Commit 88874f6c authored by lukovnikov's avatar lukovnikov
Browse files

BertAdam schedule objects

parent 7cc35c31
...@@ -23,29 +23,99 @@ import logging ...@@ -23,29 +23,99 @@ import logging
logger = logging.getLogger(__name__) logger = logging.getLogger(__name__)
def warmup_cosine(x, warmup=0.002):
if x < warmup: class LRSchedule(object):
return x/warmup warn_t_total = False
return 0.5 * (1.0 + torch.cos(math.pi * x)) def __init__(self, warmup=0.002, t_total=-1, **kw):
super(LRSchedule, self).__init__(**kw)
def warmup_constant(x, warmup=0.002): self.warmup, self.t_total = warmup, t_total
""" Linearly increases learning rate over `warmup`*`t_total` (as provided to BertAdam) training steps. if t_total <= 0:
Learning rate is 1. afterwards. """ logger.warning("t_total value of {} results in schedule not being applied".format(t_total))
if x < warmup: if not 0.0 <= warmup < 1.0 and not warmup == -1:
return x/warmup raise ValueError("Invalid warmup: {} - should be in [0.0, 1.0[ or -1".format(warmup))
return 1.0 self.warned_for_t_total_at_progress = -1
def warmup_linear(x, warmup=0.002): def get_lr(self, step, nowarn=False):
""" Specifies a triangular learning rate schedule where peak is reached at `warmup`*`t_total`-th (as provided to BertAdam) training step. progress = step / self.t_total
After `t_total`-th training step, learning rate is zero. """ ret = self.get_lr_(progress)
if x < warmup: # warning for exceeding t_total (only active with warmup_linear
return x/warmup if not nowarn and self.warn_t_total and progress > 1. and progress > self.warned_for_t_total_at_progress:
return max((x-1.)/(warmup-1.), 0) logger.warning(
"Training beyond specified 't_total'. Learning rate multiplier set to {}. Please set 't_total' of {} correctly."
.format(ret, self.__class__.__name__))
self.warned_for_t_total_at_progress = progress
# end warning
return ret
def get_lr_(self, step):
return 1.
# raise NotImplemented("use subclass")
class WarmupCosineSchedule(LRSchedule):
warn_t_total = True
def __init__(self, warmup=0.002, t_total=-1, cycles=.5, **kw):
super(WarmupCosineSchedule, self).__init__(warmup=warmup, t_total=t_total, **kw)
self.cycles = cycles
def get_lr_(self, progress):
""" get learning rate multiplier """
if self.t_total <= 0:
return 1.
if progress < self.warmup:
return progress / self.warmup
else:
progress = (progress - self.warmup) / (1 - self.warmup) # progress after warmup
return 0.5 * (1. + torch.cos(math.pi * self.cycles * 2 * progress))
class WarmupConstantSchedule(LRSchedule):
warn_t_total = False
def get_lr_(self, progress):
if progress < self.warmup:
return progress / self.warmup
return 1.
class WarmupLinearSchedule(LRSchedule):
warn_t_total = True
def get_lr_(self, progress):
if progress < self.warmup:
return progress / self.warmup
return max((progress - 1.) / (self.warmup - 1.), 0)
#
#
# def warmup_cosine(x, warmup=0.002):
# if x < warmup:
# return x/warmup
# return 0.5 * (1.0 + torch.cos(math.pi * x))
#
# def warmup_constant(x, warmup=0.002):
# """ Linearly increases learning rate over `warmup`*`t_total` (as provided to BertAdam) training steps.
# Learning rate is 1. afterwards. """
# if x < warmup:
# return x/warmup
# return 1.0
#
# def warmup_linear(x, warmup=0.002):
# """ Specifies a triangular learning rate schedule where peak is reached at `warmup`*`t_total`-th (as provided to BertAdam) training step.
