Commit 447de34d authored by thomwolf's avatar thomwolf
Browse files

tests for distilbert and roberta

parent 68a3e022
...@@ -37,7 +37,7 @@ class DistilBertConfig(PretrainedConfig): ...@@ -37,7 +37,7 @@ class DistilBertConfig(PretrainedConfig):
def __init__(self, def __init__(self,
vocab_size_or_config_json_file=30522, vocab_size_or_config_json_file=30522,
max_position_embeddings=512, max_position_embeddings=512,
sinusoidal_pos_embds=True, sinusoidal_pos_embds=False,
n_layers=6, n_layers=6,
n_heads=12, n_heads=12,
dim=768, dim=768,
......
...@@ -79,9 +79,9 @@ class TFEmbeddings(tf.keras.layers.Layer): ...@@ -79,9 +79,9 @@ class TFEmbeddings(tf.keras.layers.Layer):
super(TFEmbeddings, self).__init__(**kwargs) super(TFEmbeddings, self).__init__(**kwargs)
self.vocab_size = config.vocab_size self.vocab_size = config.vocab_size
self.dim = config.dim self.dim = config.dim
self.word_embeddings = TFSharedEmbeddings(, name='word_embeddings') # padding_idx=0) self.word_embeddings = TFSharedEmbeddings(config.vocab_size, config.dim, name='word_embeddings') # padding_idx=0)
self.position_embeddings = tf.keras.layers.Embedding(config.max_position_embeddings, config.dim, name='position_embeddings') self.position_embeddings = tf.keras.layers.Embedding(config.max_position_embeddings, config.dim, name='position_embeddings')
if config.sinusoidal_embeddings: if config.sinusoidal_pos_embds:
raise NotImplementedError raise NotImplementedError
self.LayerNorm = tf.keras.layers.LayerNormalization(epsilon=1e-12, name="LayerNorm") self.LayerNorm = tf.keras.layers.LayerNormalization(epsilon=1e-12, name="LayerNorm")
...@@ -94,9 +94,9 @@ class TFEmbeddings(tf.keras.layers.Layer): ...@@ -94,9 +94,9 @@ class TFEmbeddings(tf.keras.layers.Layer):
# arbitrarily, and works well. # arbitrarily, and works well.
self.word_embeddings = self.add_weight( self.word_embeddings = self.add_weight(
"weight", "weight",
shape=[self.vocab_size, self.hidden_size], shape=[self.vocab_size, self.dim],
initializer=tf.random_normal_initializer( initializer=tf.random_normal_initializer(
mean=0., stddev=self.hidden_size**-0.5)) mean=0., stddev=self.dim**-0.5))
super(TFEmbeddings, self).build(input_shape) super(TFEmbeddings, self).build(input_shape)
def call(self, inputs, mode="embedding", training=False): def call(self, inputs, mode="embedding", training=False):
...@@ -133,13 +133,17 @@ class TFEmbeddings(tf.keras.layers.Layer): ...@@ -133,13 +133,17 @@ class TFEmbeddings(tf.keras.layers.Layer):
embeddings: torch.tensor(bs, max_seq_length, dim) embeddings: torch.tensor(bs, max_seq_length, dim)
The embedded tokens (plus position embeddings, no token_type embeddings) The embedded tokens (plus position embeddings, no token_type embeddings)
""" """
input_ids, position_ids = inputs if not isinstance(inputs, (tuple, list)):
input_ids = inputs
position_ids = None
else:
input_ids, position_ids = inputs
seq_length = tf.shape(input_ids)[1] seq_length = tf.shape(input_ids)[1]
if position_ids is None: if position_ids is None:
position_ids = tf.range(seq_length, dtype=tf.int32)[tf.newaxis, :] position_ids = tf.range(seq_length, dtype=tf.int32)[tf.newaxis, :]
words_embeddings = tf.gather(self.word_embeddings, input_ids) word_embeddings = tf.gather(self.word_embeddings, input_ids)
position_embeddings = self.position_embeddings(position_ids) # (bs, max_seq_length, dim) position_embeddings = self.position_embeddings(position_ids) # (bs, max_seq_length, dim)
embeddings = word_embeddings + position_embeddings # (bs, max_seq_length, dim) embeddings = word_embeddings + position_embeddings # (bs, max_seq_length, dim)
...@@ -157,7 +161,7 @@ class TFEmbeddings(tf.keras.layers.Layer): ...@@ -157,7 +161,7 @@ class TFEmbeddings(tf.keras.layers.Layer):
batch_size = tf.shape(inputs)[0] batch_size = tf.shape(inputs)[0]
length = tf.shape(inputs)[1] length = tf.shape(inputs)[1]
x = tf.reshape(inputs, [-1, self.hidden_size]) x = tf.reshape(inputs, [-1, self.dim])
logits = tf.matmul(x, self.word_embeddings, transpose_b=True) logits = tf.matmul(x, self.word_embeddings, transpose_b=True)
