optimization.py 9.21 KB
Newer Older
thomwolf's avatar
thomwolf committed
1
# coding=utf-8
thomwolf's avatar
thomwolf committed
2
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
thomwolf's avatar
thomwolf committed
3
4
5
6
7
8
9
10
11
12
13
14
15
16
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""PyTorch optimization for BERT model."""

17
18
19
import math
import torch
from torch.optim import Optimizer
Li Li's avatar
Li Li committed
20
from torch.optim.optimizer import required
21
from torch.nn.utils import clip_grad_norm_
lukovnikov's avatar
lukovnikov committed
22
23
24
import logging

logger = logging.getLogger(__name__)
25

lukovnikov's avatar
lukovnikov committed
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111

class LRSchedule(object):
    warn_t_total = False
    def __init__(self, warmup=0.002, t_total=-1, **kw):
        super(LRSchedule, self).__init__(**kw)
        self.warmup, self.t_total = warmup, t_total
        if t_total <= 0:
            logger.warning("t_total value of {} results in schedule not being applied".format(t_total))
        if not 0.0 <= warmup < 1.0 and not warmup == -1:
            raise ValueError("Invalid warmup: {} - should be in [0.0, 1.0[ or -1".format(warmup))
        self.warned_for_t_total_at_progress = -1

    def get_lr(self, step, nowarn=False):
        progress = step / self.t_total
        ret = self.get_lr_(progress)
        # warning for exceeding t_total (only active with warmup_linear
        if not nowarn and self.warn_t_total and progress > 1. and progress > self.warned_for_t_total_at_progress:
            logger.warning(
                "Training beyond specified 't_total'. Learning rate multiplier set to {}. Please set 't_total' of {} correctly."
                    .format(ret, self.__class__.__name__))
            self.warned_for_t_total_at_progress = progress
        # end warning
        return ret

    def get_lr_(self, step):
        return 1.
        # raise NotImplemented("use subclass")


class WarmupCosineSchedule(LRSchedule):
    warn_t_total = True
    def __init__(self, warmup=0.002, t_total=-1, cycles=.5, **kw):
        super(WarmupCosineSchedule, self).__init__(warmup=warmup, t_total=t_total, **kw)
        self.cycles = cycles

    def get_lr_(self, progress):
        """ get learning rate multiplier """
        if self.t_total <= 0:
            return 1.
        if progress < self.warmup:
            return progress / self.warmup
        else:
            progress = (progress - self.warmup) / (1 - self.warmup)   # progress after warmup
            return 0.5 * (1. + torch.cos(math.pi * self.cycles * 2 * progress))


class WarmupConstantSchedule(LRSchedule):
    warn_t_total = False
    def get_lr_(self, progress):
        if progress < self.warmup:
            return progress / self.warmup
        return 1.


class WarmupLinearSchedule(LRSchedule):
    warn_t_total = True
    def get_lr_(self, progress):
        if progress < self.warmup:
            return progress / self.warmup
        return max((progress - 1.) / (self.warmup - 1.), 0)
#
#
# def warmup_cosine(x, warmup=0.002):
#     if x < warmup:
#         return x/warmup
#     return 0.5 * (1.0 + torch.cos(math.pi * x))
#
# def warmup_constant(x, warmup=0.002):
#     """ Linearly increases learning rate over `warmup`*`t_total` (as provided to BertAdam) training steps.
#         Learning rate is 1. afterwards. """
#     if x < warmup:
#         return x/warmup
#     return 1.0
#
# def warmup_linear(x, warmup=0.002):
#     """ Specifies a triangular learning rate schedule where peak is reached at `warmup`*`t_total`-th (as provided to BertAdam) training step.
#         After `t_total`-th training step, learning rate is zero. """
#     if x < warmup:
#         return x/warmup
#     return max((x-1.)/(warmup-1.), 0)
#
# SCHEDULES = {
#     'warmup_cosine':   warmup_cosine,
#     'warmup_constant': warmup_constant,
#     'warmup_linear':   warmup_linear,
# }
112
113

SCHEDULES = {
lukovnikov's avatar
lukovnikov committed
114
115
116
117
118
    None:       LRSchedule,
    "none":     LRSchedule,
    "warmup_cosine": WarmupCosineSchedule,
    "warmup_constant": WarmupConstantSchedule,
    "warmup_linear": WarmupLinearSchedule
119
120
121
}


