modeling_gpt2.py 33.5 KB
Newer Older
thomwolf's avatar
thomwolf committed
1
# coding=utf-8
thomwolf's avatar
thomwolf committed
2
# Copyright 2018 The OpenAI Team Authors and HuggingFace Inc. team.
thomwolf's avatar
thomwolf committed
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
# Copyright (c) 2018, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""PyTorch OpenAI GPT-2 model."""

18

thomwolf's avatar
thomwolf committed
19
20
21
22
23
24
25
26
import logging
import math
import os

import torch
import torch.nn as nn
from torch.nn import CrossEntropyLoss

27
28
from .configuration_gpt2 import GPT2Config
from .file_utils import add_start_docstrings
Aymeric Augustin's avatar
Aymeric Augustin committed
29
30
from .modeling_utils import Conv1D, PreTrainedModel, SequenceSummary, prune_conv1d_layer

thomwolf's avatar
thomwolf committed
31
32
33

logger = logging.getLogger(__name__)

34
35
36
37
38
39
40
41
GPT2_PRETRAINED_MODEL_ARCHIVE_MAP = {
    "gpt2": "https://s3.amazonaws.com/models.huggingface.co/bert/gpt2-pytorch_model.bin",
    "gpt2-medium": "https://s3.amazonaws.com/models.huggingface.co/bert/gpt2-medium-pytorch_model.bin",
    "gpt2-large": "https://s3.amazonaws.com/models.huggingface.co/bert/gpt2-large-pytorch_model.bin",
    "gpt2-xl": "https://s3.amazonaws.com/models.huggingface.co/bert/gpt2-xl-pytorch_model.bin",
    "distilgpt2": "https://s3.amazonaws.com/models.huggingface.co/bert/distilgpt2-pytorch_model.bin",
}

thomwolf's avatar
thomwolf committed
42

43
def load_tf_weights_in_gpt2(model, config, gpt2_checkpoint_path):
thomwolf's avatar
thomwolf committed
44
45
46
47
48
49
    """ Load tf checkpoints in a pytorch model
    """
    try:
        import re
        import tensorflow as tf
    except ImportError:
50
51
52
53
        logger.error(
            "Loading a TensorFlow model in PyTorch, requires TensorFlow to be installed. Please see "
            "https://www.tensorflow.org/install/ for installation instructions."
        )
thomwolf's avatar
thomwolf committed
54
55
        raise
    tf_path = os.path.abspath(gpt2_checkpoint_path)
thomwolf's avatar
thomwolf committed
56
    logger.info("Converting TensorFlow checkpoint from {}".format(tf_path))
thomwolf's avatar
thomwolf committed
57
58
59
60
61
    # Load weights from TF model
    init_vars = tf.train.list_variables(tf_path)
    names = []
    arrays = []
    for name, shape in init_vars:
thomwolf's avatar
thomwolf committed
62
        logger.info("Loading TF weight {} with shape {}".format(name, shape))
thomwolf's avatar
thomwolf committed
63
64
        array = tf.train.load_variable(tf_path, name)
        names.append(name)
thomwolf's avatar
thomwolf committed
65
        arrays.append(array.squeeze())
thomwolf's avatar
thomwolf committed
66
67

    for name, array in zip(names, arrays):
thomwolf's avatar
thomwolf committed
68
        name = name[6:]  # skip "model/"
69
        name = name.split("/")
thomwolf's avatar
thomwolf committed
70
71
        pointer = model
        for m_name in name:
72
            if re.fullmatch(r"[A-Za-z]+\d+", m_name):
73
                scope_names = re.split(r"(\d+)", m_name)
thomwolf's avatar
thomwolf committed
74
            else:
75
76
                scope_names = [m_name]
            if scope_names[0] == "w" or scope_names[0] == "g":
77
                pointer = getattr(pointer, "weight")
78
            elif scope_names[0] == "b":
79
                pointer = getattr(pointer, "bias")
80
81
            elif scope_names[0] == "wpe" or scope_names[0] == "wte":
                pointer = getattr(pointer, scope_names[0])
82
                pointer = getattr(pointer, "weight")
thomwolf's avatar
thomwolf committed
83
            else:
84
85
86
                pointer = getattr(pointer, scope_names[0])
            if len(scope_names) >= 2:
                num = int(scope_names[1])
thomwolf's avatar
thomwolf committed
87
88
89
90
91
92
                pointer = pointer[num]
        try:
            assert pointer.shape == array.shape
        except AssertionError as e:
            e.args += (pointer.shape, array.shape)
            raise
thomwolf's avatar
thomwolf committed
93
        logger.info("Initialize PyTorch weight {}".format(name))
thomwolf's avatar
thomwolf committed
94
95
96
97
98
99
100
101
102
        pointer.data = torch.from_numpy(array)
    return model


def gelu(x):
    return 0.5 * x * (1 + torch.tanh(math.sqrt(2 / math.pi) * (x + 0.044715 * torch.pow(x, 3))))


class Attention(nn.Module):
thomwolf's avatar
thomwolf committed
103
    def __init__(self, nx, n_ctx, config, scale=False):
thomwolf's avatar
thomwolf committed
104
        super(Attention, self).__init__()
thomwolf's avatar
thomwolf committed
105
106
        self.output_attentions = config.output_attentions

thomwolf's avatar
thomwolf committed
107
108
109
110
111
112
113
        n_state = nx  # in Attention: n_state=768 (nx=n_embd)
        # [switch nx => n_state from Block to Attention to keep identical to TF implem]
        assert n_state % config.n_head == 0
        self.register_buffer("bias", torch.tril(torch.ones(n_ctx, n_ctx)).view(1, 1, n_ctx, n_ctx))
        self.n_head = config.n_head
        self.split_size = n_state
        self.scale = scale
114

thomwolf's avatar
thomwolf committed
115
116
        self.c_attn = Conv1D(n_state * 3, nx)
        self.c_proj = Conv1D(n_state, nx)
117
118
        self.attn_dropout = nn.Dropout(config.attn_pdrop)
        self.resid_dropout = nn.Dropout(config.resid_pdrop)
119
        self.pruned_heads = set()
thomwolf's avatar
thomwolf committed
120

121
    def prune_heads(self, heads):
thomwolf's avatar
thomwolf committed
122
123
        if len(heads) == 0:
            return
124
        mask = torch.ones(self.n_head, self.split_size // self.n_head)
125
        heads = set(heads) - self.pruned_heads  # Convert to set and emove already pruned heads
126
        for head in heads:
127
128
            # Compute how many pruned heads are before the head and move the index accordingly
            head = head - sum(1 if h < head else 0 for h in self.pruned_heads)
129
130
131
            mask[head] = 0
        mask = mask.view(-1).contiguous().eq(1)
        index = torch.arange(len(mask))[mask].long()
132
        index_attn = torch.cat([index, index + self.split_size, index + (2 * self.split_size)])
133

134
135
136
        # Prune conv1d layers
        self.c_attn = prune_conv1d_layer(self.c_attn, index_attn, dim=1)
        self.c_proj = prune_conv1d_layer(self.c_proj, index, dim=0)
137

138
139
140
        # Update hyper params
        self.split_size = (self.split_size // self.n_head) * (self.n_head - len(heads))
        self.n_head = self.n_head - len(heads)
141
        self.pruned_heads = self.pruned_heads.union(heads)
142

143
    def _attn(self, q, k, v, attention_mask=None, head_mask=None):
thomwolf's avatar
thomwolf committed
144
145
146
        w = torch.matmul(q, k)
        if self.scale:
            w = w / math.sqrt(v.size(-1))
thomwolf's avatar
thomwolf committed
147
        nd, ns = w.size(-2), w.size(-1)
148
        b = self.bias[:, :, ns - nd : ns, :ns]
149
        w = w * b - 1e4 * (1 - b)
thomwolf's avatar
thomwolf committed
150

151
152
153
154
        if attention_mask is not None:
            # Apply the attention mask
            w = w + attention_mask

thomwolf's avatar
thomwolf committed
155
        w = nn.Softmax(dim=-1)(w)
156
        w = self.attn_dropout(w)
157
158
159
160
161

        # Mask heads if we want to
        if head_mask is not None:
            w = w * head_mask

thomwolf's avatar
thomwolf committed
162
        outputs = [torch.matmul(w, v)]
thomwolf's avatar
thomwolf committed
163
        if self.output_attentions:
thomwolf's avatar
thomwolf committed
164
165
            outputs.append(w)
        return outputs
thomwolf's avatar
thomwolf committed
166
167
168
169
170
171
172
173
174
175

    def merge_heads(self, x):
        x = x.permute(0, 2, 1, 3).contiguous()
        new_x_shape = x.size()[:-2] + (x.size(-2) * x.size(-1),)
        return x.view(*new_x_shape)  # in Tensorflow implem: fct merge_states

    def split_heads(self, x, k=False):
        new_x_shape = x.size()[:-1] + (self.n_head, x.size(-1) // self.n_head)
        x = x.view(*new_x_shape)  # in Tensorflow implem: fct split_states
        if k:
thomwolf's avatar
thomwolf committed
176
            return x.permute(0, 2, 3, 1)  # (batch, head, head_features, seq_length)
thomwolf's avatar
thomwolf committed
177
        else:
thomwolf's avatar
thomwolf committed
178
            return x.permute(0, 2, 1, 3)  # (batch, head, seq_length, head_features)
thomwolf's avatar
thomwolf committed
179

180
    def forward(self, x, layer_past=None, attention_mask=None, head_mask=None):
thomwolf's avatar
thomwolf committed
181
182
183
184
185
        x = self.c_attn(x)
        query, key, value = x.split(self.split_size, dim=2)
        query = self.split_heads(query)
        key = self.split_heads(key, k=True)
        value = self.split_heads(value)
thomwolf's avatar
thomwolf committed
186
        if layer_past is not None:
thomwolf's avatar
thomwolf committed
187
            past_key, past_value = layer_past[0].transpose(-2, -1), layer_past[1]  # transpose back cf below
thomwolf's avatar
thomwolf committed
188
            key = torch.cat((past_key, key), dim=-1)
thomwolf's avatar
thomwolf committed
189
            value = torch.cat((past_value, value), dim=-2)
thomwolf's avatar
thomwolf committed
190
        present = torch.stack((key.transpose(-2, -1), value))  # transpose to have same shapes for stacking
191