# After `t_total`-th training step, learning rate is zero. """
# if x < warmup:
# return x/warmup
# return max((x-1.)/(warmup-1.), 0)
#
# SCHEDULES = {
# 'warmup_cosine': warmup_cosine,
# 'warmup_constant': warmup_constant,
# 'warmup_linear': warmup_linear,
# }
SCHEDULES = { SCHEDULES = {
'warmup_cosine': warmup_cosine, None: LRSchedule,
'warmup_constant': warmup_constant, "none": LRSchedule,
'warmup_linear': warmup_linear, "warmup_cosine": WarmupCosineSchedule,
"warmup_constant": WarmupConstantSchedule,
"warmup_linear": WarmupLinearSchedule
} }
...@@ -70,15 +140,16 @@ class BertAdam(Optimizer): ...@@ -70,15 +140,16 @@ class BertAdam(Optimizer):
raise ValueError("Invalid learning rate: {} - should be >= 0.0".format(lr)) raise ValueError("Invalid learning rate: {} - should be >= 0.0".format(lr))
if schedule not in SCHEDULES: if schedule not in SCHEDULES:
raise ValueError("Invalid schedule parameter: {}".format(schedule)) raise ValueError("Invalid schedule parameter: {}".format(schedule))
if not 0.0 <= warmup < 1.0 and not warmup == -1:
raise ValueError("Invalid warmup: {} - should be in [0.0, 1.0[ or -1".format(warmup))
if not 0.0 <= b1 < 1.0: if not 0.0 <= b1 < 1.0:
raise ValueError("Invalid b1 parameter: {} - should be in [0.0, 1.0[".format(b1)) raise ValueError("Invalid b1 parameter: {} - should be in [0.0, 1.0[".format(b1))
if not 0.0 <= b2 < 1.0: if not 0.0 <= b2 < 1.0:
raise ValueError("Invalid b2 parameter: {} - should be in [0.0, 1.0[".format(b2)) raise ValueError("Invalid b2 parameter: {} - should be in [0.0, 1.0[".format(b2))
if not e >= 0.0: if not e >= 0.0:
raise ValueError("Invalid epsilon value: {} - should be >= 0.0".format(e)) raise ValueError("Invalid epsilon value: {} - should be >= 0.0".format(e))
defaults = dict(lr=lr, schedule=schedule, warmup=warmup, t_total=t_total, # initialize schedule object
schedule_type = SCHEDULES[schedule]
sched = schedule_type(warmup=warmup, t_total=t_total)
defaults = dict(lr=lr, schedule=sched,
b1=b1, b2=b2, e=e, weight_decay=weight_decay, b1=b1, b2=b2, e=e, weight_decay=weight_decay,
max_grad_norm=max_grad_norm) max_grad_norm=max_grad_norm)
super(BertAdam, self).__init__(params, defaults) super(BertAdam, self).__init__(params, defaults)
...@@ -90,11 +161,10 @@ class BertAdam(Optimizer): ...@@ -90,11 +161,10 @@ class BertAdam(Optimizer):
state = self.state[p] state = self.state[p]
if len(state) == 0: if len(state) == 0:
return [0] return [0]
if group['t_total'] != -1:
schedule_fct = SCHEDULES[group['schedule']] lr_scheduled = group['lr']
lr_scheduled = group['lr'] * schedule_fct(state['step']/group['t_total'], group['warmup']) lr_scheduled *= group['schedule'](state['step'])
else:
lr_scheduled = group['lr']
lr.append(lr_scheduled) lr.append(lr_scheduled)
return lr return lr
...@@ -109,8 +179,6 @@ class BertAdam(Optimizer): ...@@ -109,8 +179,6 @@ class BertAdam(Optimizer):
if closure is not None: if closure is not None:
loss = closure() loss = closure()
warned_for_t_total = False
for group in self.param_groups: for group in self.param_groups:
for p in group['params']: for p in group['params']:
if p.grad is None: if p.grad is None:
...@@ -152,19 +220,8 @@ class BertAdam(Optimizer): ...@@ -152,19 +220,8 @@ class BertAdam(Optimizer):
if group['weight_decay'] > 0.0: if group['weight_decay'] > 0.0:
update += group['weight_decay'] * p.data update += group['weight_decay'] * p.data
if group['t_total'] != -1: lr_scheduled = group['lr']
schedule_fct = SCHEDULES[group['schedule']] lr_scheduled *= group['schedule'](state['step'])
progress = state['step']/group['t_total']
lr_scheduled = group['lr'] * schedule_fct(progress, group['warmup'])
# warning for exceeding t_total (only active with warmup_linear
if group['schedule'] == "warmup_linear" and progress > 1. and not warned_for_t_total:
logger.warning(
"Training beyond specified 't_total' steps with schedule '{}'. Learning rate set to {}. "
"Please set 't_total' of {} correctly.".format(group['schedule'], lr_scheduled, self.__class__.__name__))
warned_for_t_total = True
# end warning
else:
lr_scheduled = group['lr']
update_with_lr = lr_scheduled * update update_with_lr = lr_scheduled * update
p.data.add_(-update_with_lr) p.data.add_(-update_with_lr)
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment