optimization.py 12 KB
Newer Older
thomwolf's avatar
thomwolf committed
1
# coding=utf-8
thomwolf's avatar
thomwolf committed
2
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
thomwolf's avatar
thomwolf committed
3
4
5
6
7
8
9
10
11
12
13
14
15
16
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""PyTorch optimization for BERT model."""

17
18
19
import math
import torch
from torch.optim import Optimizer
Li Li's avatar
Li Li committed
20
from torch.optim.optimizer import required
21
from torch.nn.utils import clip_grad_norm_
lukovnikov's avatar
lukovnikov committed
22
23
24
import logging

logger = logging.getLogger(__name__)
25

lukovnikov's avatar
lukovnikov committed
26

lukovnikov's avatar
lukovnikov committed
27
__all__ = ["LRSchedule", "WarmupLinearSchedule", "WarmupConstantSchedule", "WarmupCosineSchedule", "BertAdam",
lukovnikov's avatar
lukovnikov committed
28
           "WarmupCosineWithHardRestartsSchedule", "WarmupCosineWithWarmupRestartsSchedule", "SCHEDULES"]
lukovnikov's avatar
lukovnikov committed
29
30


lukovnikov's avatar
lukovnikov committed
31
class LRSchedule(object):
lukovnikov's avatar
lukovnikov committed
32
33
    """ Parent of all LRSchedules here. """
    warn_t_total = False        # is set to True for schedules where progressing beyond t_total steps doesn't make sense
lukovnikov's avatar
lukovnikov committed
34
    def __init__(self, warmup=0.002, t_total=-1, **kw):
lukovnikov's avatar
lukovnikov committed
35
36
37
38
39
        """
        :param warmup:  what fraction of t_total steps will be used for linear warmup
        :param t_total: how many training steps (updates) are planned
        :param kw:
        """
lukovnikov's avatar
lukovnikov committed
40
        super(LRSchedule, self).__init__(**kw)
lukovnikov's avatar
lukovnikov committed
41
        if t_total < 0:
lukovnikov's avatar
lukovnikov committed
42
43
44
            logger.warning("t_total value of {} results in schedule not being applied".format(t_total))
        if not 0.0 <= warmup < 1.0 and not warmup == -1:
            raise ValueError("Invalid warmup: {} - should be in [0.0, 1.0[ or -1".format(warmup))
lukovnikov's avatar
lukovnikov committed
45
46
        warmup = max(warmup, 0.)
        self.warmup, self.t_total = float(warmup), float(t_total)
lukovnikov's avatar
lukovnikov committed
47
48
49
        self.warned_for_t_total_at_progress = -1

    def get_lr(self, step, nowarn=False):
lukovnikov's avatar
lukovnikov committed
50
51
52
53
54
        """
        :param step:    which of t_total steps we're on
        :param nowarn:  set to True to suppress warning regarding training beyond specified 't_total' steps
        :return:        learning rate multiplier for current update
        """
lukovnikov's avatar
lukovnikov committed
55
56
        if self.t_total < 0:
            return 1.
lukovnikov's avatar
lukovnikov committed
57
58
59
60
61
62
63
64
65
66
67
        progress = step / self.t_total
        ret = self.get_lr_(progress)
        # warning for exceeding t_total (only active with warmup_linear
        if not nowarn and self.warn_t_total and progress > 1. and progress > self.warned_for_t_total_at_progress:
            logger.warning(
                "Training beyond specified 't_total'. Learning rate multiplier set to {}. Please set 't_total' of {} correctly."
                    .format(ret, self.__class__.__name__))
            self.warned_for_t_total_at_progress = progress
        # end warning
        return ret

lukovnikov's avatar
lukovnikov committed
68
69
70
71
72
    def get_lr_(self, progress):
        """
        :param progress:    value between 0 and 1 (unless going beyond t_total steps) specifying training progress
        :return:            learning rate multiplier for current update
        """
lukovnikov's avatar
lukovnikov committed
73
        return 1.
lukovnikov's avatar
lukovnikov committed
74
        # raise NotImplemented("use subclass")  -
lukovnikov's avatar
lukovnikov committed
75
76
77


class WarmupCosineSchedule(LRSchedule):
lukovnikov's avatar
lukovnikov committed
78
79
80
    """
    Cosine learning rate schedule with linear warmup. Cosine after warmup is without restarts.
    """
lukovnikov's avatar
lukovnikov committed
81
82
    warn_t_total = True
    def __init__(self, warmup=0.002, t_total=-1, cycles=.5, **kw):
lukovnikov's avatar
lukovnikov committed
83
84
85
86
87
88
        """
        :param warmup:      see LRSchedule
        :param t_total:     see LRSchedule
        :param cycles:      number of cycles. Default: 0.5, corresponding to cosine decay from 1. at progress==warmup and 0 at progress==1.
        :param kw:
        """
lukovnikov's avatar
lukovnikov committed
89
90
91
92
93
94
95
96
        super(WarmupCosineSchedule, self).__init__(warmup=warmup, t_total=t_total, **kw)
        self.cycles = cycles

    def get_lr_(self, progress):
        if progress < self.warmup:
            return progress / self.warmup
        else:
            progress = (progress - self.warmup) / (1 - self.warmup)   # progress after warmup
lukovnikov's avatar
lukovnikov committed
97
            return 0.5 * (1. + math.cos(math.pi * self.cycles * 2 * progress))
lukovnikov's avatar
lukovnikov committed
98
99


lukovnikov's avatar
lukovnikov committed
100
101
102
103
class WarmupCosineWithHardRestartsSchedule(WarmupCosineSchedule):
    """
    Cosine learning rate schedule with linear warmup and hard restarts (if cycles > 1).
    """
lukovnikov's avatar
lukovnikov committed
104
    def __init__(self, warmup=0.002, t_total=-1, cycles=1., **kw):
lukovnikov's avatar
lukovnikov committed
105
        super(WarmupCosineWithHardRestartsSchedule, self).__init__(warmup=warmup, t_total=t_total, cycles=cycles, **kw)
lukovnikov's avatar
lukovnikov committed
106
        assert(cycles >= 1.)
lukovnikov's avatar
lukovnikov committed
107
108
109
110
111
112

    def get_lr_(self, progress):
        if progress < self.warmup:
            return progress / self.warmup
        else:
            progress = (progress - self.warmup) / (1 - self.warmup)     # progress after warmup
lukovnikov's avatar
lukovnikov committed
113
            ret = 0.5 * (1. + math.cos(math.pi * ((self.cycles * progress) % 1)))
lukovnikov's avatar
lukovnikov committed
114
            return ret
lukovnikov's avatar
lukovnikov committed
115
116


lukovnikov's avatar
lukovnikov committed
117
118
119
120
121
122
123
124
class WarmupCosineWithWarmupRestartsSchedule(WarmupCosineWithHardRestartsSchedule):
    """
    Cosine learning rate schedule with linear warmups and linear warmup restarts.
    The same warmup rate is used for warmup restarts as for initial warmup.
    The total effective fraction of warmup steps over all cycles is warmup * cycles!
    """
    def __init__(self, warmup=0.002, t_total=-1, cycles=1., **kw):
        assert(warmup * cycles < 1.)
lukovnikov's avatar
lukovnikov committed
125
126
        warmup = warmup * cycles if warmup >= 0 else warmup
        super(WarmupCosineWithWarmupRestartsSchedule, self).__init__(warmup=warmup, t_total=t_total, cycles=cycles, **kw)
lukovnikov's avatar
lukovnikov committed
127

lukovnikov's avatar
lukovnikov committed
128
129
130
131
132
133
134
135
136
137
    def get_lr_(self, progress):
        progress = progress * self.cycles % 1.
        if progress < self.warmup:
            return progress / self.warmup
        else:
            progress = (progress - self.warmup) / (1 - self.warmup)     # progress after warmup
            ret = 0.5 * (1. + math.cos(math.pi * progress))
            return ret


lukovnikov's avatar
lukovnikov committed
138
class WarmupConstantSchedule(LRSchedule):
lukovnikov's avatar
lukovnikov committed
139
140
141
    """
    Applies linear warmup. After warmup always returns 1..
    """
lukovnikov's avatar
lukovnikov committed
142
143
144
145
146
147
148
    def get_lr_(self, progress):
        if progress < self.warmup:
            return progress / self.warmup
        return 1.