192
        attn_outputs = self._attn(query, key, value, attention_mask, head_mask)
thomwolf's avatar
thomwolf committed
193
        a = attn_outputs[0]
194

thomwolf's avatar
thomwolf committed
195
196
        a = self.merge_heads(a)
        a = self.c_proj(a)
197
        a = self.resid_dropout(a)
thomwolf's avatar
thomwolf committed
198
199
200

        outputs = [a, present] + attn_outputs[1:]
        return outputs  # a, present, (attentions)
thomwolf's avatar
thomwolf committed
201
202
203
204
205
206
207
208
209


class MLP(nn.Module):
    def __init__(self, n_state, config):  # in MLP: n_state=3072 (4 * n_embd)
        super(MLP, self).__init__()
        nx = config.n_embd
        self.c_fc = Conv1D(n_state, nx)
        self.c_proj = Conv1D(nx, n_state)
        self.act = gelu
210
        self.dropout = nn.Dropout(config.resid_pdrop)
thomwolf's avatar
thomwolf committed
211
212
213
214

    def forward(self, x):
        h = self.act(self.c_fc(x))
        h2 = self.c_proj(h)
215
        return self.dropout(h2)
thomwolf's avatar
thomwolf committed
216
217
218


class Block(nn.Module):
thomwolf's avatar
thomwolf committed
219
    def __init__(self, n_ctx, config, scale=False):
thomwolf's avatar
thomwolf committed
220
221
        super(Block, self).__init__()
        nx = config.n_embd
222
        self.ln_1 = nn.LayerNorm(nx, eps=config.layer_norm_epsilon)
thomwolf's avatar
thomwolf committed
223
        self.attn = Attention(nx, n_ctx, config, scale)
224
        self.ln_2 = nn.LayerNorm(nx, eps=config.layer_norm_epsilon)
thomwolf's avatar
thomwolf committed
225
226
        self.mlp = MLP(4 * nx, config)

227
    def forward(self, x, layer_past=None, attention_mask=None, head_mask=None):
228
229
230
        output_attn = self.attn(
            self.ln_1(x), layer_past=layer_past, attention_mask=attention_mask, head_mask=head_mask
        )
thomwolf's avatar
thomwolf committed
231
232
        a = output_attn[0]  # output_attn: a, present, (attentions)

thomwolf's avatar
thomwolf committed
233
        x = x + a
thomwolf's avatar
thomwolf committed
234
        m = self.mlp(self.ln_2(x))
thomwolf's avatar
thomwolf committed
235
        x = x + m
thomwolf's avatar
thomwolf committed
236
237
238

        outputs = [x] + output_attn[1:]
        return outputs  # x, present, (attentions)
thomwolf's avatar
thomwolf committed
239
240


241
class GPT2PreTrainedModel(PreTrainedModel):
thomwolf's avatar
thomwolf committed
242
    """ An abstract class to handle weights initialization and
243
        a simple interface for downloading and loading pretrained models.
thomwolf's avatar
thomwolf committed
244
    """
245

246
    config_class = GPT2Config
247
    pretrained_model_archive_map = GPT2_PRETRAINED_MODEL_ARCHIVE_MAP
248
249
    load_tf_weights = load_tf_weights_in_gpt2
    base_model_prefix = "transformer"
thomwolf's avatar
thomwolf committed
250

251
252
253
    def __init__(self, *inputs, **kwargs):
        super(GPT2PreTrainedModel, self).__init__(*inputs, **kwargs)

254
    def _init_weights(self, module):
thomwolf's avatar
thomwolf committed
255
256
        """ Initialize the weights.
        """
257
        if isinstance(module, (nn.Linear, nn.Embedding, Conv1D)):
thomwolf's avatar
thomwolf committed
258
259
260
            # Slightly different from the TF version which uses truncated_normal for initialization
            # cf https://github.com/pytorch/pytorch/pull/5617
            module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
261
262
            if isinstance(module, (nn.Linear, Conv1D)) and module.bias is not None:
                module.bias.data.zero_()
263
        elif isinstance(module, nn.LayerNorm):
thomwolf's avatar
thomwolf committed
264
265
266
267
            module.bias.data.zero_()
            module.weight.data.fill_(1.0)


thomwolf's avatar
thomwolf committed
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
GPT2_START_DOCSTRING = r"""    OpenAI GPT-2 model was proposed in
    `Language Models are Unsupervised Multitask Learners`_
    by Alec Radford*, Jeffrey Wu*, Rewon Child, David Luan, Dario Amodei** and Ilya Sutskever**.
    It's a causal (unidirectional) transformer pre-trained using  language modeling on a very large
    corpus of ~40 GB of text data.

    This model is a PyTorch `torch.nn.Module`_ sub-class. Use it as a regular PyTorch Module and
    refer to the PyTorch documentation for all matter related to general usage and behavior.

    .. _`Language Models are Unsupervised Multitask Learners`:
        https://openai.com/blog/better-language-models/

    .. _`torch.nn.Module`:
        https://pytorch.org/docs/stable/nn.html#module

    Parameters:
284
        config (:class:`~transformers.GPT2Config`): Model configuration class with all the parameters of the model.
285
            Initializing with a config file does not load the weights associated with the model, only the configuration.
286
            Check out the :meth:`~transformers.PreTrainedModel.from_pretrained` method to load the model weights.
thomwolf's avatar
thomwolf committed
287
288
"""