return tf.reshape(logits, [batch_size, length, self.vocab_size]) return tf.reshape(logits, [batch_size, length, self.vocab_size])
...@@ -169,7 +173,7 @@ class TFMultiHeadSelfAttention(tf.keras.layers.Layer): ...@@ -169,7 +173,7 @@ class TFMultiHeadSelfAttention(tf.keras.layers.Layer):
self.n_heads = config.n_heads self.n_heads = config.n_heads
self.dim = config.dim self.dim = config.dim
self.dropout = nn.Dropout(p=config.attention_dropout) self.dropout = tf.keras.layers.Dropout(config.attention_dropout)
self.output_attentions = config.output_attentions self.output_attentions = config.output_attentions
assert self.dim % self.n_heads == 0 assert self.dim % self.n_heads == 0
...@@ -210,7 +214,7 @@ class TFMultiHeadSelfAttention(tf.keras.layers.Layer): ...@@ -210,7 +214,7 @@ class TFMultiHeadSelfAttention(tf.keras.layers.Layer):
assert 2 <= len(tf.shape(mask)) <= 3 assert 2 <= len(tf.shape(mask)) <= 3
causal = (len(tf.shape(mask)) == 3) causal = (len(tf.shape(mask)) == 3)
mask_reshp = [bs, 1, 1, k_length] mask_reshape = [bs, 1, 1, k_length]
def shape(x): def shape(x):
""" separate heads """ """ separate heads """
...@@ -327,7 +331,7 @@ class TFTransformer(tf.keras.layers.Layer): ...@@ -327,7 +331,7 @@ class TFTransformer(tf.keras.layers.Layer):
self.layer = [TFTransformerBlock(config, name='layer_._{}'.format(i)) self.layer = [TFTransformerBlock(config, name='layer_._{}'.format(i))
for i in range(config.n_layers)] for i in range(config.n_layers)]
def forward(self, inputs, training=False): def call(self, inputs, training=False):
""" """
Parameters Parameters
---------- ----------
...@@ -403,6 +407,7 @@ class TFDistilBertMainLayer(tf.keras.layers.Layer): ...@@ -403,6 +407,7 @@ class TFDistilBertMainLayer(tf.keras.layers.Layer):
""" """
def __init__(self, config, **kwargs): def __init__(self, config, **kwargs):
super(TFDistilBertMainLayer, self).__init__(**kwargs) super(TFDistilBertMainLayer, self).__init__(**kwargs)
self.num_hidden_layers = config.num_hidden_layers
self.embeddings = TFEmbeddings(config, name="embeddings") # Embeddings self.embeddings = TFEmbeddings(config, name="embeddings") # Embeddings
self.transformer = TFTransformer(config, name="transformer") # Encoder self.transformer = TFTransformer(config, name="transformer") # Encoder
...@@ -430,6 +435,7 @@ class TFDistilBertMainLayer(tf.keras.layers.Layer): ...@@ -430,6 +435,7 @@ class TFDistilBertMainLayer(tf.keras.layers.Layer):
if attention_mask is None: if attention_mask is None:
attention_mask = tf.ones(shape_list(input_ids)) # (bs, seq_length) attention_mask = tf.ones(shape_list(input_ids)) # (bs, seq_length)
attention_mask = tf.cast(attention_mask, dtype=tf.float32)
# Prepare head mask if needed # Prepare head mask if needed
# 1.0 in head_mask indicate we keep the head # 1.0 in head_mask indicate we keep the head
...@@ -439,15 +445,12 @@ class TFDistilBertMainLayer(tf.keras.layers.Layer): ...@@ -439,15 +445,12 @@ class TFDistilBertMainLayer(tf.keras.layers.Layer):
if head_mask is not None: if head_mask is not None:
raise NotImplementedError raise NotImplementedError
else: else:
head_mask = [None] * self.config.num_hidden_layers head_mask = [None] * self.num_hidden_layers
embedding_output = self.embeddings(input_ids) # (bs, seq_length, dim) embedding_output = self.embeddings(input_ids) # (bs, seq_length, dim)
tfmr_output = self.transformer([embedding_output, attention_mask, head_mask], training=training) tfmr_output = self.transformer([embedding_output, attention_mask, head_mask], training=training)
hidden_state = tfmr_output[0] return tfmr_output # last-layer hidden-state, (all hidden_states), (all attentions)
output = (hidden_state, ) + tfmr_output[1:]
return output # last-layer hidden-state, (all hidden_states), (all attentions)
### INTERFACE FOR ENCODER AND TASK SPECIFIC MODEL ### ### INTERFACE FOR ENCODER AND TASK SPECIFIC MODEL ###
...@@ -503,7 +506,7 @@ DISTILBERT_INPUTS_DOCSTRING = r""" ...@@ -503,7 +506,7 @@ DISTILBERT_INPUTS_DOCSTRING = r"""