class WarmupLinearSchedule(LRSchedule):
lukovnikov's avatar
lukovnikov committed
149
150
151
    """
    Linear warmup. Linear decay after warmup.
    """
lukovnikov's avatar
lukovnikov committed
152
153
154
155
    warn_t_total = True
    def get_lr_(self, progress):
        if progress < self.warmup:
            return progress / self.warmup
lukovnikov's avatar
lukovnikov committed
156
        return max((progress - 1.) / (self.warmup - 1.), 0.)
lukovnikov's avatar
lukovnikov committed
157

158
159

SCHEDULES = {
lukovnikov's avatar
lukovnikov committed
160
161
162
163
164
    None:       LRSchedule,
    "none":     LRSchedule,
    "warmup_cosine": WarmupCosineSchedule,
    "warmup_constant": WarmupConstantSchedule,
    "warmup_linear": WarmupLinearSchedule
165
166
167
}


thomwolf's avatar
thomwolf committed
168
class BertAdam(Optimizer):
thomwolf's avatar
thomwolf committed
169
    """Implements BERT version of Adam algorithm with weight decay fix.
thomwolf's avatar
thomwolf committed
170
    Params:
thomwolf's avatar
thomwolf committed
171
172
173
        lr: learning rate
        warmup: portion of t_total for the warmup, -1  means no warmup. Default: -1
        t_total: total number of training steps for the learning
lukovnikov's avatar
lukovnikov committed
174
            rate schedule, -1  means constant learning rate of 1. (no warmup regardless of warmup setting). Default: -1
lukovnikov's avatar
lukovnikov committed
175
176
177
        schedule: schedule to use for the warmup (see above).
            Can be 'warmup_linear', 'warmup_constant', 'warmup_cosine', or a LRSchedule object.
            Default: 'warmup_linear'
thomwolf's avatar
thomwolf committed
178
179
180
        b1: Adams b1. Default: 0.9
        b2: Adams b2. Default: 0.999
        e: Adams epsilon. Default: 1e-6
181
        weight_decay: Weight decay. Default: 0.01
thomwolf's avatar
thomwolf committed
182
        max_grad_norm: Maximum norm for the gradients (-1 means no clipping). Default: 1.0
183
    """
Li Li's avatar
Li Li committed
184
    def __init__(self, params, lr=required, warmup=-1, t_total=-1, schedule='warmup_linear',
lukovnikov's avatar
lukovnikov committed
185
                 b1=0.9, b2=0.999, e=1e-6, weight_decay=0.01, max_grad_norm=1.0, **kwargs):
Li Li's avatar
Li Li committed
186
        if lr is not required and lr < 0.0:
thomwolf's avatar
thomwolf committed
187
            raise ValueError("Invalid learning rate: {} - should be >= 0.0".format(lr))
lukovnikov's avatar
lukovnikov committed
188
        if not isinstance(schedule, LRSchedule) and schedule not in SCHEDULES:
189
190
            raise ValueError("Invalid schedule parameter: {}".format(schedule))
        if not 0.0 <= b1 < 1.0:
thomwolf's avatar
thomwolf committed
191
            raise ValueError("Invalid b1 parameter: {} - should be in [0.0, 1.0[".format(b1))
192
        if not 0.0 <= b2 < 1.0:
thomwolf's avatar
thomwolf committed
193
194
195
            raise ValueError("Invalid b2 parameter: {} - should be in [0.0, 1.0[".format(b2))
        if not e >= 0.0:
            raise ValueError("Invalid epsilon value: {} - should be >= 0.0".format(e))
lukovnikov's avatar
lukovnikov committed
196
        # initialize schedule object
lukovnikov's avatar
lukovnikov committed
197
198
199
200
201
        if not isinstance(schedule, LRSchedule):
            schedule_type = SCHEDULES[schedule]
            schedule = schedule_type(warmup=warmup, t_total=t_total)
        else:
            if warmup != -1 or t_total != -1:
lukovnikov's avatar
lukovnikov committed
202
203
                logger.warning("Non-default warmup and t_total are ineffective when LRSchedule object is provided. "
                               "Please specify custom warmup and t_total in LRSchedule object.")
lukovnikov's avatar
lukovnikov committed
204
        defaults = dict(lr=lr, schedule=schedule,
lukovnikov's avatar
lukovnikov committed
205
                        b1=b1, b2=b2, e=e, weight_decay=weight_decay,
206
                        max_grad_norm=max_grad_norm)
thomwolf's avatar
thomwolf committed
207
        super(BertAdam, self).__init__(params, defaults)
208
209
210
211
212
213
214
215

