run_clm.py 24.4 KB
Newer Older
1
#!/usr/bin/env python
Sylvain Gugger's avatar
Sylvain Gugger committed
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
# coding=utf-8
# Copyright 2020 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Fine-tuning the library models for causal language modeling (GPT, GPT-2, CTRL, ...) on a text file or a dataset.

Here is the full list of checkpoints on the hub that can be fine-tuned by this script:
20
https://huggingface.co/models?filter=text-generation
Sylvain Gugger's avatar
Sylvain Gugger committed
21
"""
22
# You can also adapt this script on your own causal language modeling task. Pointers for this are left as comments.
Sylvain Gugger's avatar
Sylvain Gugger committed
23
24
25
26
27
28

import logging
import math
import os
import sys
from dataclasses import dataclass, field
29
from itertools import chain
Sylvain Gugger's avatar
Sylvain Gugger committed
30
31
from typing import Optional

32
import datasets
33
from datasets import load_dataset, load_metric
Sylvain Gugger's avatar
Sylvain Gugger committed
34
35
36
37
38
39
40
41
42
43
44
45

import transformers
from transformers import (
    CONFIG_MAPPING,
    MODEL_FOR_CAUSAL_LM_MAPPING,
    AutoConfig,
    AutoModelForCausalLM,
    AutoTokenizer,
    HfArgumentParser,
    Trainer,
    TrainingArguments,
    default_data_collator,
46
    is_torch_tpu_available,
Sylvain Gugger's avatar
Sylvain Gugger committed
47
48
    set_seed,
)
49
from transformers.testing_utils import CaptureLogger
50
from transformers.trainer_utils import get_last_checkpoint
51
from transformers.utils import check_min_version, send_example_telemetry
52
from transformers.utils.versions import require_version
Sylvain Gugger's avatar
Sylvain Gugger committed
53
54


55
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
Lysandre's avatar
Lysandre committed
56
check_min_version("4.22.0.dev0")
Sylvain Gugger's avatar
Sylvain Gugger committed
57

58
require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/language-modeling/requirements.txt")
59

Sylvain Gugger's avatar
Sylvain Gugger committed
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
logger = logging.getLogger(__name__)


MODEL_CONFIG_CLASSES = list(MODEL_FOR_CAUSAL_LM_MAPPING.keys())
MODEL_TYPES = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES)


@dataclass
class ModelArguments:
    """
    Arguments pertaining to which model/config/tokenizer we are going to fine-tune, or train from scratch.
    """

    model_name_or_path: Optional[str] = field(
        default=None,
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
76
77
78
            "help": (
                "The model checkpoint for weights initialization.Don't set if you want to train a model from scratch."
            )
Sylvain Gugger's avatar
Sylvain Gugger committed
79
80
81
82
83
84
        },
    )
    model_type: Optional[str] = field(
        default=None,
        metadata={"help": "If training from scratch, pass a model type from the list: " + ", ".join(MODEL_TYPES)},
    )
85
86
87
    config_overrides: Optional[str] = field(
        default=None,
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
88
89
90
91
            "help": (
                "Override some existing default config settings when a model is trained from scratch. Example: "
                "n_embd=10,resid_pdrop=0.2,scale_attn_weights=false,summary_type=cls_index"
            )
92
93
        },
    )
Sylvain Gugger's avatar
Sylvain Gugger committed
94
95
96
97
98
99
100
    config_name: Optional[str] = field(
        default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"}
    )
    tokenizer_name: Optional[str] = field(
        default=None, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"}
    )
    cache_dir: Optional[str] = field(
101
102
        default=None,
        metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"},
Sylvain Gugger's avatar
Sylvain Gugger committed
103
104
105
106
107
    )
    use_fast_tokenizer: bool = field(
        default=True,
        metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."},
    )
108
109
110
111
112
113
114
    model_revision: str = field(
        default="main",
        metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."},
    )
    use_auth_token: bool = field(
        default=False,
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
115
116
117
118
            "help": (
                "Will use the token generated when running `transformers-cli login` (necessary to use this script "
                "with private models)."
            )
119
120
        },
    )
Sylvain Gugger's avatar
Sylvain Gugger committed
121

122
123
124
125
126
127
    def __post_init__(self):
        if self.config_overrides is not None and (self.config_name is not None or self.model_name_or_path is not None):
            raise ValueError(
                "--config_overrides can't be used in combination with --config_name or --model_name_or_path"
            )

Sylvain Gugger's avatar
Sylvain Gugger committed
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145