@add_start_docstrings("The bare DistilBERT encoder/transformer outputing raw hidden-states without any specific head on top.", @add_start_docstrings("The bare DistilBERT encoder/transformer outputing raw hidden-states without any specific head on top.",
DISTILBERT_START_DOCSTRING, DISTILBERT_INPUTS_DOCSTRING) DISTILBERT_START_DOCSTRING, DISTILBERT_INPUTS_DOCSTRING)
class DistilBertModel(DistilBertPreTrainedModel): class TFDistilBertModel(TFDistilBertPreTrainedModel):
r""" r"""
Outputs: `Tuple` comprising various elements depending on the configuration (config) and inputs: Outputs: `Tuple` comprising various elements depending on the configuration (config) and inputs:
**last_hidden_state**: ``torch.FloatTensor`` of shape ``(batch_size, sequence_length, hidden_size)`` **last_hidden_state**: ``torch.FloatTensor`` of shape ``(batch_size, sequence_length, hidden_size)``
...@@ -526,7 +529,7 @@ class DistilBertModel(DistilBertPreTrainedModel): ...@@ -526,7 +529,7 @@ class DistilBertModel(DistilBertPreTrainedModel):
""" """
def __init__(self, config, *inputs, **kwargs): def __init__(self, config, *inputs, **kwargs):
super(DistilBertModel, self).__init__(config, *inputs, **kwargs) super(TFDistilBertModel, self).__init__(config, *inputs, **kwargs)
self.distilbert = TFDistilBertMainLayer(config, name="distilbert") # Embeddings self.distilbert = TFDistilBertMainLayer(config, name="distilbert") # Embeddings
def call(self, inputs, training=False): def call(self, inputs, training=False):
...@@ -534,6 +537,28 @@ class DistilBertModel(DistilBertPreTrainedModel): ...@@ -534,6 +537,28 @@ class DistilBertModel(DistilBertPreTrainedModel):
return outputs return outputs
class TFDistilBertLMHead(tf.keras.layers.Layer):
def __init__(self, config, input_embeddings, **kwargs):
super(TFDistilBertLMHead, self).__init__(**kwargs)
self.vocab_size = config.vocab_size
# The output weights are the same as the input embeddings, but there is
# an output-only bias for each token.
self.input_embeddings = input_embeddings
def build(self, input_shape):
self.bias = self.add_weight(shape=(self.vocab_size,),
initializer='zeros',
trainable=True,
name='bias')
super(TFDistilBertLMHead, self).build(input_shape)
def call(self, hidden_states):
hidden_states = self.input_embeddings(hidden_states, mode="linear")
hidden_states = hidden_states + self.bias
return hidden_states
@add_start_docstrings("""DistilBert Model with a `masked language modeling` head on top. """, @add_start_docstrings("""DistilBert Model with a `masked language modeling` head on top. """,
DISTILBERT_START_DOCSTRING, DISTILBERT_INPUTS_DOCSTRING) DISTILBERT_START_DOCSTRING, DISTILBERT_INPUTS_DOCSTRING)
class TFDistilBertForMaskedLM(TFDistilBertPreTrainedModel): class TFDistilBertForMaskedLM(TFDistilBertPreTrainedModel):
...@@ -570,27 +595,22 @@ class TFDistilBertForMaskedLM(TFDistilBertPreTrainedModel): ...@@ -570,27 +595,22 @@ class TFDistilBertForMaskedLM(TFDistilBertPreTrainedModel):
super(TFDistilBertForMaskedLM, self).__init__(config, *inputs, **kwargs) super(TFDistilBertForMaskedLM, self).__init__(config, *inputs, **kwargs)
self.output_attentions = config.output_attentions self.output_attentions = config.output_attentions
self.output_hidden_states = config.output_hidden_states self.output_hidden_states = config.output_hidden_states
self.vocab_size = config.vocab_size
self.distilbert = TFDistilBertMainLayer(config, name="distilbert") self.distilbert = TFDistilBertMainLayer(config, name="distilbert")
self.vocab_transform = tf.keras.layers.Dense(config.dim, name="vocab_transform") self.vocab_transform = tf.keras.layers.Dense(config.dim, name="vocab_transform")
self.act = tf.keras.layers.Activation(gelu) self.act = tf.keras.layers.Activation(gelu)
self.vocab_layer_norm = tf.keras.layers.LayerNormalization(epsilon=1e-12, name="vocab_layer_norm") self.vocab_layer_norm = tf.keras.layers.LayerNormalization(epsilon=1e-12, name="vocab_layer_norm")
self.vocab_projector_weight = self.distilbert.embeddings self.vocab_projector = TFDistilBertLMHead(config, self.distilbert.embeddings, name="vocab_projector")
def build(self, input_shape):
self.vocab_projector_bias = self.add_weight(shape=(self.vocab_size,),
initializer='zeros',
trainable=True,
name='vocab_projector_._bias')
super(TFDistilBertForMaskedLM, self).build(input_shape)
def call(self, inputs, training=False): def call(self, inputs, training=False):
dlbrt_output = self.distilbert(inputs, training=training) dlbrt_output = self.distilbert(inputs, training=training)
hidden_states = dlbrt_output[0] # (bs, seq_length, dim)
prediction_logits = self.vocab_transform(hidden_states) # (bs, seq_length, dim) hidden_states = dlbrt_output[0] # (bs, seq_length, dim)
prediction_logits = self.act(prediction_logits) # (bs, seq_length, dim) prediction_logits = self.vocab_transform(hidden_states) # (bs, seq_length, dim)
prediction_logits = self.vocab_layer_norm(prediction_logits) # (bs, seq_length, dim) prediction_logits = self.act(prediction_logits) # (bs, seq_length, dim)
prediction_logits = self.vocab_projector_weight(prediction_logits, mode='linear') + self.vocab_projector_bias prediction_logits = self.vocab_layer_norm(prediction_logits) # (bs, seq_length, dim)
prediction_logits = self.vocab_projector(prediction_logits)
outputs = (prediction_logits, ) + dlbrt_output[1:] outputs = (prediction_logits, ) + dlbrt_output[1:]
......
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import unittest
import pytest
from .modeling_tf_common_test import (TFCommonTestCases, ids_tensor)
from .configuration_common_test import ConfigTester
from pytorch_transformers import DistilBertConfig, is_tf_available
if is_tf_available():
import tensorflow as tf
from pytorch_transformers.modeling_tf_distilbert import (TFDistilBertModel,
TFDistilBertForMaskedLM,
TFDistilBertForQuestionAnswering,
TFDistilBertForSequenceClassification)
else:
pytestmark = pytest.mark.skip("Require TensorFlow")
class TFDistilBertModelTest(TFCommonTestCases.TFCommonModelTester):
all_model_classes = (TFDistilBertModel, TFDistilBertForMaskedLM, TFDistilBertForQuestionAnswering,
TFDistilBertForSequenceClassification) if is_tf_available() else None
test_pruning = True
test_torchscript = True
test_resize_embeddings = True
test_head_masking = True
class TFDistilBertModelTester(object):
def __init__(self,
parent,
batch_size=13,
seq_length=7,
is_training=True,
use_input_mask=True,
use_token_type_ids=False,
use_labels=True,
vocab_size=99,
hidden_size=32,
num_hidden_layers=5,
num_attention_heads=4,
intermediate_size=37,
hidden_act="gelu",
hidden_dropout_prob=0.1,
attention_probs_dropout_prob=0.1,
max_position_embeddings=512,
type_vocab_size=16,
type_sequence_label_size=2,
initializer_range=0.02,
num_labels=3,
num_choices=4,
scope=None,
):
self.parent = parent
self.batch_size = batch_size
self.seq_length = seq_length
self.is_training = is_training
self.use_input_mask = use_input_mask
self.use_token_type_ids = use_token_type_ids
self.use_labels = use_labels
self.vocab_size = vocab_size
self.hidden_size = hidden_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.intermediate_size = intermediate_size
self.hidden_act = hidden_act
self.hidden_dropout_prob = hidden_dropout_prob
self.attention_probs_dropout_prob = attention_probs_dropout_prob
self.max_position_embeddings = max_position_embeddings
self.type_vocab_size = type_vocab_size
self.type_sequence_label_size = type_sequence_label_size
self.initializer_range = initializer_range
self.num_labels = num_labels
self.num_choices = num_choices
self.scope = scope
def prepare_config_and_inputs(self):
input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
input_mask = None
if self.use_input_mask:
input_mask = ids_tensor([self.batch_size, self.seq_length], vocab_size=2)
sequence_labels = None
token_labels = None
choice_labels = None
if self.use_labels:
sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size)
token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels)