    def get_lr(self):
        lr = []
        for group in self.param_groups:
            for p in group['params']:
                state = self.state[p]
                if len(state) == 0:
                    return [0]
lukovnikov's avatar
lukovnikov committed
216
                lr_scheduled = group['lr']
lukovnikov's avatar
lukovnikov committed
217
                lr_scheduled *= group['schedule'].get_lr(state['step'])
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
                lr.append(lr_scheduled)
        return lr

    def step(self, closure=None):
        """Performs a single optimization step.

        Arguments:
            closure (callable, optional): A closure that reevaluates the model
                and returns the loss.
        """
        loss = None
        if closure is not None:
            loss = closure()

        for group in self.param_groups:
            for p in group['params']:
                if p.grad is None:
                    continue
                grad = p.grad.data
                if grad.is_sparse:
                    raise RuntimeError('Adam does not support sparse gradients, please consider SparseAdam instead')

                state = self.state[p]

                # State initialization
                if len(state) == 0:
                    state['step'] = 0
                    # Exponential moving average of gradient values
thomwolf's avatar
thomwolf committed
246
                    state['next_m'] = torch.zeros_like(p.data)
247
                    # Exponential moving average of squared gradient values
thomwolf's avatar
thomwolf committed
248
                    state['next_v'] = torch.zeros_like(p.data)
249

thomwolf's avatar
thomwolf committed
250
                next_m, next_v = state['next_m'], state['next_v']
251
252
253
254
255
256
257
                beta1, beta2 = group['b1'], group['b2']

                # Add grad clipping
                if group['max_grad_norm'] > 0:
                    clip_grad_norm_(p, group['max_grad_norm'])

                # Decay the first and second moment running average coefficient
thomwolf's avatar
thomwolf committed
258
259
260
261
                # In-place operations to update the averages at the same time
                next_m.mul_(beta1).add_(1 - beta1, grad)
                next_v.mul_(beta2).addcmul_(1 - beta2, grad, grad)
                update = next_m / (next_v.sqrt() + group['e'])
262
263
264
265
266

                # Just adding the square of the weights to the loss function is *not*
                # the correct way of using L2 regularization/weight decay with Adam,
                # since that will interact with the m and v parameters in strange ways.
                #
thomwolf's avatar
thomwolf committed
267
                # Instead we want to decay the weights in a manner that doesn't interact
268
269
                # with the m/v parameters. This is equivalent to adding the square
                # of the weights to the loss with plain (non-momentum) SGD.
270
271
                if group['weight_decay'] > 0.0:
                    update += group['weight_decay'] * p.data
thomwolf's avatar
thomwolf committed
272

lukovnikov's avatar
lukovnikov committed
273
                lr_scheduled = group['lr']
lukovnikov's avatar
lukovnikov committed
274
                lr_scheduled *= group['schedule'].get_lr(state['step'])
thomwolf's avatar
thomwolf committed
275
276
277
278
279
280
281

                update_with_lr = lr_scheduled * update
                p.data.add_(-update_with_lr)

                state['step'] += 1

                # step_size = lr_scheduled * math.sqrt(bias_correction2) / bias_correction1
thomwolf's avatar
thomwolf committed
282
                # No bias correction
thomwolf's avatar
thomwolf committed
283
284
                # bias_correction1 = 1 - beta1 ** state['step']
                # bias_correction2 = 1 - beta2 ** state['step']
285
286

        return loss