optimization.py 12.7 KB
Newer Older
thomwolf's avatar
thomwolf committed
1
# coding=utf-8
thomwolf's avatar
thomwolf committed
2
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
thomwolf's avatar
thomwolf committed
3
4
5
6
7
8
9
10
11
12
13
14
15
16
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""PyTorch optimization for BERT model."""

17
18
19
import math
import torch
from torch.optim import Optimizer
Li Li's avatar
Li Li committed
20
from torch.optim.optimizer import required
21
from torch.nn.utils import clip_grad_norm_
lukovnikov's avatar
lukovnikov committed
22
import logging
lukovnikov's avatar
lukovnikov committed
23
24
import abc
import sys
lukovnikov's avatar
lukovnikov committed
25
26

logger = logging.getLogger(__name__)
27

lukovnikov's avatar
lukovnikov committed
28

lukovnikov's avatar
lukovnikov committed
29
30
31
32
33
34
if sys.version_info >= (3, 4):
    ABC = abc.ABC
else:
    ABC = abc.ABCMeta('ABC', (), {})


lukovnikov's avatar
lukovnikov committed
35
class _LRSchedule(ABC):
lukovnikov's avatar
lukovnikov committed
36
37
    """ Parent of all LRSchedules here. """
    warn_t_total = False        # is set to True for schedules where progressing beyond t_total steps doesn't make sense
lukovnikov's avatar
lukovnikov committed
38
    def __init__(self, warmup=0.002, t_total=-1, **kw):
lukovnikov's avatar
lukovnikov committed
39
40
41
42
43
        """
        :param warmup:  what fraction of t_total steps will be used for linear warmup
        :param t_total: how many training steps (updates) are planned
        :param kw:
        """
lukovnikov's avatar
lukovnikov committed
44
        super(_LRSchedule, self).__init__(**kw)
lukovnikov's avatar
lukovnikov committed
45
        if t_total < 0:
lukovnikov's avatar
lukovnikov committed
46
47
48
            logger.warning("t_total value of {} results in schedule not being applied".format(t_total))
        if not 0.0 <= warmup < 1.0 and not warmup == -1:
            raise ValueError("Invalid warmup: {} - should be in [0.0, 1.0[ or -1".format(warmup))
lukovnikov's avatar
lukovnikov committed
49
50
        warmup = max(warmup, 0.)
        self.warmup, self.t_total = float(warmup), float(t_total)
lukovnikov's avatar
lukovnikov committed
51
52
53
        self.warned_for_t_total_at_progress = -1

    def get_lr(self, step, nowarn=False):
lukovnikov's avatar
lukovnikov committed
54
55
56
57
58
        """
        :param step:    which of t_total steps we're on
        :param nowarn:  set to True to suppress warning regarding training beyond specified 't_total' steps
        :return:        learning rate multiplier for current update
        """
lukovnikov's avatar
lukovnikov committed
59
60
        if self.t_total < 0:
            return 1.
lukovnikov's avatar
lukovnikov committed
61
        progress = float(step) / self.t_total
lukovnikov's avatar
lukovnikov committed
62
63
64
65
66
67
68
69
70
71
        ret = self.get_lr_(progress)
        # warning for exceeding t_total (only active with warmup_linear
        if not nowarn and self.warn_t_total and progress > 1. and progress > self.warned_for_t_total_at_progress:
            logger.warning(
                "Training beyond specified 't_total'. Learning rate multiplier set to {}. Please set 't_total' of {} correctly."
                    .format(ret, self.__class__.__name__))
            self.warned_for_t_total_at_progress = progress
        # end warning
        return ret

lukovnikov's avatar
lukovnikov committed
72
    @abc.abstractmethod
lukovnikov's avatar
lukovnikov committed
73
74
75
76
77
    def get_lr_(self, progress):
        """
        :param progress:    value between 0 and 1 (unless going beyond t_total steps) specifying training progress
        :return:            learning rate multiplier for current update
        """
lukovnikov's avatar
lukovnikov committed
78
79
80
        return 1.


lukovnikov's avatar
lukovnikov committed
81
82
83
84
85
86
class ConstantLR(_LRSchedule):
    def get_lr_(self, progress):
        return 1.


