test_modeling_tf_distilbert.py 7.55 KB
Newer Older
thomwolf's avatar
thomwolf committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Aymeric Augustin's avatar
Aymeric Augustin committed
15

thomwolf's avatar
thomwolf committed
16

17
18
import unittest

Aymeric Augustin's avatar
Aymeric Augustin committed
19
20
from transformers import DistilBertConfig, is_tf_available

21
from .test_configuration_common import ConfigTester
22
from .test_modeling_tf_common import TFModelTesterMixin, ids_tensor
23
from .utils import require_tf
thomwolf's avatar
thomwolf committed
24
25
26


if is_tf_available():
27
28
29
30
31
32
    from transformers.modeling_tf_distilbert import (
        TFDistilBertModel,
        TFDistilBertForMaskedLM,
        TFDistilBertForQuestionAnswering,
        TFDistilBertForSequenceClassification,
    )
thomwolf's avatar
thomwolf committed
33
34


35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
class TFDistilBertModelTester:
    def __init__(
        self, parent,
    ):
        self.parent = parent
        self.batch_size = 13
        self.seq_length = 7
        self.is_training = True
        self.use_input_mask = True
        self.use_token_type_ids = False
        self.use_labels = True
        self.vocab_size = 99
        self.hidden_size = 32
        self.num_hidden_layers = 5
        self.num_attention_heads = 4
        self.intermediate_size = 37
        self.hidden_act = "gelu"
        self.hidden_dropout_prob = 0.1
        self.attention_probs_dropout_prob = 0.1
        self.max_position_embeddings = 512
        self.type_vocab_size = 16
        self.type_sequence_label_size = 2
        self.initializer_range = 0.02
        self.num_labels = 3
        self.num_choices = 4
        self.scope = None

    def prepare_config_and_inputs(self):
        input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)

        input_mask = None
        if self.use_input_mask:
            input_mask = ids_tensor([self.batch_size, self.seq_length], vocab_size=2)

        sequence_labels = None
        token_labels = None
        choice_labels = None
        if self.use_labels:
            sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size)
            token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels)
            choice_labels = ids_tensor([self.batch_size], self.num_choices)

        config = DistilBertConfig(
            vocab_size=self.vocab_size,
            dim=self.hidden_size,
            n_layers=self.num_hidden_layers,
            n_heads=self.num_attention_heads,
            hidden_dim=self.intermediate_size,
            hidden_act=self.hidden_act,
            dropout=self.hidden_dropout_prob,
            attention_dropout=self.attention_probs_dropout_prob,
            max_position_embeddings=self.max_position_embeddings,
            initializer_range=self.initializer_range,
        )

        return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels

    def create_and_check_distilbert_model(
        self, config, input_ids, input_mask, sequence_labels, token_labels, choice_labels
    ):
        model = TFDistilBertModel(config=config)
        inputs = {"input_ids": input_ids, "attention_mask": input_mask}

        outputs = model(inputs)
        sequence_output = outputs[0]

        inputs = [input_ids, input_mask]

        (sequence_output,) = model(inputs)

        result = {
            "sequence_output": sequence_output.numpy(),
        }
        self.parent.assertListEqual(
            list(result["sequence_output"].shape), [self.batch_size, self.seq_length, self.hidden_size]
        )

    def create_and_check_distilbert_for_masked_lm(
        self, config, input_ids, input_mask, sequence_labels, token_labels, choice_labels
    ):
        model = TFDistilBertForMaskedLM(config=config)
        inputs = {"input_ids": input_ids, "attention_mask": input_mask}
        (prediction_scores,) = model(inputs)
        result = {
            "prediction_scores": prediction_scores.numpy(),
        }
        self.parent.assertListEqual(
            list(result["prediction_scores"].shape), [self.batch_size, self.seq_length, self.vocab_size]
        )

    def create_and_check_distilbert_for_question_answering(
        self, config, input_ids, input_mask, sequence_labels, token_labels, choice_labels
    ):
        model = TFDistilBertForQuestionAnswering(config=config)
        inputs = {"input_ids": input_ids, "attention_mask": input_mask}
        start_logits, end_logits = model(inputs)
        result = {
            "start_logits": start_logits.numpy(),
            "end_logits": end_logits.numpy(),
        }
        self.parent.assertListEqual(list(result["start_logits"].shape), [self.batch_size, self.seq_length])
        self.parent.assertListEqual(list(result["end_logits"].shape), [self.batch_size, self.seq_length])

    def create_and_check_distilbert_for_sequence_classification(
        self, config, input_ids, input_mask, sequence_labels, token_labels, choice_labels
    ):
        config.num_labels = self.num_labels
        model = TFDistilBertForSequenceClassification(config)
        inputs = {"input_ids": input_ids, "attention_mask": input_mask}
        (logits,) = model(inputs)
        result = {
            "logits": logits.numpy(),
        }
        self.parent.assertListEqual(list(result["logits"].shape), [self.batch_size, self.num_labels])

    def prepare_config_and_inputs_for_common(self):
        config_and_inputs = self.prepare_config_and_inputs()
        (config, input_ids, input_mask, sequence_labels, token_labels, choice_labels) = config_and_inputs
        inputs_dict = {"input_ids": input_ids, "attention_mask": input_mask}
        return config, inputs_dict


157
@require_tf
158
class TFDistilBertModelTest(TFModelTesterMixin, unittest.TestCase):
thomwolf's avatar
thomwolf committed
159

160
161
162
163
164
165
166
167
168
169
    all_model_classes = (
        (
            TFDistilBertModel,
            TFDistilBertForMaskedLM,
            TFDistilBertForQuestionAnswering,
            TFDistilBertForSequenceClassification,
        )
        if is_tf_available()
        else None
    )
thomwolf's avatar
thomwolf committed
170
171
172
173
174
175
    test_pruning = True
    test_torchscript = True
    test_resize_embeddings = True
    test_head_masking = True

    def setUp(self):
176
        self.model_tester = TFDistilBertModelTester(self)
thomwolf's avatar
thomwolf committed
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
        self.config_tester = ConfigTester(self, config_class=DistilBertConfig, dim=37)

    def test_config(self):
        self.config_tester.run_common_tests()

    def test_distilbert_model(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_distilbert_model(*config_and_inputs)

    def test_for_masked_lm(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_distilbert_for_masked_lm(*config_and_inputs)

    def test_for_question_answering(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_distilbert_for_question_answering(*config_and_inputs)

    def test_for_sequence_classification(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_distilbert_for_sequence_classification(*config_and_inputs)

198
    # @slow
thomwolf's avatar
thomwolf committed
199
    # def test_model_from_pretrained(self):
200
    #     for model_name in list(DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
201
    #         model = DistilBertModesss.from_pretrained(model_name)
thomwolf's avatar
thomwolf committed
202
    #         self.assertIsNotNone(model)