@dataclass
class DataTrainingArguments:
    """
    Arguments pertaining to what data we are going to input our model for training and eval.
    """

    dataset_name: Optional[str] = field(
        default=None, metadata={"help": "The name of the dataset to use (via the datasets library)."}
    )
    dataset_config_name: Optional[str] = field(
        default=None, metadata={"help": "The configuration name of the dataset to use (via the datasets library)."}
    )
    train_file: Optional[str] = field(default=None, metadata={"help": "The input training data file (a text file)."})
    validation_file: Optional[str] = field(
        default=None,
        metadata={"help": "An optional input evaluation data file to evaluate the perplexity on (a text file)."},
    )
146
147
148
    max_train_samples: Optional[int] = field(
        default=None,
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
149
150
151
152
            "help": (
                "For debugging purposes or quicker training, truncate the number of training examples to this "
                "value if set."
            )
153
154
        },
    )
155
    max_eval_samples: Optional[int] = field(
156
157
        default=None,
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
158
159
160
161
            "help": (
                "For debugging purposes or quicker training, truncate the number of evaluation examples to this "
                "value if set."
            )
162
163
164
        },
    )

165
166
    block_size: Optional[int] = field(
        default=None,
Sylvain Gugger's avatar
Sylvain Gugger committed
167
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
168
169
170
171
172
            "help": (
                "Optional input sequence length after tokenization. "
                "The training dataset will be truncated in block of this size for training. "
                "Default to the model max input length for single sentence inputs (take into account special tokens)."
            )
Sylvain Gugger's avatar
Sylvain Gugger committed
173
174
175
176
177
        },
    )
    overwrite_cache: bool = field(
        default=False, metadata={"help": "Overwrite the cached training and evaluation sets"}
    )
178
179
180
181
182
183
    validation_split_percentage: Optional[int] = field(
        default=5,
        metadata={
            "help": "The percentage of the train set used as validation set in case there's no validation split"
        },
    )
Sylvain Gugger's avatar
Sylvain Gugger committed
184
185
186
187
    preprocessing_num_workers: Optional[int] = field(
        default=None,
        metadata={"help": "The number of processes to use for the preprocessing."},
    )
188
    keep_linebreaks: bool = field(
189
        default=True, metadata={"help": "Whether to keep line breaks when using TXT files or not."}
190
    )
Sylvain Gugger's avatar
Sylvain Gugger committed
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216

    def __post_init__(self):
        if self.dataset_name is None and self.train_file is None and self.validation_file is None:
            raise ValueError("Need either a dataset name or a training/validation file.")
        else:
            if self.train_file is not None:
                extension = self.train_file.split(".")[-1]
                assert extension in ["csv", "json", "txt"], "`train_file` should be a csv, a json or a txt file."
            if self.validation_file is not None:
                extension = self.validation_file.split(".")[-1]
                assert extension in ["csv", "json", "txt"], "`validation_file` should be a csv, a json or a txt file."


def main():
    # See all possible arguments in src/transformers/training_args.py
    # or by passing the --help flag to this script.
    # We now keep distinct sets of args, for a cleaner separation of concerns.

    parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments))
    if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
        # If we pass only one argument to the script and it's the path to a json file,
        # let's parse it to get our arguments.
        model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1]))
    else:
        model_args, data_args, training_args = parser.parse_args_into_dataclasses()

217
218
219
220
    # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The
    # information sent is the one passed as arguments along with your Python/PyTorch versions.
    send_example_telemetry("run_clm", model_args, data_args)

Sylvain Gugger's avatar
Sylvain Gugger committed
221
222
    # Setup logging
    logging.basicConfig(
223
        format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
Sylvain Gugger's avatar
Sylvain Gugger committed
224
        datefmt="%m/%d/%Y %H:%M:%S",
225
        handlers=[logging.StreamHandler(sys.stdout)],
Sylvain Gugger's avatar
Sylvain Gugger committed
226
    )
227
228
229
230
231
232
233

    log_level = training_args.get_process_log_level()
    logger.setLevel(log_level)
    datasets.utils.logging.set_verbosity(log_level)
    transformers.utils.logging.set_verbosity(log_level)
    transformers.utils.logging.enable_default_handler()
    transformers.utils.logging.enable_explicit_format()
Sylvain Gugger's avatar
Sylvain Gugger committed
234
235
236
237
238
239

