
        for model_class in self.all_generative_model_classes:
721
            model = model_class(config).to(torch_device)
Patrick von Platen's avatar
Patrick von Platen committed
722
            model.eval()
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741

            if config.bos_token_id is None:
                # if bos token id is not defined mobel needs input_ids, num_return_sequences = 1
                self._check_generated_ids(model.generate(input_ids, do_sample=True, num_beams=2))
            else:
                # num_return_sequences = 1
                self._check_generated_ids(model.generate(do_sample=True, max_length=5, num_beams=2))

            with self.assertRaises(AssertionError):
                # generating more sequences than having beams leads is not possible
                model.generate(input_ids, do_sample=False, num_return_sequences=3, num_beams=2)

            # num_return_sequences > 1, sample
            self._check_generated_ids(model.generate(input_ids, do_sample=True, num_beams=2, num_return_sequences=2,))
            # num_return_sequences > 1, greedy
            self._check_generated_ids(model.generate(input_ids, do_sample=False, num_beams=2, num_return_sequences=2))

            # check bad words tokens language generation
            # create list of 1-seq bad token and list of 2-seq of bad tokens
742
743
744
745
            bad_words_ids = [
                self._generate_random_bad_tokens(1, model.config),
                self._generate_random_bad_tokens(2, model.config),
            ]
746
            output_tokens = model.generate(
747
                input_ids, do_sample=False, bad_words_ids=bad_words_ids, num_beams=2, num_return_sequences=2
748
            )
749
            # only count generated tokens
750
751
752
            generated_ids = output_tokens[:, input_ids.shape[-1] :]
            self.assertFalse(self._check_match_tokens(generated_ids.tolist(), bad_words_ids))

753
    def _generate_random_bad_tokens(self, num_bad_tokens: int, config) -> List[int]:
754
        # special tokens cannot be bad tokens
755
        special_tokens = [x for x in [config.bos_token_id, config.eos_token_id, config.pad_token_id] if x is not None]
756
757
758
        # create random bad tokens that are not special tokens
        bad_tokens = []
        while len(bad_tokens) < num_bad_tokens:
759
            token = ids_tensor((1, 1), self.model_tester.vocab_size).squeeze(0).cpu().numpy()[0]
760
761
762
763
            if token not in special_tokens:
                bad_tokens.append(token)
        return bad_tokens

764
    def _check_generated_ids(self, output_ids):
765
766
767
768
        for token_id in output_ids[0].tolist():
            self.assertGreaterEqual(token_id, 0)
            self.assertLess(token_id, self.model_tester.vocab_size)

769
770
771
772
773
774
775
776
777
778
779
780
    def _check_match_tokens(self, generated_ids, bad_words_ids):
        # for all bad word tokens
        for bad_word_ids in bad_words_ids:
            # for all slices in batch
            for generated_ids_slice in generated_ids:
                # for all word idx
                for i in range(len(bad_word_ids), len(generated_ids_slice)):
                    # if tokens match
                    if generated_ids_slice[i - len(bad_word_ids) : i] == bad_word_ids:
                        return True
        return False

781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
    @require_multigpu
    def test_multigpu_data_parallel_forward(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        # some params shouldn't be scattered by nn.DataParallel
        # so just remove them if they are present.
        blacklist_non_batched_params = ["head_mask"]
        for k in blacklist_non_batched_params:
            inputs_dict.pop(k, None)

        # move input tensors to cuda:O
        for k, v in inputs_dict.items():
            if torch.is_tensor(v):
                inputs_dict[k] = v.to(0)

        for model_class in self.all_model_classes:
            model = model_class(config=config)
            model.to(0)
            model.eval()

            # Wrap model in nn.DataParallel
            model = torch.nn.DataParallel(model)
            with torch.no_grad():
                _ = model(**inputs_dict)

806

807
global_rng = random.Random()
thomwolf's avatar
thomwolf committed
808
809


thomwolf's avatar
thomwolf committed
810
def ids_tensor(shape, vocab_size, rng=None, name=None):
811
    #  Creates a random int32 tensor of the shape within the vocab size
thomwolf's avatar
thomwolf committed
812
    if rng is None:
813
        rng = global_rng
thomwolf's avatar
thomwolf committed
814

thomwolf's avatar
thomwolf committed
815
816
817
    total_dims = 1
    for dim in shape:
        total_dims *= dim
thomwolf's avatar
thomwolf committed
818

thomwolf's avatar
thomwolf committed
819
820
821
    values = []
    for _ in range(total_dims):
        values.append(rng.randint(0, vocab_size - 1))
thomwolf's avatar
thomwolf committed
822

823
    return torch.tensor(data=values, dtype=torch.long, device=torch_device).view(shape).contiguous()
thomwolf's avatar
thomwolf committed
824
825


826
def floats_tensor(shape, scale=1.0, rng=None, name=None):
Patrick von Platen's avatar
Patrick von Platen committed
827
    """Creates a random float32 tensor"""
828
829
830
831
832
833
834
835
836
837
838
    if rng is None:
        rng = global_rng

    total_dims = 1
    for dim in shape:
        total_dims *= dim

    values = []
    for _ in range(total_dims):
        values.append(rng.random() * scale)

839
    return torch.tensor(data=values, dtype=torch.float, device=torch_device).view(shape).contiguous()
840
841


842
@require_torch
thomwolf's avatar
thomwolf committed
843
class ModelUtilsTest(unittest.TestCase):
844
    @slow
Patrick von Platen's avatar
Patrick von Platen committed
845
    def test_model_from_pretrained(self):
thomwolf's avatar
thomwolf committed
846
        logging.basicConfig(level=logging.INFO)
847
        for model_name in BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
thomwolf's avatar
thomwolf committed
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
            config = BertConfig.from_pretrained(model_name)
            self.assertIsNotNone(config)
            self.assertIsInstance(config, PretrainedConfig)

            model = BertModel.from_pretrained(model_name)
            model, loading_info = BertModel.from_pretrained(model_name, output_loading_info=True)
            self.assertIsNotNone(model)
            self.assertIsInstance(model, PreTrainedModel)
            for value in loading_info.values():
                self.assertEqual(len(value), 0)

            config = BertConfig.from_pretrained(model_name, output_attentions=True, output_hidden_states=True)
            model = BertModel.from_pretrained(model_name, output_attentions=True, output_hidden_states=True)
            self.assertEqual(model.config.output_hidden_states, True)
            self.assertEqual(model.config, config)
863
864
865
866
867
868


@require_torch
class UtilsFunctionsTest(unittest.TestCase):

    # tests whether the top_k_top_p function behaves as expected
Patrick von Platen's avatar
Patrick von Platen committed
869
    def test_top_k_top_p_filtering(self):
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
        logits = torch.tensor(
            [
                [
                    8.2220991,  # 3rd highest value; idx. 0
                    -0.5620044,
                    5.23229752,
                    4.0386393,
                    -6.8798378,
                    -0.54785802,
                    -3.2012153,
                    2.92777176,
                    1.88171953,
                    7.35341276,  # 5th highest value; idx. 9
                    8.43207833,  # 2nd highest value; idx. 10
                    -9.85711836,
                    -5.96209236,
                    -1.13039161,
                    -7.1115294,
                    -0.8369633,
                    -5.3186408,
                    7.06427407,
                    0.81369344,
                    -0.82023817,
                    -5.9179796,
                    0.58813443,
                    -6.99778438,
                    4.71551189,
                    -0.18771637,
                    7.44020759,  # 4th highest value; idx. 25
                    9.38450987,  # 1st highest value; idx. 26
                    2.12662941,
                    -9.32562038,
                    2.35652522,
                ],  # cummulative prob of 5 highest values <= 0.6
                [
                    0.58425518,
                    4.53139238,
                    -5.57510464,
                    -6.28030699,
                    -7.19529503,
                    -4.02122551,
                    1.39337037,
                    -6.06707057,
                    1.59480517,
                    -9.643119,
                    0.03907799,
                    0.67231762,
                    -8.88206726,
                    6.27115922,  # 4th highest value; idx. 13
                    2.28520723,
                    4.82767506,
                    4.30421368,
                    8.8275313,  # 2nd highest value; idx. 17
                    5.44029958,  # 5th highest value; idx. 18
                    -4.4735794,
                    7.38579536,  # 3rd highest value; idx. 20
                    -2.91051663,
                    2.61946077,
                    -2.5674762,
                    -9.48959302,
                    -4.02922645,
                    -1.35416918,
                    9.67702323,  # 1st highest value; idx. 27
                    -5.89478553,
                    1.85370467,
                ],  # cummulative prob of 5 highest values <= 0.6
            ],
            dtype=torch.float,
            device=torch_device,
        )

        non_inf_expected_idx = torch.tensor(
            [[0, 0], [0, 9], [0, 10], [0, 25], [0, 26], [1, 13], [1, 17], [1, 18], [1, 20], [1, 27]],
            dtype=torch.long,
            device=torch_device,
        )  # expected non filtered idx as noted above

        non_inf_expected_output = torch.tensor(
            [
                8.2221,
                7.3534,
                8.4321,
                7.4402,
                9.3845,
                6.2712,
                8.8275,
                5.4403,
                7.3858,
                9.6770,
            ],  # expected non filtered values as noted above
            dtype=torch.float,
            device=torch_device,
        )

        output = top_k_top_p_filtering(logits, top_k=10, top_p=0.6, min_tokens_to_keep=4)
        non_inf_output = output[output != -float("inf")].to(device=torch_device)
        non_inf_idx = (output != -float("inf")).nonzero().to(device=torch_device)

        self.assertTrue(torch.allclose(non_inf_expected_output, non_inf_output, atol=1e-12))
        self.assertTrue(torch.all(torch.eq(non_inf_expected_idx, non_inf_idx)))