thomwolf's avatar
thomwolf committed
122
class BertAdam(Optimizer):
thomwolf's avatar
thomwolf committed
123
    """Implements BERT version of Adam algorithm with weight decay fix.
thomwolf's avatar
thomwolf committed
124
    Params:
thomwolf's avatar
thomwolf committed
125
126
127
128
129
130
131
132
        lr: learning rate
        warmup: portion of t_total for the warmup, -1  means no warmup. Default: -1
        t_total: total number of training steps for the learning
            rate schedule, -1  means constant learning rate. Default: -1
        schedule: schedule to use for the warmup (see above). Default: 'warmup_linear'
        b1: Adams b1. Default: 0.9
        b2: Adams b2. Default: 0.999
        e: Adams epsilon. Default: 1e-6
133
        weight_decay: Weight decay. Default: 0.01
thomwolf's avatar
thomwolf committed
134
        max_grad_norm: Maximum norm for the gradients (-1 means no clipping). Default: 1.0
135
    """
Li Li's avatar
Li Li committed
136
    def __init__(self, params, lr=required, warmup=-1, t_total=-1, schedule='warmup_linear',
137
                 b1=0.9, b2=0.999, e=1e-6, weight_decay=0.01,
thomwolf's avatar
thomwolf committed
138
                 max_grad_norm=1.0):
Li Li's avatar
Li Li committed
139
        if lr is not required and lr < 0.0:
thomwolf's avatar
thomwolf committed
140
            raise ValueError("Invalid learning rate: {} - should be >= 0.0".format(lr))
141
142
143
        if schedule not in SCHEDULES:
            raise ValueError("Invalid schedule parameter: {}".format(schedule))
        if not 0.0 <= b1 < 1.0:
thomwolf's avatar
thomwolf committed
144
            raise ValueError("Invalid b1 parameter: {} - should be in [0.0, 1.0[".format(b1))
145
        if not 0.0 <= b2 < 1.0:
thomwolf's avatar
thomwolf committed
146
147
148
            raise ValueError("Invalid b2 parameter: {} - should be in [0.0, 1.0[".format(b2))
        if not e >= 0.0:
            raise ValueError("Invalid epsilon value: {} - should be >= 0.0".format(e))
lukovnikov's avatar
lukovnikov committed
149
150
151
152
        # initialize schedule object
        schedule_type = SCHEDULES[schedule]
        sched = schedule_type(warmup=warmup, t_total=t_total)
        defaults = dict(lr=lr, schedule=sched,
153
                        b1=b1, b2=b2, e=e, weight_decay=weight_decay,
154
                        max_grad_norm=max_grad_norm)
thomwolf's avatar
thomwolf committed
155
        super(BertAdam, self).__init__(params, defaults)
156
157
158
159
160
161
162
163

    def get_lr(self):
        lr = []
        for group in self.param_groups:
            for p in group['params']:
                state = self.state[p]
                if len(state) == 0:
                    return [0]
lukovnikov's avatar
lukovnikov committed
164
165
166
167

                lr_scheduled = group['lr']
                lr_scheduled *= group['schedule'](state['step'])

168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
                lr.append(lr_scheduled)
        return lr

    def step(self, closure=None):
        """Performs a single optimization step.

        Arguments:
            closure (callable, optional): A closure that reevaluates the model
                and returns the loss.
        """
        loss = None
        if closure is not None:
            loss = closure()

        for group in self.param_groups:
            for p in group['params']:
                if p.grad is None:
                    continue
                grad = p.grad.data
                if grad.is_sparse:
                    raise RuntimeError('Adam does not support sparse gradients, please consider SparseAdam instead')

                state = self.state[p]

                # State initialization
                if len(state) == 0:
                    state['step'] = 0
                    # Exponential moving average of gradient values
thomwolf's avatar
thomwolf committed
196
                    state['next_m'] = torch.zeros_like(p.data)
197
                    # Exponential moving average of squared gradient values
thomwolf's avatar
thomwolf committed
198
                    state['next_v'] = torch.zeros_like(p.data)
199

thomwolf's avatar
thomwolf committed
200
                next_m, next_v = state['next_m'], state['next_v']
201
202
203
204
205
206
207
                beta1, beta2 = group['b1'], group['b2']

                # Add grad clipping
                if group['max_grad_norm'] > 0:
                    clip_grad_norm_(p, group['max_grad_norm'])

                # Decay the first and second moment running average coefficient
thomwolf's avatar
thomwolf committed
208
209
210
211
                # In-place operations to update the averages at the same time
                next_m.mul_(beta1).add_(1 - beta1, grad)
                next_v.mul_(beta2).addcmul_(1 - beta2, grad, grad)
                update = next_m / (next_v.sqrt() + group['e'])
212
213
214
215
216

                # Just adding the square of the weights to the loss function is *not*
                # the correct way of using L2 regularization/weight decay with Adam,
                # since that will interact with the m and v parameters in strange ways.
                #
thomwolf's avatar
thomwolf committed
217
                # Instead we want to decay the weights in a manner that doesn't interact
218
219
                # with the m/v parameters. This is equivalent to adding the square
                # of the weights to the loss with plain (non-momentum) SGD.
220
221
                if group['weight_decay'] > 0.0:
                    update += group['weight_decay'] * p.data
thomwolf's avatar
thomwolf committed
222

lukovnikov's avatar
lukovnikov committed
223
224
                lr_scheduled = group['lr']
                lr_scheduled *= group['schedule'](state['step'])
thomwolf's avatar
thomwolf committed
225
226
227
228
229
230
231

                update_with_lr = lr_scheduled * update
                p.data.add_(-update_with_lr)

                state['step'] += 1

                # step_size = lr_scheduled * math.sqrt(bias_correction2) / bias_correction1
thomwolf's avatar
thomwolf committed
232
                # No bias correction
thomwolf's avatar
thomwolf committed
233
234
                # bias_correction1 = 1 - beta1 ** state['step']
                # bias_correction2 = 1 - beta2 ** state['step']
235
236

        return loss