    # Log on each process the small summary:
    logger.warning(
        f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}"
        + f"distributed training: {bool(training_args.local_rank != -1)}, 16-bits training: {training_args.fp16}"
    )
240
    logger.info(f"Training/evaluation parameters {training_args}")
Sylvain Gugger's avatar
Sylvain Gugger committed
241

242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
    # Detecting last checkpoint.
    last_checkpoint = None
    if os.path.isdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir:
        last_checkpoint = get_last_checkpoint(training_args.output_dir)
        if last_checkpoint is None and len(os.listdir(training_args.output_dir)) > 0:
            raise ValueError(
                f"Output directory ({training_args.output_dir}) already exists and is not empty. "
                "Use --overwrite_output_dir to overcome."
            )
        elif last_checkpoint is not None and training_args.resume_from_checkpoint is None:
            logger.info(
                f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change "
                "the `--output_dir` or add `--overwrite_output_dir` to train from scratch."
            )

Sylvain Gugger's avatar
Sylvain Gugger committed
257
258
259
260
261
    # Set seed before initializing model.
    set_seed(training_args.seed)

    # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below)
    # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/
Sylvain Gugger's avatar
Sylvain Gugger committed
262
    # (the dataset will be downloaded automatically from the datasets Hub).
Sylvain Gugger's avatar
Sylvain Gugger committed
263
    #
Sylvain Gugger's avatar
Sylvain Gugger committed
264
265
    # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called
    # 'text' is found. You can easily tweak this behavior (see below).
Sylvain Gugger's avatar
Sylvain Gugger committed
266
267
268
269
270
    #
    # In distributed training, the load_dataset function guarantee that only one local process can concurrently
    # download the dataset.
    if data_args.dataset_name is not None:
        # Downloading and loading a dataset from the hub.
271
        raw_datasets = load_dataset(
272
273
274
275
            data_args.dataset_name,
            data_args.dataset_config_name,
            cache_dir=model_args.cache_dir,
            use_auth_token=True if model_args.use_auth_token else None,
276
277
278
        )
        if "validation" not in raw_datasets.keys():
            raw_datasets["validation"] = load_dataset(
279
280
281
                data_args.dataset_name,
                data_args.dataset_config_name,
                split=f"train[:{data_args.validation_split_percentage}%]",
282
                cache_dir=model_args.cache_dir,
283
                use_auth_token=True if model_args.use_auth_token else None,
284
            )
285
            raw_datasets["train"] = load_dataset(
286
287
288
                data_args.dataset_name,
                data_args.dataset_config_name,
                split=f"train[{data_args.validation_split_percentage}%:]",
289
                cache_dir=model_args.cache_dir,
290
                use_auth_token=True if model_args.use_auth_token else None,
291
            )
Sylvain Gugger's avatar
Sylvain Gugger committed
292
293
    else:
        data_files = {}
294
        dataset_args = {}
Sylvain Gugger's avatar
Sylvain Gugger committed
295
296
297
        if data_args.train_file is not None:
            data_files["train"] = data_args.train_file
        if data_args.validation_file is not None:
298
            data_files["validation"] = data_args.validation_file
299
300
301
302
303
        extension = (
            data_args.train_file.split(".")[-1]
            if data_args.train_file is not None
            else data_args.validation_file.split(".")[-1]
        )
Sylvain Gugger's avatar
Sylvain Gugger committed
304
305
        if extension == "txt":
            extension = "text"
306
            dataset_args["keep_linebreaks"] = data_args.keep_linebreaks
307
308
309
310
311
312
313
        raw_datasets = load_dataset(
            extension,
            data_files=data_files,
            cache_dir=model_args.cache_dir,
            use_auth_token=True if model_args.use_auth_token else None,
            **dataset_args,
        )
314
315
316
317
318
319
320
        # If no validation data is there, validation_split_percentage will be used to divide the dataset.
        if "validation" not in raw_datasets.keys():
            raw_datasets["validation"] = load_dataset(
                extension,
                data_files=data_files,
                split=f"train[:{data_args.validation_split_percentage}%]",
                cache_dir=model_args.cache_dir,
321
                use_auth_token=True if model_args.use_auth_token else None,
322
                **dataset_args,
323
324
325
326
327
328
            )
            raw_datasets["train"] = load_dataset(
                extension,
                data_files=data_files,
                split=f"train[{data_args.validation_split_percentage}%:]",
                cache_dir=model_args.cache_dir,
329
                use_auth_token=True if model_args.use_auth_token else None,
330
                **dataset_args,
331
332
            )

Sylvain Gugger's avatar
Sylvain Gugger committed
333
334
335
336
337
338
339
340
341
    # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at
    # https://huggingface.co/docs/datasets/loading_datasets.html.

    # Load pretrained model and tokenizer
    #
    # Distributed training:
    # The .from_pretrained methods guarantee that only one local process can concurrently
    # download model & vocab.

342
343
344
345
346
    config_kwargs = {
        "cache_dir": model_args.cache_dir,
        "revision": model_args.model_revision,
        "use_auth_token": True if model_args.use_auth_token else None,
    }
Sylvain Gugger's avatar
Sylvain Gugger committed
347
    if model_args.config_name:
348
        config = AutoConfig.from_pretrained(model_args.config_name, **config_kwargs)
Sylvain Gugger's avatar
Sylvain Gugger committed
349
    elif model_args.model_name_or_path:
350
        config = AutoConfig.from_pretrained(model_args.model_name_or_path, **config_kwargs)
Sylvain Gugger's avatar
Sylvain Gugger committed
351
352
353
    else:
        config = CONFIG_MAPPING[model_args.model_type]()
        logger.warning("You are instantiating a new config instance from scratch.")
354
355
356
        if model_args.config_overrides is not None:
            logger.info(f"Overriding config: {model_args.config_overrides}")
            config.update_from_string(model_args.config_overrides)
357
            logger.info(f"New config: {config}")
Sylvain Gugger's avatar
Sylvain Gugger committed
358

359
360
361
362
363
364
    tokenizer_kwargs = {
        "cache_dir": model_args.cache_dir,
        "use_fast": model_args.use_fast_tokenizer,
        "revision": model_args.model_revision,
        "use_auth_token": True if model_args.use_auth_token else None,
    }
Sylvain Gugger's avatar
Sylvain Gugger committed
365
    if model_args.tokenizer_name:
366
        tokenizer = AutoTokenizer.from_pretrained(model_args.tokenizer_name, **tokenizer_kwargs)
Sylvain Gugger's avatar
Sylvain Gugger committed
367
    elif model_args.model_name_or_path:
368
        tokenizer = AutoTokenizer.from_pretrained(model_args.model_name_or_path, **tokenizer_kwargs)
Sylvain Gugger's avatar
Sylvain Gugger committed
369
370
371
372
373
374
375
376
377
378
379
380
    else:
        raise ValueError(
            "You are instantiating a new tokenizer from scratch. This is not supported by this script."
            "You can do it from another script, save it, and load it from here, using --tokenizer_name."
        )

    if model_args.model_name_or_path:
        model = AutoModelForCausalLM.from_pretrained(
            model_args.model_name_or_path,
            from_tf=bool(".ckpt" in model_args.model_name_or_path),
            config=config,
            cache_dir=model_args.cache_dir,
381
382
            revision=model_args.model_revision,
            use_auth_token=True if model_args.use_auth_token else None,
Sylvain Gugger's avatar
Sylvain Gugger committed
383
384
385
        )
    else:
        model = AutoModelForCausalLM.from_config(config)
386
387
        n_params = sum(dict((p.data_ptr(), p.numel()) for p in model.parameters()).values())
        logger.info(f"Training new model from scratch - Total size={n_params/2**20:.2f}M params")
Sylvain Gugger's avatar
Sylvain Gugger committed
388
389
390
391
392
393

    model.resize_token_embeddings(len(tokenizer))

    # Preprocessing the datasets.
    # First we tokenize all the texts.
    if training_args.do_train:
394
        column_names = raw_datasets["train"].column_names
Sylvain Gugger's avatar
Sylvain Gugger committed
395
    else:
396
        column_names = raw_datasets["validation"].column_names
Sylvain Gugger's avatar
Sylvain Gugger committed
397
398
    text_column_name = "text" if "text" in column_names else column_names[0]

399
400
401
    # since this will be pickled to avoid _LazyModule error in Hasher force logger loading before tokenize_function
    tok_logger = transformers.utils.logging.get_logger("transformers.tokenization_utils_base")

Sylvain Gugger's avatar
Sylvain Gugger committed
402
    def tokenize_function(examples):
403
404
405
406
407
        with CaptureLogger(tok_logger) as cl:
            output = tokenizer(examples[text_column_name])
        # clm input could be much much longer than block_size
        if "Token indices sequence length is longer than the" in cl.out:
            tok_logger.warning(
Sylvain Gugger's avatar
Sylvain Gugger committed
408
409
                "^^^^^^^^^^^^^^^^ Please ignore the warning above - this long input will be chunked into smaller bits"
                " before being passed to the model."
410
411
            )
        return output
Sylvain Gugger's avatar
Sylvain Gugger committed
412

413
414
415
416
417
418
419
420
421
    with training_args.main_process_first(desc="dataset map tokenization"):
        tokenized_datasets = raw_datasets.map(
            tokenize_function,
            batched=True,
            num_proc=data_args.preprocessing_num_workers,
            remove_columns=column_names,
            load_from_cache_file=not data_args.overwrite_cache,
            desc="Running tokenizer on dataset",
        )
Sylvain Gugger's avatar
Sylvain Gugger committed
422

423
    if data_args.block_size is None:
424
        block_size = tokenizer.model_max_length
425
        if block_size > 1024:
426
            logger.warning(
427
428
429
                f"The tokenizer picked seems to have a very large `model_max_length` ({tokenizer.model_max_length}). "
                "Picking 1024 instead. You can change that default value by passing --block_size xxx."
            )
430
            block_size = 1024
Sylvain Gugger's avatar
Sylvain Gugger committed
431
    else:
432
        if data_args.block_size > tokenizer.model_max_length:
433
            logger.warning(
Sylvain Gugger's avatar
Sylvain Gugger committed
434
                f"The block_size passed ({data_args.block_size}) is larger than the maximum length for the model"
435
                f"({tokenizer.model_max_length}). Using block_size={tokenizer.model_max_length}."
Sylvain Gugger's avatar
Sylvain Gugger committed
436
            )
437
        block_size = min(data_args.block_size, tokenizer.model_max_length)
Sylvain Gugger's avatar
Sylvain Gugger committed
438
439
440
441

    # Main data processing function that will concatenate all texts from our dataset and generate chunks of block_size.
    def group_texts(examples):
        # Concatenate all texts.
442
        concatenated_examples = {k: list(chain(*examples[k])) for k in examples.keys()}
Sylvain Gugger's avatar
Sylvain Gugger committed
443
444
445
        total_length = len(concatenated_examples[list(examples.keys())[0]])
        # We drop the small remainder, we could add padding if the model supported it instead of this drop, you can
        # customize this part to your needs.
446
447
        if total_length >= block_size:
            total_length = (total_length // block_size) * block_size
Sylvain Gugger's avatar
Sylvain Gugger committed
448
449
450
451
452
453
454
455
456
457
458
459
460
461
        # Split by chunks of max_len.
        result = {
            k: [t[i : i + block_size] for i in range(0, total_length, block_size)]
            for k, t in concatenated_examples.items()
        }
        result["labels"] = result["input_ids"].copy()
        return result

    # Note that with `batched=True`, this map processes 1,000 texts together, so group_texts throws away a remainder
    # for each of those groups of 1,000 texts. You can adjust that batch_size here but a higher value might be slower
    # to preprocess.
    #
    # To speed up this part, we use multiprocessing. See the documentation of the map method for more information:
    # https://huggingface.co/docs/datasets/package_reference/main_classes.html#datasets.Dataset.map
462

463
464
465
466
467
468
469
470
    with training_args.main_process_first(desc="grouping texts together"):
        lm_datasets = tokenized_datasets.map(
            group_texts,
            batched=True,
            num_proc=data_args.preprocessing_num_workers,
            load_from_cache_file=not data_args.overwrite_cache,
            desc=f"Grouping texts in chunks of {block_size}",
        )
Sylvain Gugger's avatar
Sylvain Gugger committed
471

472
473
474
475
476
    if training_args.do_train:
        if "train" not in tokenized_datasets:
            raise ValueError("--do_train requires a train dataset")
        train_dataset = lm_datasets["train"]
        if data_args.max_train_samples is not None:
477
478
            max_train_samples = min(len(train_dataset), data_args.max_train_samples)
            train_dataset = train_dataset.select(range(max_train_samples))
479
480
481
482
483

    if training_args.do_eval:
        if "validation" not in tokenized_datasets:
            raise ValueError("--do_eval requires a validation dataset")
        eval_dataset = lm_datasets["validation"]
484
        if data_args.max_eval_samples is not None:
485
486
            max_eval_samples = min(len(eval_dataset), data_args.max_eval_samples)
            eval_dataset = eval_dataset.select(range(max_eval_samples))
487