thomwolf's avatar
thomwolf committed
289
GPT2_INPUTS_DOCSTRING = r"""    Inputs:
thomwolf's avatar
thomwolf committed
290
291
        **input_ids**: ``torch.LongTensor`` of shape ``(batch_size, sequence_length)``:
            Indices of input sequence tokens in the vocabulary.
thomwolf's avatar
thomwolf committed
292
293
            GPT-2 is a model with absolute position embeddings so it's usually advised to pad the inputs on
            the right rather than the left.
294
295
296
            Indices can be obtained using :class:`transformers.GPT2Tokenizer`.
            See :func:`transformers.PreTrainedTokenizer.encode` and
            :func:`transformers.PreTrainedTokenizer.convert_tokens_to_ids` for details.
thomwolf's avatar
thomwolf committed
297
298
299
        **past**:
            list of ``torch.FloatTensor`` (one for each layer):
            that contains pre-computed hidden-states (key and values in the attention blocks) as computed by the model
300
            (see `past` output below). Can be used to speed up sequential decoding. The token ids which have their past given to this model
301
            should not be passed as input ids as they have already been computed.
302
303
304
305
306
307
308
309
310
311
312
        **attention_mask**: (`optional`) ``torch.FloatTensor`` of shape ``(batch_size, sequence_length)``:
            Mask to avoid performing attention on padding token indices.
            Mask values selected in ``[0, 1]``:
            ``1`` for tokens that are NOT MASKED, ``0`` for MASKED tokens.
        **token_type_ids**: (`optional`) ``torch.LongTensor`` of shape ``(batch_size, sequence_length)``:
            A parallel sequence of tokens (can be used to indicate various portions of the inputs).
            The embeddings from these tokens will be summed with the respective token embeddings.
            Indices are selected in the vocabulary (unlike BERT which has a specific vocabulary for segment indices).
        **position_ids**: (`optional`) ``torch.LongTensor`` of shape ``(batch_size, sequence_length)``:
            Indices of positions of each input sequence tokens in the position embeddings.
            Selected in the range ``[0, config.max_position_embeddings - 1]``.
thomwolf's avatar
thomwolf committed
313
        **head_mask**: (`optional`) ``torch.FloatTensor`` of shape ``(num_heads,)`` or ``(num_layers, num_heads)``:
thomwolf's avatar
thomwolf committed
314
            Mask to nullify selected heads of the self-attention modules.
thomwolf's avatar
thomwolf committed
315
            Mask values selected in ``[0, 1]``:
thomwolf's avatar
thomwolf committed
316
            ``1`` indicates the head is **not masked**, ``0`` indicates the head is **masked**.
Julien Chaumond's avatar
Julien Chaumond committed
317
318
        **inputs_embeds**: (`optional`) ``torch.FloatTensor`` of shape ``(batch_size, sequence_length, embedding_dim)``:
            Optionally, instead of passing ``input_ids`` you can choose to directly pass an embedded representation.
319
320
            This is useful if you want more control over how to convert `input_ids` indices into associated vectors
            than the model's internal embedding lookup matrix.
thomwolf's avatar
thomwolf committed
321
322
"""

323
324
325
326
327
328

@add_start_docstrings(
    "The bare GPT2 Model transformer outputting raw hidden-states without any specific head on top.",
    GPT2_START_DOCSTRING,
    GPT2_INPUTS_DOCSTRING,
)
thomwolf's avatar
thomwolf committed
329
class GPT2Model(GPT2PreTrainedModel):
330
    r"""
thomwolf's avatar
thomwolf committed
331
332
333
334
    Outputs: `Tuple` comprising various elements depending on the configuration (config) and inputs:
        **last_hidden_state**: ``torch.FloatTensor`` of shape ``(batch_size, sequence_length, hidden_size)``
            Sequence of hidden-states at the last layer of the model.
        **past**:
335
            list of ``torch.FloatTensor`` (one for each layer) of shape ``(2, batch_size, num_heads, sequence_length, embed_size_per_head)``:
thomwolf's avatar
thomwolf committed
336
            that contains pre-computed hidden-states (key and values in the attention blocks).
337
            Can be used (see `past` input) to speed up sequential decoding. The token ids which have their past given to this model
338
            should not be passed as input ids as they have already been computed.
thomwolf's avatar
thomwolf committed
339
340
341
342
        **hidden_states**: (`optional`, returned when ``config.output_hidden_states=True``)
            list of ``torch.FloatTensor`` (one for the output of each layer + the output of the embeddings)
            of shape ``(batch_size, sequence_length, hidden_size)``:
            Hidden-states of the model at the output of each layer plus the initial embedding outputs.
thomwolf's avatar
thomwolf committed
343
344
345
        **attentions**: (`optional`, returned when ``config.output_attentions=True``)
            list of ``torch.FloatTensor`` (one for each layer) of shape ``(batch_size, num_heads, sequence_length, sequence_length)``:
            Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
thomwolf's avatar
thomwolf committed
346
347
348

    Examples::

349
350
        tokenizer = GPT2Tokenizer.from_pretrained('gpt2')
        model = GPT2Model.from_pretrained('gpt2')
351
        input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute", add_special_tokens=True)).unsqueeze(0)  # Batch size 1
352
353
        outputs = model(input_ids)
        last_hidden_states = outputs[0]  # The last hidden-state is the first element of the output tuple
thomwolf's avatar
thomwolf committed
354
355

    """
356

thomwolf's avatar
thomwolf committed
357
    def __init__(self, config):
thomwolf's avatar
thomwolf committed
358
        super(GPT2Model, self).__init__(config)
thomwolf's avatar
thomwolf committed
359
360
        self.output_hidden_states = config.output_hidden_states
        self.output_attentions = config.output_attentions
361
        self.output_past = config.output_past
thomwolf's avatar
thomwolf committed
362

thomwolf's avatar
thomwolf committed
363
        self.wte = nn.Embedding(config.vocab_size, config.n_embd)
thomwolf's avatar
thomwolf committed
364
        self.wpe = nn.Embedding(config.n_positions, config.n_embd)
365
        self.drop = nn.Dropout(config.embd_pdrop)
366
        self.h = nn.ModuleList([Block(config.n_ctx, config, scale=True) for _ in range(config.n_layer)])
367
        self.ln_f = nn.LayerNorm(config.n_embd, eps=config.layer_norm_epsilon)
thomwolf's avatar
thomwolf committed
368