choice_labels = ids_tensor([self.batch_size], self.num_choices)
config = DistilBertConfig(
vocab_size_or_config_json_file=self.vocab_size,
dim=self.hidden_size,
n_layers=self.num_hidden_layers,
n_heads=self.num_attention_heads,
hidden_dim=self.intermediate_size,
hidden_act=self.hidden_act,
dropout=self.hidden_dropout_prob,
attention_dropout=self.attention_probs_dropout_prob,
max_position_embeddings=self.max_position_embeddings,
initializer_range=self.initializer_range)
return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels
def create_and_check_distilbert_model(self, config, input_ids, input_mask, sequence_labels, token_labels, choice_labels):
model = TFDistilBertModel(config=config)
inputs = {'input_ids': input_ids,
'attention_mask': input_mask}
outputs = model(inputs)
sequence_output = outputs[0]
inputs = [input_ids, input_mask]
(sequence_output,) = model(inputs)
result = {
"sequence_output": sequence_output.numpy(),
}
self.parent.assertListEqual(
list(result["sequence_output"].shape),
[self.batch_size, self.seq_length, self.hidden_size])
def create_and_check_distilbert_for_masked_lm(self, config, input_ids, input_mask, sequence_labels, token_labels, choice_labels):
model = TFDistilBertForMaskedLM(config=config)
inputs = {'input_ids': input_ids,
'attention_mask': input_mask}
(prediction_scores,) = model(inputs)
result = {
"prediction_scores": prediction_scores.numpy(),
}
self.parent.assertListEqual(
list(result["prediction_scores"].shape),
[self.batch_size, self.seq_length, self.vocab_size])
def create_and_check_distilbert_for_question_answering(self, config, input_ids, input_mask, sequence_labels, token_labels, choice_labels):
model = TFDistilBertForQuestionAnswering(config=config)
inputs = {'input_ids': input_ids,
'attention_mask': input_mask}
start_logits, end_logits = model(inputs)
result = {
"start_logits": start_logits.numpy(),
"end_logits": end_logits.numpy(),
}
self.parent.assertListEqual(
list(result["start_logits"].shape),
[self.batch_size, self.seq_length])
self.parent.assertListEqual(
list(result["end_logits"].shape),
[self.batch_size, self.seq_length])
def create_and_check_distilbert_for_sequence_classification(self, config, input_ids, input_mask, sequence_labels, token_labels, choice_labels):
config.num_labels = self.num_labels
model = TFDistilBertForSequenceClassification(config)
inputs = {'input_ids': input_ids,
'attention_mask': input_mask}
(logits,) = model(inputs)
result = {
"logits": logits.numpy(),
}
self.parent.assertListEqual(
list(result["logits"].shape),
[self.batch_size, self.num_labels])
def prepare_config_and_inputs_for_common(self):
config_and_inputs = self.prepare_config_and_inputs()
(config, input_ids, input_mask, sequence_labels, token_labels, choice_labels) = config_and_inputs
inputs_dict = {'input_ids': input_ids, 'attention_mask': input_mask}
return config, inputs_dict
def setUp(self):
self.model_tester = TFDistilBertModelTest.TFDistilBertModelTester(self)
self.config_tester = ConfigTester(self, config_class=DistilBertConfig, dim=37)
def test_config(self):
self.config_tester.run_common_tests()
def test_distilbert_model(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_distilbert_model(*config_and_inputs)
def test_for_masked_lm(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_distilbert_for_masked_lm(*config_and_inputs)
def test_for_question_answering(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_distilbert_for_question_answering(*config_and_inputs)
def test_for_sequence_classification(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_distilbert_for_sequence_classification(*config_and_inputs)
# @pytest.mark.slow
# def test_model_from_pretrained(self):
# cache_dir = "/tmp/pytorch_transformers_test/"
# for model_name in list(DISTILBERT_PRETRAINED_MODEL_ARCHIVE_MAP.keys())[:1]:
# model = DistilBertModel.from_pretrained(model_name, cache_dir=cache_dir)
# shutil.rmtree(cache_dir)
# self.assertIsNotNone(model)
if __name__ == "__main__":
unittest.main()
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment