test_modeling_tf_distilbert.py 8.98 KB
Newer Older
thomwolf's avatar
thomwolf committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Aymeric Augustin's avatar
Aymeric Augustin committed
15
from __future__ import absolute_import, division, print_function
thomwolf's avatar
thomwolf committed
16

Aymeric Augustin's avatar
Aymeric Augustin committed
17
18
from transformers import DistilBertConfig, is_tf_available

19
20
from .test_configuration_common import ConfigTester
from .test_modeling_tf_common import TFCommonTestCases, ids_tensor
21
from .utils import require_tf
thomwolf's avatar
thomwolf committed
22
23
24


if is_tf_available():
25
26
27
28
29
30
    from transformers.modeling_tf_distilbert import (
        TFDistilBertModel,
        TFDistilBertForMaskedLM,
        TFDistilBertForQuestionAnswering,
        TFDistilBertForSequenceClassification,
    )
thomwolf's avatar
thomwolf committed
31
32


33
@require_tf
thomwolf's avatar
thomwolf committed
34
35
class TFDistilBertModelTest(TFCommonTestCases.TFCommonModelTester):

36
37
38
39
40
41
42
43
44
45
    all_model_classes = (
        (
            TFDistilBertModel,
            TFDistilBertForMaskedLM,
            TFDistilBertForQuestionAnswering,
            TFDistilBertForSequenceClassification,
        )
        if is_tf_available()
        else None
    )
thomwolf's avatar
thomwolf committed
46
47
48
49
50
51
    test_pruning = True
    test_torchscript = True
    test_resize_embeddings = True
    test_head_masking = True

    class TFDistilBertModelTester(object):
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
        def __init__(
            self,
            parent,
            batch_size=13,
            seq_length=7,
            is_training=True,
            use_input_mask=True,
            use_token_type_ids=False,
            use_labels=True,
            vocab_size=99,
            hidden_size=32,
            num_hidden_layers=5,
            num_attention_heads=4,
            intermediate_size=37,
            hidden_act="gelu",
            hidden_dropout_prob=0.1,
            attention_probs_dropout_prob=0.1,
            max_position_embeddings=512,
            type_vocab_size=16,
            type_sequence_label_size=2,
            initializer_range=0.02,
            num_labels=3,
            num_choices=4,
            scope=None,
        ):
thomwolf's avatar
thomwolf committed
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
            self.parent = parent
            self.batch_size = batch_size
            self.seq_length = seq_length
            self.is_training = is_training
            self.use_input_mask = use_input_mask
            self.use_token_type_ids = use_token_type_ids
            self.use_labels = use_labels
            self.vocab_size = vocab_size
            self.hidden_size = hidden_size
            self.num_hidden_layers = num_hidden_layers
            self.num_attention_heads = num_attention_heads
            self.intermediate_size = intermediate_size
            self.hidden_act = hidden_act
            self.hidden_dropout_prob = hidden_dropout_prob
            self.attention_probs_dropout_prob = attention_probs_dropout_prob
            self.max_position_embeddings = max_position_embeddings
            self.type_vocab_size = type_vocab_size
            self.type_sequence_label_size = type_sequence_label_size
            self.initializer_range = initializer_range
            self.num_labels = num_labels
            self.num_choices = num_choices
            self.scope = scope

        def prepare_config_and_inputs(self):
            input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)

            input_mask = None
            if self.use_input_mask:
                input_mask = ids_tensor([self.batch_size, self.seq_length], vocab_size=2)

            sequence_labels = None
            token_labels = None
            choice_labels = None
            if self.use_labels:
                sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size)
                token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels)
                choice_labels = ids_tensor([self.batch_size], self.num_choices)

            config = DistilBertConfig(
thomwolf's avatar
thomwolf committed
116
                vocab_size=self.vocab_size,
thomwolf's avatar
thomwolf committed
117
118
119
120
121
122
123
124
                dim=self.hidden_size,
                n_layers=self.num_hidden_layers,
                n_heads=self.num_attention_heads,
                hidden_dim=self.intermediate_size,
                hidden_act=self.hidden_act,
                dropout=self.hidden_dropout_prob,
                attention_dropout=self.attention_probs_dropout_prob,
                max_position_embeddings=self.max_position_embeddings,
125
126
                initializer_range=self.initializer_range,
            )
thomwolf's avatar
thomwolf committed
127
128
129

            return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels

130
131
132
        def create_and_check_distilbert_model(
            self, config, input_ids, input_mask, sequence_labels, token_labels, choice_labels
        ):
thomwolf's avatar
thomwolf committed
133
            model = TFDistilBertModel(config=config)
134
            inputs = {"input_ids": input_ids, "attention_mask": input_mask}
thomwolf's avatar
thomwolf committed
135
136
137
138
139
140
141
142
143
144
145
146

            outputs = model(inputs)
            sequence_output = outputs[0]

            inputs = [input_ids, input_mask]

            (sequence_output,) = model(inputs)

            result = {
                "sequence_output": sequence_output.numpy(),
            }
            self.parent.assertListEqual(
147
148
                list(result["sequence_output"].shape), [self.batch_size, self.seq_length, self.hidden_size]
            )
thomwolf's avatar
thomwolf committed
149

150
151
152
        def create_and_check_distilbert_for_masked_lm(
            self, config, input_ids, input_mask, sequence_labels, token_labels, choice_labels
        ):
thomwolf's avatar
thomwolf committed
153
            model = TFDistilBertForMaskedLM(config=config)
154
            inputs = {"input_ids": input_ids, "attention_mask": input_mask}
thomwolf's avatar
thomwolf committed
155
156
157
158
159
            (prediction_scores,) = model(inputs)
            result = {
                "prediction_scores": prediction_scores.numpy(),
            }
            self.parent.assertListEqual(
160
161
                list(result["prediction_scores"].shape), [self.batch_size, self.seq_length, self.vocab_size]
            )
thomwolf's avatar
thomwolf committed
162

163
164
165
        def create_and_check_distilbert_for_question_answering(
            self, config, input_ids, input_mask, sequence_labels, token_labels, choice_labels
        ):
thomwolf's avatar
thomwolf committed
166
            model = TFDistilBertForQuestionAnswering(config=config)
167
            inputs = {"input_ids": input_ids, "attention_mask": input_mask}
thomwolf's avatar
thomwolf committed
168
169
170
171
172
            start_logits, end_logits = model(inputs)
            result = {
                "start_logits": start_logits.numpy(),
                "end_logits": end_logits.numpy(),
            }
173
174
            self.parent.assertListEqual(list(result["start_logits"].shape), [self.batch_size, self.seq_length])
            self.parent.assertListEqual(list(result["end_logits"].shape), [self.batch_size, self.seq_length])
thomwolf's avatar
thomwolf committed
175

176
177
178
        def create_and_check_distilbert_for_sequence_classification(
            self, config, input_ids, input_mask, sequence_labels, token_labels, choice_labels
        ):
thomwolf's avatar
thomwolf committed
179
180
            config.num_labels = self.num_labels
            model = TFDistilBertForSequenceClassification(config)
181
            inputs = {"input_ids": input_ids, "attention_mask": input_mask}
thomwolf's avatar
thomwolf committed
182
183
184
185
            (logits,) = model(inputs)
            result = {
                "logits": logits.numpy(),
            }
186
            self.parent.assertListEqual(list(result["logits"].shape), [self.batch_size, self.num_labels])
thomwolf's avatar
thomwolf committed
187
188
189
190

        def prepare_config_and_inputs_for_common(self):
            config_and_inputs = self.prepare_config_and_inputs()
            (config, input_ids, input_mask, sequence_labels, token_labels, choice_labels) = config_and_inputs
191
            inputs_dict = {"input_ids": input_ids, "attention_mask": input_mask}
thomwolf's avatar
thomwolf committed
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
            return config, inputs_dict

    def setUp(self):
        self.model_tester = TFDistilBertModelTest.TFDistilBertModelTester(self)
        self.config_tester = ConfigTester(self, config_class=DistilBertConfig, dim=37)

    def test_config(self):
        self.config_tester.run_common_tests()

    def test_distilbert_model(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_distilbert_model(*config_and_inputs)

    def test_for_masked_lm(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_distilbert_for_masked_lm(*config_and_inputs)

    def test_for_question_answering(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_distilbert_for_question_answering(*config_and_inputs)

    def test_for_sequence_classification(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_distilbert_for_sequence_classification(*config_and_inputs)

217
    # @slow
thomwolf's avatar
thomwolf committed
218
219
    # def test_model_from_pretrained(self):
    #     for model_name in list(DISTILBERT_PRETRAINED_MODEL_ARCHIVE_MAP.keys())[:1]:
220
    #         model = DistilBertModel.from_pretrained(model_name, cache_dir=CACHE_DIR)
thomwolf's avatar
thomwolf committed
221
    #         self.assertIsNotNone(model)