488
        def preprocess_logits_for_metrics(logits, labels):
davidleonfdez's avatar
davidleonfdez committed
489
490
491
492
            if isinstance(logits, tuple):
                # Depending on the model and config, logits may contain extra tensors,
                # like past_key_values, but logits always come first
                logits = logits[0]
493
494
495
496
497
498
499
500
501
502
503
504
            return logits.argmax(dim=-1)

        metric = load_metric("accuracy")

        def compute_metrics(eval_preds):
            preds, labels = eval_preds
            # preds have the same shape as the labels, after the argmax(-1) has been calculated
            # by preprocess_logits_for_metrics but we need to shift the labels
            labels = labels[:, 1:].reshape(-1)
            preds = preds[:, :-1].reshape(-1)
            return metric.compute(predictions=preds, references=labels)

Sylvain Gugger's avatar
Sylvain Gugger committed
505
506
507
508
    # Initialize our Trainer
    trainer = Trainer(
        model=model,
        args=training_args,
509
510
        train_dataset=train_dataset if training_args.do_train else None,
        eval_dataset=eval_dataset if training_args.do_eval else None,
Sylvain Gugger's avatar
Sylvain Gugger committed
511
512
513
        tokenizer=tokenizer,
        # Data collator will default to DataCollatorWithPadding, so we change it.
        data_collator=default_data_collator,
514
515
516
517
        compute_metrics=compute_metrics if training_args.do_eval and not is_torch_tpu_available() else None,
        preprocess_logits_for_metrics=preprocess_logits_for_metrics
        if training_args.do_eval and not is_torch_tpu_available()
        else None,
Sylvain Gugger's avatar
Sylvain Gugger committed
518
519
520
521
    )

    # Training
    if training_args.do_train:
522
523
524
525
        checkpoint = None
        if training_args.resume_from_checkpoint is not None:
            checkpoint = training_args.resume_from_checkpoint
        elif last_checkpoint is not None:
526
527
            checkpoint = last_checkpoint
        train_result = trainer.train(resume_from_checkpoint=checkpoint)
Sylvain Gugger's avatar
Sylvain Gugger committed
528
529
        trainer.save_model()  # Saves the tokenizer too for easy upload

530
        metrics = train_result.metrics
531

532
533
534
535
536
        max_train_samples = (
            data_args.max_train_samples if data_args.max_train_samples is not None else len(train_dataset)
        )
        metrics["train_samples"] = min(max_train_samples, len(train_dataset))

537
538
539
        trainer.log_metrics("train", metrics)
        trainer.save_metrics("train", metrics)
        trainer.save_state()
540

Sylvain Gugger's avatar
Sylvain Gugger committed
541
542
543
544
    # Evaluation
    if training_args.do_eval:
        logger.info("*** Evaluate ***")

545
        metrics = trainer.evaluate()
Sylvain Gugger's avatar
Sylvain Gugger committed
546

547
548
        max_eval_samples = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(eval_dataset)
        metrics["eval_samples"] = min(max_eval_samples, len(eval_dataset))
549
550
551
552
        try:
            perplexity = math.exp(metrics["eval_loss"])
        except OverflowError:
            perplexity = float("inf")
553
        metrics["perplexity"] = perplexity
Sylvain Gugger's avatar
Sylvain Gugger committed
554

555
556
        trainer.log_metrics("eval", metrics)
        trainer.save_metrics("eval", metrics)
Sylvain Gugger's avatar
Sylvain Gugger committed
557

558
559
560
561
562
563
564
565
    kwargs = {"finetuned_from": model_args.model_name_or_path, "tasks": "text-generation"}
    if data_args.dataset_name is not None:
        kwargs["dataset_tags"] = data_args.dataset_name
        if data_args.dataset_config_name is not None:
            kwargs["dataset_args"] = data_args.dataset_config_name
            kwargs["dataset"] = f"{data_args.dataset_name} {data_args.dataset_config_name}"
        else:
            kwargs["dataset"] = data_args.dataset_name
Sylvain Gugger's avatar
Sylvain Gugger committed
566

567
    if training_args.push_to_hub:
Sylvain Gugger's avatar
Sylvain Gugger committed
568
        trainer.push_to_hub(**kwargs)
569
570
    else:
        trainer.create_model_card(**kwargs)
Sylvain Gugger's avatar
Sylvain Gugger committed
571

Sylvain Gugger's avatar
Sylvain Gugger committed
572
573
574
575
576
577
578
579

def _mp_fn(index):
    # For xla_spawn (TPUs)
    main()


if __name__ == "__main__":
    main()