369
        self.init_weights()
thomwolf's avatar
thomwolf committed
370

thomwolf's avatar
thomwolf committed
371
    def get_input_embeddings(self):
thomwolf's avatar
thomwolf committed
372
        return self.wte
thomwolf's avatar
thomwolf committed
373

thomwolf's avatar
thomwolf committed
374
    def set_input_embeddings(self, new_embeddings):
375
376
        self.wte = new_embeddings

thomwolf's avatar
thomwolf committed
377
    def _prune_heads(self, heads_to_prune):
378
379
380
381
382
383
        """ Prunes heads of the model.
            heads_to_prune: dict of {layer_num: list of heads to prune in this layer}
        """
        for layer, heads in heads_to_prune.items():
            self.h[layer].attn.prune_heads(heads)

384
385
386
387
388
389
390
391
392
393
    def forward(
        self,
        input_ids=None,
        past=None,
        attention_mask=None,
        token_type_ids=None,
        position_ids=None,
        head_mask=None,
        inputs_embeds=None,
    ):
Julien Chaumond's avatar
Julien Chaumond committed
394
395
396
        if input_ids is not None and inputs_embeds is not None:
            raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
        elif input_ids is not None:
397
398
399
400
401
402
403
            input_shape = input_ids.size()
            input_ids = input_ids.view(-1, input_shape[-1])
        elif inputs_embeds is not None:
            input_shape = inputs_embeds.size()[:-1]
        else:
            raise ValueError("You have to specify either input_ids or inputs_embeds")

404
405
406
407
408
        if token_type_ids is not None:
            token_type_ids = token_type_ids.view(-1, input_shape[-1])
        if position_ids is not None:
            position_ids = position_ids.view(-1, input_shape[-1])

thomwolf's avatar
thomwolf committed
409
        if past is None:
thomwolf's avatar
thomwolf committed
410
            past_length = 0
thomwolf's avatar
thomwolf committed
411
            past = [None] * len(self.h)
thomwolf's avatar
thomwolf committed
412
        else:
thomwolf's avatar
thomwolf committed
413
            past_length = past[0][0].size(-2)
thomwolf's avatar
thomwolf committed
414
        if position_ids is None:
415
416
417
            device = input_ids.device if input_ids is not None else inputs_embeds.device
            position_ids = torch.arange(past_length, input_shape[-1] + past_length, dtype=torch.long, device=device)
            position_ids = position_ids.unsqueeze(0).view(-1, input_shape[-1])
thomwolf's avatar
thomwolf committed
418

419
420
        # Attention mask.
        if attention_mask is not None:
421
            attention_mask = attention_mask.view(-1, input_shape[-1])
422
423
424
425
426
427
428
429
430
431
432
433
            # We create a 3D attention mask from a 2D tensor mask.
            # Sizes are [batch_size, 1, 1, to_seq_length]
            # So we can broadcast to [batch_size, num_heads, from_seq_length, to_seq_length]
            # this attention mask is more simple than the triangular masking of causal attention
            # used in OpenAI GPT, we just need to prepare the broadcast dimension here.
            attention_mask = attention_mask.unsqueeze(1).unsqueeze(2)

            # Since attention_mask is 1.0 for positions we want to attend and 0.0 for
            # masked positions, this operation will create a tensor which is 0.0 for
            # positions we want to attend and -10000.0 for masked positions.
            # Since we are adding it to the raw scores before the softmax, this is
            # effectively the same as removing these entirely.
434
            attention_mask = attention_mask.to(dtype=next(self.parameters()).dtype)  # fp16 compatibility
435
436
            attention_mask = (1.0 - attention_mask) * -10000.0

437
        # Prepare head mask if needed
thomwolf's avatar
thomwolf committed
438
        # 1.0 in head_mask indicate we keep the head
439
        # attention_probs has shape bsz x n_heads x N x N
440
        # head_mask has shape n_layer x batch x n_heads x N x N
441
442
        if head_mask is not None:
            if head_mask.dim() == 1:
443
                head_mask = head_mask.unsqueeze(0).unsqueeze(0).unsqueeze(-1).unsqueeze(-1)
thomwolf's avatar
thomwolf committed
444
                head_mask = head_mask.expand(self.config.n_layer, -1, -1, -1, -1)
445
            elif head_mask.dim() == 2:
446
447
448
449
450
451
                head_mask = (
                    head_mask.unsqueeze(1).unsqueeze(-1).unsqueeze(-1)
                )  # We can specify head_mask for each layer
            head_mask = head_mask.to(
                dtype=next(self.parameters()).dtype
            )  # switch to fload if need + fp16 compatibility
452
453
        else:
            head_mask = [None] * self.config.n_layer
454

455
456
        if inputs_embeds is None:
            inputs_embeds = self.wte(input_ids)
thomwolf's avatar
thomwolf committed
457
458
459
460
461
462
        position_embeds = self.wpe(position_ids)
        if token_type_ids is not None:
            token_type_embeds = self.wte(token_type_ids)
        else:
            token_type_embeds = 0
        hidden_states = inputs_embeds + position_embeds + token_type_embeds
463
464
        hidden_states = self.drop(hidden_states)

465
466
        output_shape = input_shape + (hidden_states.size(-1),)

