test_modeling_tf_distilbert.py 9 KB
Newer Older
thomwolf's avatar
thomwolf committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Aymeric Augustin's avatar
Aymeric Augustin committed
15
from __future__ import absolute_import, division, print_function
thomwolf's avatar
thomwolf committed
16

17
18
import unittest

Aymeric Augustin's avatar
Aymeric Augustin committed
19
20
from transformers import DistilBertConfig, is_tf_available

21
from .test_configuration_common import ConfigTester
22
from .test_modeling_tf_common import TFModelTesterMixin, ids_tensor
23
from .utils import require_tf
thomwolf's avatar
thomwolf committed
24
25
26


if is_tf_available():
27
28
29
30
31
32
    from transformers.modeling_tf_distilbert import (
        TFDistilBertModel,
        TFDistilBertForMaskedLM,
        TFDistilBertForQuestionAnswering,
        TFDistilBertForSequenceClassification,
    )
thomwolf's avatar
thomwolf committed
33
34


35
@require_tf
36
class TFDistilBertModelTest(TFModelTesterMixin, unittest.TestCase):
thomwolf's avatar
thomwolf committed
37

38
39
40
41
42
43
44
45
46
47
    all_model_classes = (
        (
            TFDistilBertModel,
            TFDistilBertForMaskedLM,
            TFDistilBertForQuestionAnswering,
            TFDistilBertForSequenceClassification,
        )
        if is_tf_available()
        else None
    )
thomwolf's avatar
thomwolf committed
48
49
50
51
52
53
    test_pruning = True
    test_torchscript = True
    test_resize_embeddings = True
    test_head_masking = True

    class TFDistilBertModelTester(object):
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
        def __init__(
            self,
            parent,
            batch_size=13,
            seq_length=7,
            is_training=True,
            use_input_mask=True,
            use_token_type_ids=False,
            use_labels=True,
            vocab_size=99,
            hidden_size=32,
            num_hidden_layers=5,
            num_attention_heads=4,
            intermediate_size=37,
            hidden_act="gelu",
            hidden_dropout_prob=0.1,
            attention_probs_dropout_prob=0.1,
            max_position_embeddings=512,
            type_vocab_size=16,
            type_sequence_label_size=2,
            initializer_range=0.02,
            num_labels=3,
            num_choices=4,
            scope=None,
        ):
thomwolf's avatar
thomwolf committed
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
            self.parent = parent
            self.batch_size = batch_size
            self.seq_length = seq_length
            self.is_training = is_training
            self.use_input_mask = use_input_mask
            self.use_token_type_ids = use_token_type_ids
            self.use_labels = use_labels
            self.vocab_size = vocab_size
            self.hidden_size = hidden_size
            self.num_hidden_layers = num_hidden_layers
            self.num_attention_heads = num_attention_heads
            self.intermediate_size = intermediate_size
            self.hidden_act = hidden_act
            self.hidden_dropout_prob = hidden_dropout_prob
            self.attention_probs_dropout_prob = attention_probs_dropout_prob
            self.max_position_embeddings = max_position_embeddings
            self.type_vocab_size = type_vocab_size
            self.type_sequence_label_size = type_sequence_label_size
            self.initializer_range = initializer_range
            self.num_labels = num_labels
            self.num_choices = num_choices
            self.scope = scope

        def prepare_config_and_inputs(self):
            input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)

            input_mask = None
            if self.use_input_mask:
                input_mask = ids_tensor([self.batch_size, self.seq_length], vocab_size=2)

            sequence_labels = None
            token_labels = None
            choice_labels = None
            if self.use_labels:
                sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size)
                token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels)
                choice_labels = ids_tensor([self.batch_size], self.num_choices)

            config = DistilBertConfig(
thomwolf's avatar
thomwolf committed
118
                vocab_size=self.vocab_size,
thomwolf's avatar
thomwolf committed
119
120
121
122
123
124
125
126
                dim=self.hidden_size,
                n_layers=self.num_hidden_layers,
                n_heads=self.num_attention_heads,
                hidden_dim=self.intermediate_size,
                hidden_act=self.hidden_act,
                dropout=self.hidden_dropout_prob,
                attention_dropout=self.attention_probs_dropout_prob,
                max_position_embeddings=self.max_position_embeddings,
127
128
                initializer_range=self.initializer_range,
            )
thomwolf's avatar
thomwolf committed
129
130
131

            return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels

132
133
134
        def create_and_check_distilbert_model(
            self, config, input_ids, input_mask, sequence_labels, token_labels, choice_labels
        ):
thomwolf's avatar
thomwolf committed
135
            model = TFDistilBertModel(config=config)
136
            inputs = {"input_ids": input_ids, "attention_mask": input_mask}
thomwolf's avatar
thomwolf committed
137
138
139
140
141
142
143
144
145
146
147
148

            outputs = model(inputs)
            sequence_output = outputs[0]

            inputs = [input_ids, input_mask]

            (sequence_output,) = model(inputs)

            result = {
                "sequence_output": sequence_output.numpy(),
            }
            self.parent.assertListEqual(
149
150
                list(result["sequence_output"].shape), [self.batch_size, self.seq_length, self.hidden_size]
            )
thomwolf's avatar
thomwolf committed
151

152
153
154
        def create_and_check_distilbert_for_masked_lm(
            self, config, input_ids, input_mask, sequence_labels, token_labels, choice_labels
        ):
thomwolf's avatar
thomwolf committed
155
            model = TFDistilBertForMaskedLM(config=config)
156
            inputs = {"input_ids": input_ids, "attention_mask": input_mask}
thomwolf's avatar
thomwolf committed
157
158
159
160
161
            (prediction_scores,) = model(inputs)
            result = {
                "prediction_scores": prediction_scores.numpy(),
            }
            self.parent.assertListEqual(
162
163
                list(result["prediction_scores"].shape), [self.batch_size, self.seq_length, self.vocab_size]
            )
thomwolf's avatar
thomwolf committed
164

165
166
167
        def create_and_check_distilbert_for_question_answering(
            self, config, input_ids, input_mask, sequence_labels, token_labels, choice_labels
        ):
thomwolf's avatar
thomwolf committed
168
            model = TFDistilBertForQuestionAnswering(config=config)
169
            inputs = {"input_ids": input_ids, "attention_mask": input_mask}
thomwolf's avatar
thomwolf committed
170
171
172
173
174
            start_logits, end_logits = model(inputs)
            result = {
                "start_logits": start_logits.numpy(),
                "end_logits": end_logits.numpy(),
            }
175
176
            self.parent.assertListEqual(list(result["start_logits"].shape), [self.batch_size, self.seq_length])
            self.parent.assertListEqual(list(result["end_logits"].shape), [self.batch_size, self.seq_length])
thomwolf's avatar
thomwolf committed
177

178
179
180
        def create_and_check_distilbert_for_sequence_classification(
            self, config, input_ids, input_mask, sequence_labels, token_labels, choice_labels
        ):
thomwolf's avatar
thomwolf committed
181
182
            config.num_labels = self.num_labels
            model = TFDistilBertForSequenceClassification(config)
183
            inputs = {"input_ids": input_ids, "attention_mask": input_mask}
thomwolf's avatar
thomwolf committed
184
185
186
187
            (logits,) = model(inputs)
            result = {
                "logits": logits.numpy(),
            }
188
            self.parent.assertListEqual(list(result["logits"].shape), [self.batch_size, self.num_labels])
thomwolf's avatar
thomwolf committed
189
190
191
192

        def prepare_config_and_inputs_for_common(self):
            config_and_inputs = self.prepare_config_and_inputs()
            (config, input_ids, input_mask, sequence_labels, token_labels, choice_labels) = config_and_inputs
193
            inputs_dict = {"input_ids": input_ids, "attention_mask": input_mask}
thomwolf's avatar
thomwolf committed
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
            return config, inputs_dict

    def setUp(self):
        self.model_tester = TFDistilBertModelTest.TFDistilBertModelTester(self)
        self.config_tester = ConfigTester(self, config_class=DistilBertConfig, dim=37)

    def test_config(self):
        self.config_tester.run_common_tests()

    def test_distilbert_model(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_distilbert_model(*config_and_inputs)

    def test_for_masked_lm(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_distilbert_for_masked_lm(*config_and_inputs)

    def test_for_question_answering(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_distilbert_for_question_answering(*config_and_inputs)

    def test_for_sequence_classification(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_distilbert_for_sequence_classification(*config_and_inputs)

219
    # @slow
thomwolf's avatar
thomwolf committed
220
221
    # def test_model_from_pretrained(self):
    #     for model_name in list(DISTILBERT_PRETRAINED_MODEL_ARCHIVE_MAP.keys())[:1]:
222
    #         model = DistilBertModel.from_pretrained(model_name, cache_dir=CACHE_DIR)
thomwolf's avatar
thomwolf committed
223
    #         self.assertIsNotNone(model)