class WarmupCosineSchedule(_LRSchedule):
lukovnikov's avatar
lukovnikov committed
87
    """
lukovnikov's avatar
lukovnikov committed
88
89
90
    Linearly increases learning rate from 0 to 1 over `warmup` fraction of training steps.
    Decreases learning rate from 1. to 0. over remaining `1 - warmup` steps following a cosine curve.
    If `cycles` (default=0.5) is different from default, learning rate follows cosine function after warmup.
lukovnikov's avatar
lukovnikov committed
91
    """
lukovnikov's avatar
lukovnikov committed
92
93
    warn_t_total = True
    def __init__(self, warmup=0.002, t_total=-1, cycles=.5, **kw):
lukovnikov's avatar
lukovnikov committed
94
95
96
97
98
99
        """
        :param warmup:      see LRSchedule
        :param t_total:     see LRSchedule
        :param cycles:      number of cycles. Default: 0.5, corresponding to cosine decay from 1. at progress==warmup and 0 at progress==1.
        :param kw:
        """
lukovnikov's avatar
lukovnikov committed
100
101
102
103
104
105
106
107
        super(WarmupCosineSchedule, self).__init__(warmup=warmup, t_total=t_total, **kw)
        self.cycles = cycles

    def get_lr_(self, progress):
        if progress < self.warmup:
            return progress / self.warmup
        else:
            progress = (progress - self.warmup) / (1 - self.warmup)   # progress after warmup
lukovnikov's avatar
lukovnikov committed
108
            return 0.5 * (1. + math.cos(math.pi * self.cycles * 2 * progress))
lukovnikov's avatar
lukovnikov committed
109
110


lukovnikov's avatar
lukovnikov committed
111
112
class WarmupCosineWithHardRestartsSchedule(WarmupCosineSchedule):
    """
lukovnikov's avatar
lukovnikov committed
113
114
115
    Linearly increases learning rate from 0 to 1 over `warmup` fraction of training steps.
    If `cycles` (default=1.) is different from default, learning rate follows `cycles` times a cosine decaying
    learning rate (with hard restarts).
lukovnikov's avatar
lukovnikov committed
116
    """
lukovnikov's avatar
lukovnikov committed
117
    def __init__(self, warmup=0.002, t_total=-1, cycles=1., **kw):
lukovnikov's avatar
lukovnikov committed
118
        super(WarmupCosineWithHardRestartsSchedule, self).__init__(warmup=warmup, t_total=t_total, cycles=cycles, **kw)
lukovnikov's avatar
lukovnikov committed
119
        assert(cycles >= 1.)
lukovnikov's avatar
lukovnikov committed
120
121
122
123
124
125

    def get_lr_(self, progress):
        if progress < self.warmup:
            return progress / self.warmup
        else:
            progress = (progress - self.warmup) / (1 - self.warmup)     # progress after warmup
lukovnikov's avatar
lukovnikov committed
126
            ret = 0.5 * (1. + math.cos(math.pi * ((self.cycles * progress) % 1)))
lukovnikov's avatar
lukovnikov committed
127
            return ret
lukovnikov's avatar
lukovnikov committed
128
129


lukovnikov's avatar
lukovnikov committed
130
131
class WarmupCosineWithWarmupRestartsSchedule(WarmupCosineWithHardRestartsSchedule):
    """
lukovnikov's avatar
lukovnikov committed
132
133
134
    All training progress is divided in `cycles` (default=1.) parts of equal length.
    Every part follows a schedule with the first `warmup` fraction of the training steps linearly increasing from 0. to 1.,
    followed by a learning rate decreasing from 1. to 0. following a cosine curve.
lukovnikov's avatar
lukovnikov committed
135
136
137
    """
    def __init__(self, warmup=0.002, t_total=-1, cycles=1., **kw):
        assert(warmup * cycles < 1.)
lukovnikov's avatar
lukovnikov committed
138
139
        warmup = warmup * cycles if warmup >= 0 else warmup
        super(WarmupCosineWithWarmupRestartsSchedule, self).__init__(warmup=warmup, t_total=t_total, cycles=cycles, **kw)
lukovnikov's avatar
lukovnikov committed
140

lukovnikov's avatar
lukovnikov committed
141
142
143
144
145
146
147
148
149
150
    def get_lr_(self, progress):
        progress = progress * self.cycles % 1.
        if progress < self.warmup:
            return progress / self.warmup
        else:
            progress = (progress - self.warmup) / (1 - self.warmup)     # progress after warmup
            ret = 0.5 * (1. + math.cos(math.pi * progress))
            return ret


lukovnikov's avatar
lukovnikov committed
151
class WarmupConstantSchedule(_LRSchedule):
lukovnikov's avatar
lukovnikov committed
152
    """
lukovnikov's avatar
lukovnikov committed
153
154
    Linearly increases learning rate from 0 to 1 over `warmup` fraction of training steps.
    Keeps learning rate equal to 1. after warmup.
lukovnikov's avatar
lukovnikov committed
155
    """
lukovnikov's avatar
lukovnikov committed
156
157
158
159
160
161
    def get_lr_(self, progress):
        if progress < self.warmup:
            return progress / self.warmup
        return 1.


lukovnikov's avatar
lukovnikov committed
162
class WarmupLinearSchedule(_LRSchedule):
lukovnikov's avatar
lukovnikov committed
163
    """
lukovnikov's avatar
lukovnikov committed
164
165
    Linearly increases learning rate from 0 to 1 over `warmup` fraction of training steps.
    Linearly decreases learning rate from 1. to 0. over remaining `1 - warmup` steps.
lukovnikov's avatar
lukovnikov committed
166
    """
lukovnikov's avatar
lukovnikov committed
167
168
169
170
    warn_t_total = True
    def get_lr_(self, progress):
        if progress < self.warmup:
            return progress / self.warmup
lukovnikov's avatar
lukovnikov committed
171
        return max((progress - 1.) / (self.warmup - 1.), 0.)
lukovnikov's avatar
lukovnikov committed
172

173
174

SCHEDULES = {
lukovnikov's avatar
lukovnikov committed
175
176
    None:       ConstantLR,
    "none":     ConstantLR,
lukovnikov's avatar
lukovnikov committed
177
178
179
    "warmup_cosine": WarmupCosineSchedule,
    "warmup_constant": WarmupConstantSchedule,
    "warmup_linear": WarmupLinearSchedule
180
181
182
}


thomwolf's avatar
thomwolf committed
183
class BertAdam(Optimizer):
thomwolf's avatar
thomwolf committed
184
    """Implements BERT version of Adam algorithm with weight decay fix.
thomwolf's avatar
thomwolf committed
185
    Params:
thomwolf's avatar
thomwolf committed
186
187
188
        lr: learning rate
        warmup: portion of t_total for the warmup, -1  means no warmup. Default: -1
        t_total: total number of training steps for the learning
lukovnikov's avatar
lukovnikov committed
189
            rate schedule, -1  means constant learning rate of 1. (no warmup regardless of warmup setting). Default: -1
lukovnikov's avatar
lukovnikov committed
190
        schedule: schedule to use for the warmup (see above).
lukovnikov's avatar
lukovnikov committed
191
192
193
            Can be `'warmup_linear'`, `'warmup_constant'`, `'warmup_cosine'`, `'none'`, `None` or a `_LRSchedule` object (see below).
            If `None` or `'none'`, learning rate is always kept constant.
            Default : `'warmup_linear'`
194
        betas: Adams betas. Default: (0.9, 0.999)
thomwolf's avatar
thomwolf committed
195
        e: Adams epsilon. Default: 1e-6
196
        weight_decay: Weight decay. Default: 0.01
thomwolf's avatar
thomwolf committed
197
        max_grad_norm: Maximum norm for the gradients (-1 means no clipping). Default: 1.0
198
    """
Li Li's avatar
Li Li committed
199
    def __init__(self, params, lr=required, warmup=-1, t_total=-1, schedule='warmup_linear',
200
                 betas=(0.9, 0.999), e=1e-6, weight_decay=0.01, max_grad_norm=1.0, **kwargs):
Li Li's avatar
Li Li committed
201
        if lr is not required and lr < 0.0:
thomwolf's avatar
thomwolf committed
202
            raise ValueError("Invalid learning rate: {} - should be >= 0.0".format(lr))
lukovnikov's avatar
lukovnikov committed
203
        if not isinstance(schedule, _LRSchedule) and schedule not in SCHEDULES:
204
            raise ValueError("Invalid schedule parameter: {}".format(schedule))
205
206
207
208
        if not 0.0 <= betas[0] < 1.0:
            raise ValueError("Invalid beta parameter at index 0: {} - should be in [0.0, 1.0[".format(betas[0]))
        if not 0.0 <= betas[1] < 1.0:
            raise ValueError("Invalid beta parameter at index 1: {} - should be in [0.0, 1.0[".format(betas[1]))
thomwolf's avatar
thomwolf committed
209
210
        if not e >= 0.0:
            raise ValueError("Invalid epsilon value: {} - should be >= 0.0".format(e))
lukovnikov's avatar
lukovnikov committed
211
        # initialize schedule object
lukovnikov's avatar
lukovnikov committed
212
        if not isinstance(schedule, _LRSchedule):
lukovnikov's avatar
lukovnikov committed
213
214
215
216
            schedule_type = SCHEDULES[schedule]
            schedule = schedule_type(warmup=warmup, t_total=t_total)
        else:
            if warmup != -1 or t_total != -1:
lukovnikov's avatar
lukovnikov committed
217
218
                logger.warning("warmup and t_total on the optimizer are ineffective when _LRSchedule object is provided as schedule. "
                               "Please specify custom warmup and t_total in _LRSchedule object.")
lukovnikov's avatar
lukovnikov committed
219
        defaults = dict(lr=lr, schedule=schedule,
220
                        betas=betas, e=e, weight_decay=weight_decay,
221
                        max_grad_norm=max_grad_norm)
thomwolf's avatar
thomwolf committed
222
        super(BertAdam, self).__init__(params, defaults)
223
224
225
226
227
228
229
230