467
        presents = ()
thomwolf's avatar
thomwolf committed
468
        all_attentions = []
469
        all_hidden_states = ()
470
        for i, (block, layer_past) in enumerate(zip(self.h, past)):
thomwolf's avatar
thomwolf committed
471
            if self.output_hidden_states:
472
                all_hidden_states = all_hidden_states + (hidden_states.view(*output_shape),)
thomwolf's avatar
thomwolf committed
473

474
475
476
            outputs = block(
                hidden_states, layer_past=layer_past, attention_mask=attention_mask, head_mask=head_mask[i]
            )
477

thomwolf's avatar
thomwolf committed
478
            hidden_states, present = outputs[:2]
479
480
            if self.output_past:
                presents = presents + (present,)
thomwolf's avatar
thomwolf committed
481
482
483
484

            if self.output_attentions:
                all_attentions.append(outputs[2])

thomwolf's avatar
thomwolf committed
485
        hidden_states = self.ln_f(hidden_states)
486

thomwolf's avatar
thomwolf committed
487
488
489
        hidden_states = hidden_states.view(*output_shape)
        # Add last hidden state
        if self.output_hidden_states:
490
            all_hidden_states = all_hidden_states + (hidden_states,)
thomwolf's avatar
thomwolf committed
491

492
493
494
        outputs = (hidden_states,)
        if self.output_past:
            outputs = outputs + (presents,)
thomwolf's avatar
thomwolf committed
495
        if self.output_hidden_states:
496
            outputs = outputs + (all_hidden_states,)
thomwolf's avatar
thomwolf committed
497
        if self.output_attentions:
thomwolf's avatar
thomwolf committed
498
499
            # let the number of heads free (-1) so we can extract attention even after head pruning
            attention_output_shape = input_shape[:-1] + (-1,) + all_attentions[0].shape[-2:]
500
            all_attentions = tuple(t.view(*attention_output_shape) for t in all_attentions)
501
            outputs = outputs + (all_attentions,)
502
        return outputs  # last hidden state, (presents), (all hidden_states), (attentions)
thomwolf's avatar
thomwolf committed
503
504


505
506
507
508
509
510
@add_start_docstrings(
    """The GPT2 Model transformer with a language modeling head on top
(linear layer with weights tied to the input embeddings). """,
    GPT2_START_DOCSTRING,
    GPT2_INPUTS_DOCSTRING,
)
thomwolf's avatar
thomwolf committed
511
class GPT2LMHeadModel(GPT2PreTrainedModel):
512
    r"""
thomwolf's avatar
thomwolf committed
513
        **labels**: (`optional`) ``torch.LongTensor`` of shape ``(batch_size, sequence_length)``:
thomwolf's avatar
thomwolf committed
514
515
            Labels for language modeling.
            Note that the labels **are shifted** inside the model, i.e. you can set ``lm_labels = input_ids``
516
            Indices are selected in ``[-100, 0, ..., config.vocab_size]``
LysandreJik's avatar
LysandreJik committed
517
            All labels set to ``-100`` are ignored (masked), the loss is only
thomwolf's avatar
thomwolf committed
518
519
520
            computed for labels in ``[0, ..., config.vocab_size]``

    Outputs: `Tuple` comprising various elements depending on the configuration (config) and inputs:
thomwolf's avatar
thomwolf committed
521
        **loss**: (`optional`, returned when ``labels`` is provided) ``torch.FloatTensor`` of shape ``(1,)``:
thomwolf's avatar
thomwolf committed
522
523
524
525
            Language modeling loss.
        **prediction_scores**: ``torch.FloatTensor`` of shape ``(batch_size, sequence_length, config.vocab_size)``
            Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
        **past**:
526
            list of ``torch.FloatTensor`` (one for each layer) of shape ``(2, batch_size, num_heads, sequence_length, embed_size_per_head)``:
thomwolf's avatar
thomwolf committed
527
            that contains pre-computed hidden-states (key and values in the attention blocks).
528
            Can be used (see `past` input) to speed up sequential decoding. The token ids which have their past given to this model
529
            should not be passed as input ids as they have already been computed.
thomwolf's avatar
thomwolf committed
530
531
532
533
        **hidden_states**: (`optional`, returned when ``config.output_hidden_states=True``)
            list of ``torch.FloatTensor`` (one for the output of each layer + the output of the embeddings)
            of shape ``(batch_size, sequence_length, hidden_size)``:
            Hidden-states of the model at the output of each layer plus the initial embedding outputs.
thomwolf's avatar
thomwolf committed
534
535
536
        **attentions**: (`optional`, returned when ``config.output_attentions=True``)
            list of ``torch.FloatTensor`` (one for each layer) of shape ``(batch_size, num_heads, sequence_length, sequence_length)``:
            Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
thomwolf's avatar
thomwolf committed
537
538
539

    Examples::

thomwolf's avatar
thomwolf committed
540
        import torch
541
        from transformers import GPT2Tokenizer, GPT2LMHeadModel
thomwolf's avatar
thomwolf committed
542

543
544
        tokenizer = GPT2Tokenizer.from_pretrained('gpt2')
        model = GPT2LMHeadModel.from_pretrained('gpt2')
thomwolf's avatar
thomwolf committed
545

546
        input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute", add_special_tokens=True)).unsqueeze(0)  # Batch size 1
547
548
        outputs = model(input_ids, labels=input_ids)
        loss, logits = outputs[:2]
thomwolf's avatar
thomwolf committed
549
550

    """
551

thomwolf's avatar
thomwolf committed
552
    def __init__(self, config):
thomwolf's avatar
thomwolf committed
553
        super(GPT2LMHeadModel, self).__init__(config)
thomwolf's avatar
thomwolf committed
554
        self.transformer = GPT2Model(config)
thomwolf's avatar
thomwolf committed
555
        self.lm_head = nn.Linear(config.n_embd, config.vocab_size, bias=False)
thomwolf's avatar
thomwolf committed
556

557
        self.init_weights()
558

thomwolf's avatar
thomwolf committed
559
    def get_output_embeddings(self):
560
        return self.lm_head
thomwolf's avatar
thomwolf committed
561

562
    def prepare_inputs_for_generation(self, input_ids, **kwargs):
563
        # only last token for inputs_ids if past is defined in kwargs
564
        if "past" in kwargs and kwargs["past"]:
565
            input_ids = input_ids[:, -1].unsqueeze(-1)
566
567
568
569
570

        inputs = {"input_ids": input_ids}
        inputs.update(kwargs)
        return inputs

571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
    def forward(
        self,
        input_ids=None,
        past=None,
        attention_mask=None,
        token_type_ids=None,
        position_ids=None,
        head_mask=None,
        inputs_embeds=None,
        labels=None,
    ):
        transformer_outputs = self.transformer(
            input_ids,
            past=past,
            attention_mask=attention_mask,
            token_type_ids=token_type_ids,
            position_ids=position_ids,
            head_mask=head_mask,
            inputs_embeds=inputs_embeds,
        )
thomwolf's avatar
thomwolf committed
591
        hidden_states = transformer_outputs[0]
592

thomwolf's avatar
thomwolf committed
593
        lm_logits = self.lm_head(hidden_states)
thomwolf's avatar
thomwolf committed
594

595
        outputs = (lm_logits,) + transformer_outputs[1:]
thomwolf's avatar
thomwolf committed
596
        if labels is not None:
597
            # Shift so that tokens < n predict n
598
            shift_logits = lm_logits[..., :-1, :].contiguous()
thomwolf's avatar
thomwolf committed
599
            shift_labels = labels[..., 1:].contiguous()
Catalin Voss's avatar
Catalin Voss committed
600
            # Flatten the tokens
LysandreJik's avatar
LysandreJik committed
601
            loss_fct = CrossEntropyLoss()
602
            loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1))
603
            outputs = (loss,) + outputs
thomwolf's avatar
thomwolf committed
604
605

        return outputs  # (loss), lm_logits, presents, (all hidden_states), (attentions)
thomwolf's avatar
thomwolf committed
606
607


608
609
@add_start_docstrings(
    """The GPT2 Model transformer with a language modeling and a multiple-choice classification
thomwolf's avatar
thomwolf committed
610
611
head on top e.g. for RocStories/SWAG tasks. The two heads are two linear layers.
The language modeling head has its weights tied to the input embeddings,
Julien Chaumond's avatar
Julien Chaumond committed
612
the classification head takes as input the input of a specified classification token index in the input sequence).
613
614
615
616
""",
    GPT2_START_DOCSTRING,
    GPT2_INPUTS_DOCSTRING,
)
thomwolf's avatar
thomwolf committed
617
class GPT2DoubleHeadsModel(GPT2PreTrainedModel):
618
    r"""
thomwolf's avatar
thomwolf committed
619
        **mc_token_ids**: (`optional`, default to index of the last token of the input) ``torch.LongTensor`` of shape ``(batch_size, num_choices)``:
thomwolf's avatar
thomwolf committed
620
621
622
623
624
625
            Index of the classification token in each input sequence.
            Selected in the range ``[0, input_ids.size(-1) - 1[``.
        **lm_labels**: (`optional`) ``torch.LongTensor`` of shape ``(batch_size, sequence_length)``:
            Labels for language modeling.
            Note that the labels **are shifted** inside the model, i.e. you can set ``lm_labels = input_ids``
            Indices are selected in ``[-1, 0, ..., config.vocab_size]``
LysandreJik's avatar
LysandreJik committed
626
            All labels set to ``-100`` are ignored (masked), the loss is only
thomwolf's avatar
thomwolf committed
627
            computed for labels in ``[0, ..., config.vocab_size]``
628
        **mc_labels**: (`optional`) ``torch.LongTensor`` of shape ``(batch_size)``:
thomwolf's avatar
thomwolf committed
629
630
631
            Labels for computing the multiple choice classification loss.
            Indices should be in ``[0, ..., num_choices]`` where `num_choices` is the size of the second dimension
            of the input tensors. (see `input_ids` above)
thomwolf's avatar
thomwolf committed
632

thomwolf's avatar
thomwolf committed
633
634
635
636
637
638
639
640
641
642
    Outputs: `Tuple` comprising various elements depending on the configuration (config) and inputs:
        **lm_loss**: (`optional`, returned when ``lm_labels`` is provided) ``torch.FloatTensor`` of shape ``(1,)``:
            Language modeling loss.
        **mc_loss**: (`optional`, returned when ``multiple_choice_labels`` is provided) ``torch.FloatTensor`` of shape ``(1,)``:
            Multiple choice classification loss.
        **lm_prediction_scores**: ``torch.FloatTensor`` of shape ``(batch_size, num_choices, sequence_length, config.vocab_size)``
            Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
        **mc_prediction_scores**: ``torch.FloatTensor`` of shape ``(batch_size, num_choices)``
            Prediction scores of the multiplechoice classification head (scores for each choice before SoftMax).
        **past**:
643
            list of ``torch.FloatTensor`` (one for each layer) of shape ``(2, batch_size, num_heads, sequence_length, embed_size_per_head)``:
thomwolf's avatar
thomwolf committed
644
            that contains pre-computed hidden-states (key and values in the attention blocks).
645
            Can be used (see `past` input) to speed up sequential decoding. The token ids which have their past given to this model
646
            should not be passed as input ids as they have already been computed.
thomwolf's avatar
thomwolf committed
647
648
649
650
        **hidden_states**: (`optional`, returned when ``config.output_hidden_states=True``)
            list of ``torch.FloatTensor`` (one for the output of each layer + the output of the embeddings)
            of shape ``(batch_size, sequence_length, hidden_size)``:
            Hidden-states of the model at the output of each layer plus the initial embedding outputs.
thomwolf's avatar
thomwolf committed
651
652
653
        **attentions**: (`optional`, returned when ``config.output_attentions=True``)
            list of ``torch.FloatTensor`` (one for each layer) of shape ``(batch_size, num_heads, sequence_length, sequence_length)``:
            Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
thomwolf's avatar
thomwolf committed
654
655
656

    Examples::

657
        import torch
658
        from transformers import GPT2Tokenizer, GPT2DoubleHeadsModel
659

660
661
        tokenizer = GPT2Tokenizer.from_pretrained('gpt2')
        model = GPT2DoubleHeadsModel.from_pretrained('gpt2')
662

thomwolf's avatar
thomwolf committed
663
664
665
666
        # Add a [CLS] to the vocabulary (we should train it also!)
        tokenizer.add_special_tokens({'cls_token': '[CLS]'})
        model.resize_token_embeddings(len(tokenizer))  # Update the model embeddings with the new vocabulary size
        print(tokenizer.cls_token_id, len(tokenizer))  # The newly token the last token of the vocabulary
667

thomwolf's avatar
thomwolf committed
668
        choices = ["Hello, my dog is cute [CLS]", "Hello, my cat is cute [CLS]"]
thomwolf's avatar
thomwolf committed
669
670
671
672
673
674
675
        encoded_choices = [tokenizer.encode(s) for s in choices]
        cls_token_location = [tokens.index(tokenizer.cls_token_id) for tokens in encoded_choices]

        input_ids = torch.tensor(encoded_choices).unsqueeze(0)  # Batch size: 1, number of choices: 2
        mc_token_ids = torch.tensor([cls_token_location])  # Batch size: 1

        outputs = model(input_ids, mc_token_ids=mc_token_ids)
676
        lm_prediction_scores, mc_prediction_scores = outputs[:2]
thomwolf's avatar
thomwolf committed
677
678

    """
679

thomwolf's avatar
thomwolf committed
680
    def __init__(self, config):
thomwolf's avatar
thomwolf committed
681
        super(GPT2DoubleHeadsModel, self).__init__(config)
thomwolf's avatar
thomwolf committed
682
        config.num_labels = 1
thomwolf's avatar
thomwolf committed
683
        self.transformer = GPT2Model(config)
thomwolf's avatar
thomwolf committed
684
        self.lm_head = nn.Linear(config.n_embd, config.vocab_size, bias=False)
thomwolf's avatar
thomwolf committed
685
        self.multiple_choice_head = SequenceSummary(config)
thomwolf's avatar
thomwolf committed
686

687
        self.init_weights()
thomwolf's avatar
thomwolf committed
688

thomwolf's avatar
thomwolf committed
689
    def get_output_embeddings(self):
690
        return self.lm_head
thomwolf's avatar
thomwolf committed
691

692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
    def forward(
        self,
        input_ids=None,
        past=None,
        attention_mask=None,
        token_type_ids=None,
        position_ids=None,
        head_mask=None,
        inputs_embeds=None,
        mc_token_ids=None,
        lm_labels=None,
        mc_labels=None,
    ):
        transformer_outputs = self.transformer(
            input_ids,
            past=past,
            attention_mask=attention_mask,
            token_type_ids=token_type_ids,
            position_ids=position_ids,
            head_mask=head_mask,
            inputs_embeds=inputs_embeds,
        )
714

thomwolf's avatar
thomwolf committed
715
        hidden_states = transformer_outputs[0]
716

thomwolf's avatar
thomwolf committed
717
        lm_logits = self.lm_head(hidden_states)
thomwolf's avatar
thomwolf committed
718
        mc_logits = self.multiple_choice_head(hidden_states, mc_token_ids).squeeze(-1)
thomwolf's avatar
thomwolf committed
719

720
        outputs = (lm_logits, mc_logits) + transformer_outputs[1:]
thomwolf's avatar
thomwolf committed
721
722
        if mc_labels is not None:
            loss_fct = CrossEntropyLoss()
723
            loss = loss_fct(mc_logits.view(-1, mc_logits.size(-1)), mc_labels.view(-1))
724
            outputs = (loss,) + outputs
thomwolf's avatar
thomwolf committed
725
        if lm_labels is not None:
726
727
            shift_logits = lm_logits[..., :-1, :].contiguous()
            shift_labels = lm_labels[..., 1:].contiguous()
LysandreJik's avatar
LysandreJik committed
728
            loss_fct = CrossEntropyLoss()
729
            loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1))
730
            outputs = (loss,) + outputs
thomwolf's avatar
thomwolf committed
731
732

        return outputs  # (lm loss), (mc loss), lm logits, mc logits, presents, (all hidden_states), (attentions)