    def get_lr(self):
        lr = []
        for group in self.param_groups:
            for p in group['params']:
                state = self.state[p]
                if len(state) == 0:
                    return [0]
lukovnikov's avatar
lukovnikov committed
231
                lr_scheduled = group['lr']
lukovnikov's avatar
lukovnikov committed
232
                lr_scheduled *= group['schedule'].get_lr(state['step'])
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
                lr.append(lr_scheduled)
        return lr

    def step(self, closure=None):
        """Performs a single optimization step.

        Arguments:
            closure (callable, optional): A closure that reevaluates the model
                and returns the loss.
        """
        loss = None
        if closure is not None:
            loss = closure()

        for group in self.param_groups:
            for p in group['params']:
                if p.grad is None:
                    continue
                grad = p.grad.data
                if grad.is_sparse:
                    raise RuntimeError('Adam does not support sparse gradients, please consider SparseAdam instead')

                state = self.state[p]

                # State initialization
                if len(state) == 0:
                    state['step'] = 0
                    # Exponential moving average of gradient values
thomwolf's avatar
thomwolf committed
261
                    state['next_m'] = torch.zeros_like(p.data)
262
                    # Exponential moving average of squared gradient values
thomwolf's avatar
thomwolf committed
263
                    state['next_v'] = torch.zeros_like(p.data)
264

thomwolf's avatar
thomwolf committed
265
                next_m, next_v = state['next_m'], state['next_v']
266
                beta1, beta2 = group['betas']
267
268
269
270
271
272

                # Add grad clipping
                if group['max_grad_norm'] > 0:
                    clip_grad_norm_(p, group['max_grad_norm'])

                # Decay the first and second moment running average coefficient
thomwolf's avatar
thomwolf committed
273
274
275
276
                # In-place operations to update the averages at the same time
                next_m.mul_(beta1).add_(1 - beta1, grad)
                next_v.mul_(beta2).addcmul_(1 - beta2, grad, grad)
                update = next_m / (next_v.sqrt() + group['e'])
277
278
279
280
281

                # Just adding the square of the weights to the loss function is *not*
                # the correct way of using L2 regularization/weight decay with Adam,
                # since that will interact with the m and v parameters in strange ways.
                #
thomwolf's avatar
thomwolf committed
282
                # Instead we want to decay the weights in a manner that doesn't interact
283
284
                # with the m/v parameters. This is equivalent to adding the square
                # of the weights to the loss with plain (non-momentum) SGD.
285
286
                if group['weight_decay'] > 0.0:
                    update += group['weight_decay'] * p.data
thomwolf's avatar
thomwolf committed
287

lukovnikov's avatar
lukovnikov committed
288
                lr_scheduled = group['lr']
lukovnikov's avatar
lukovnikov committed
289
                lr_scheduled *= group['schedule'].get_lr(state['step'])
thomwolf's avatar
thomwolf committed
290
291
292
293
294
295
296

                update_with_lr = lr_scheduled * update
                p.data.add_(-update_with_lr)

                state['step'] += 1

                # step_size = lr_scheduled * math.sqrt(bias_correction2) / bias_correction1
thomwolf's avatar
thomwolf committed
297
                # No bias correction
thomwolf's avatar
thomwolf committed
298
299
                # bias_correction1 = 1 - beta1 ** state['step']
                # bias_correction2 = 1 - beta2 ** state['step']
300
301

        return loss