"tests/test_modeling_xlnet.py" did not exist on "0f9fc4fbde4ea95f817aaf710fecb1b898c61088"
tokenization_xlm.py 34.9 KB
Newer Older
thomwolf's avatar
xlm  
thomwolf committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
# coding=utf-8
# Copyright 2019 The Open AI Team Authors and The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Tokenization classes for OpenAI GPT."""
from __future__ import (absolute_import, division, print_function,
                        unicode_literals)

import json
import logging
import os
import re
23
import sys
24
import unicodedata
thomwolf's avatar
xlm  
thomwolf committed
25
26
from io import open

27
28
import sacremoses as sm

29
from .tokenization_utils import PreTrainedTokenizer
thomwolf's avatar
thomwolf committed
30
from .tokenization_bert import BasicTokenizer
thomwolf's avatar
xlm  
thomwolf committed
31
32
33

logger = logging.getLogger(__name__)

34
35
36
VOCAB_FILES_NAMES = {
    'vocab_file': 'vocab.json',
    'merges_file': 'merges.txt',
thomwolf's avatar
xlm  
thomwolf committed
37
}
38
39
40
41
42

PRETRAINED_VOCAB_FILES_MAP = {
    'vocab_file':
    {
        'xlm-mlm-en-2048': "https://s3.amazonaws.com/models.huggingface.co/bert/xlm-mlm-en-2048-vocab.json",
43
44
45
46
47
48
49
        'xlm-mlm-ende-1024': "https://s3.amazonaws.com/models.huggingface.co/bert/xlm-mlm-ende-1024-vocab.json",
        'xlm-mlm-enfr-1024': "https://s3.amazonaws.com/models.huggingface.co/bert/xlm-mlm-enfr-1024-vocab.json",
        'xlm-mlm-enro-1024': "https://s3.amazonaws.com/models.huggingface.co/bert/xlm-mlm-enro-1024-vocab.json",
        'xlm-mlm-tlm-xnli15-1024': "https://s3.amazonaws.com/models.huggingface.co/bert/xlm-mlm-tlm-xnli15-1024-vocab.json",
        'xlm-mlm-xnli15-1024': "https://s3.amazonaws.com/models.huggingface.co/bert/xlm-mlm-xnli15-1024-vocab.json",
        'xlm-clm-enfr-1024': "https://s3.amazonaws.com/models.huggingface.co/bert/xlm-clm-enfr-1024-vocab.json",
        'xlm-clm-ende-1024': "https://s3.amazonaws.com/models.huggingface.co/bert/xlm-clm-ende-1024-vocab.json",
50
        'xlm-mlm-17-1280': "https://s3.amazonaws.com/models.huggingface.co/bert/xlm-mlm-17-1280-vocab.json",
LysandreJik's avatar
LysandreJik committed
51
        'xlm-mlm-100-1280': "https://s3.amazonaws.com/models.huggingface.co/bert/xlm-mlm-100-1280-vocab.json",
thomwolf's avatar
thomwolf committed
52
    },
53
54
55
    'merges_file':
    {
        'xlm-mlm-en-2048': "https://s3.amazonaws.com/models.huggingface.co/bert/xlm-mlm-en-2048-merges.txt",
56
57
58
59
60
61
62
        'xlm-mlm-ende-1024': "https://s3.amazonaws.com/models.huggingface.co/bert/xlm-mlm-ende-1024-merges.txt",
        'xlm-mlm-enfr-1024': "https://s3.amazonaws.com/models.huggingface.co/bert/xlm-mlm-enfr-1024-merges.txt",
        'xlm-mlm-enro-1024': "https://s3.amazonaws.com/models.huggingface.co/bert/xlm-mlm-enro-1024-merges.txt",
        'xlm-mlm-tlm-xnli15-1024': "https://s3.amazonaws.com/models.huggingface.co/bert/xlm-mlm-tlm-xnli15-1024-merges.txt",
        'xlm-mlm-xnli15-1024': "https://s3.amazonaws.com/models.huggingface.co/bert/xlm-mlm-xnli15-1024-merges.txt",
        'xlm-clm-enfr-1024': "https://s3.amazonaws.com/models.huggingface.co/bert/xlm-mlm-enfr-1024-merges.txt",
        'xlm-clm-ende-1024': "https://s3.amazonaws.com/models.huggingface.co/bert/xlm-mlm-ende-1024-merges.txt",
63
        'xlm-mlm-17-1280': "https://s3.amazonaws.com/models.huggingface.co/bert/xlm-mlm-17-1280-merges.txt",
LysandreJik's avatar
LysandreJik committed
64
        'xlm-mlm-100-1280': "https://s3.amazonaws.com/models.huggingface.co/bert/xlm-mlm-100-1280-merges.txt",
65
    },
thomwolf's avatar
xlm  
thomwolf committed
66
}
67
68

PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = {
thomwolf's avatar
xlm  
thomwolf committed
69
    'xlm-mlm-en-2048': 512,
70
71
72
73
74
75
76
    'xlm-mlm-ende-1024': 512,
    'xlm-mlm-enfr-1024': 512,
    'xlm-mlm-enro-1024': 512,
    'xlm-mlm-tlm-xnli15-1024': 512,
    'xlm-mlm-xnli15-1024': 512,
    'xlm-clm-enfr-1024': 512,
    'xlm-clm-ende-1024': 512,
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
    'xlm-mlm-17-1280': 512,
    'xlm-mlm-100-1280': 512,
}

PRETRAINED_INIT_CONFIGURATION = {
    'xlm-mlm-en-2048': {"do_lowercase_and_remove_accent": True},
    'xlm-mlm-ende-1024': { "do_lowercase_and_remove_accent": True,
                            "id2lang": { "0": "de",
                                        "1": "en"},
                           "lang2id": { "de": 0,
                                        "en": 1 }},
    'xlm-mlm-enfr-1024': { "do_lowercase_and_remove_accent": True,
                           "id2lang": { "0": "en",
                                        "1": "fr"},
                           "lang2id": { "en": 0,
                                        "fr": 1 }},
    'xlm-mlm-enro-1024': { "do_lowercase_and_remove_accent": True,
                           "id2lang": { "0": "en",
                                        "1": "ro"},
                           "lang2id": { "en": 0,
                                        "ro": 1 }},
    'xlm-mlm-tlm-xnli15-1024': { "do_lowercase_and_remove_accent": True,
                                 "id2lang": {   "0": "ar",
                                                "1": "bg",
                                                "2": "de",
                                                "3": "el",
                                                "4": "en",
                                                "5": "es",
                                                "6": "fr",
                                                "7": "hi",
                                                "8": "ru",
                                                "9": "sw",
                                                "10": "th",
                                                "11": "tr",
                                                "12": "ur",
                                                "13": "vi",
                                                "14": "zh"},
                                 "lang2id": {   "ar": 0,
                                                "bg": 1,
                                                "de": 2,
                                                "el": 3,
                                                "en": 4,
                                                "es": 5,
                                                "fr": 6,
                                                "hi": 7,
                                                "ru": 8,
                                                "sw": 9,
                                                "th": 10,
                                                "tr": 11,
                                                "ur": 12,
                                                "vi": 13,
                                                "zh": 14 }},
    'xlm-mlm-xnli15-1024': { "do_lowercase_and_remove_accent": True,
                             "id2lang": {   "0": "ar",
                                                "1": "bg",
                                                "2": "de",
                                                "3": "el",
                                                "4": "en",
                                                "5": "es",
                                                "6": "fr",
                                                "7": "hi",
                                                "8": "ru",
                                                "9": "sw",
                                                "10": "th",
                                                "11": "tr",
                                                "12": "ur",
                                                "13": "vi",
                                                "14": "zh"},
                                 "lang2id": {   "ar": 0,
                                                "bg": 1,
                                                "de": 2,
                                                "el": 3,
                                                "en": 4,
                                                "es": 5,
                                                "fr": 6,
                                                "hi": 7,
                                                "ru": 8,
                                                "sw": 9,
                                                "th": 10,
                                                "tr": 11,
                                                "ur": 12,
                                                "vi": 13,
                                                "zh": 14 }},
    'xlm-clm-enfr-1024': { "do_lowercase_and_remove_accent": True,
                           "id2lang": { "0": "en",
                                        "1": "fr"},
                           "lang2id": { "en": 0,
                                        "fr": 1 }},
    'xlm-clm-ende-1024': { "do_lowercase_and_remove_accent": True,
                           "id2lang": { "0": "de",
                                        "1": "en"},
                           "lang2id": { "de": 0,
                                        "en": 1 }},
thomwolf's avatar
thomwolf committed
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
    'xlm-mlm-17-1280': {"do_lowercase_and_remove_accent": False,
                        "id2lang": {
                            "0": "ar",
                            "1": "de",
                            "2": "en",
                            "3": "es",
                            "4": "fr",
                            "5": "hi",
                            "6": "it",
                            "7": "ja",
                            "8": "ko",
                            "9": "nl",
                            "10": "pl",
                            "11": "pt",
                            "12": "ru",
                            "13": "sv",
                            "14": "tr",
                            "15": "vi",
                            "16": "zh"
                        },
                        "lang2id": {
                            "ar": 0,
                            "de": 1,
                            "en": 2,
                            "es": 3,
                            "fr": 4,
                            "hi": 5,
                            "it": 6,
                            "ja": 7,
                            "ko": 8,
                            "nl": 9,
                            "pl": 10,
                            "pt": 11,
                            "ru": 12,
                            "sv": 13,
                            "tr": 14,
                            "vi": 15,
                            "zh": 16}},
    'xlm-mlm-100-1280': {"do_lowercase_and_remove_accent": False,
                        "id2lang": {
                            "0": "af",
                            "1": "als",
                            "2": "am",
                            "3": "an",
                            "4": "ang",
                            "5": "ar",
                            "6": "arz",
                            "7": "ast",
                            "8": "az",
                            "9": "bar",
                            "10": "be",
                            "11": "bg",
                            "12": "bn",
                            "13": "br",
                            "14": "bs",
                            "15": "ca",
                            "16": "ceb",
                            "17": "ckb",
                            "18": "cs",
                            "19": "cy",
                            "20": "da",
                            "21": "de",
                            "22": "el",
                            "23": "en",
                            "24": "eo",
                            "25": "es",
                            "26": "et",
                            "27": "eu",
                            "28": "fa",
                            "29": "fi",
                            "30": "fr",
                            "31": "fy",
                            "32": "ga",
                            "33": "gan",
                            "34": "gl",
                            "35": "gu",
                            "36": "he",
                            "37": "hi",
                            "38": "hr",
                            "39": "hu",
                            "40": "hy",
                            "41": "ia",
                            "42": "id",
                            "43": "is",
                            "44": "it",
                            "45": "ja",
                            "46": "jv",
                            "47": "ka",
                            "48": "kk",
                            "49": "kn",
                            "50": "ko",
                            "51": "ku",
                            "52": "la",
                            "53": "lb",
                            "54": "lt",
                            "55": "lv",
                            "56": "mk",
                            "57": "ml",
                            "58": "mn",
                            "59": "mr",
                            "60": "ms",
                            "61": "my",
                            "62": "nds",
                            "63": "ne",
                            "64": "nl",
                            "65": "nn",
                            "66": "no",
                            "67": "oc",
                            "68": "pl",
                            "69": "pt",
                            "70": "ro",
                            "71": "ru",
                            "72": "scn",
                            "73": "sco",
                            "74": "sh",
                            "75": "si",
                            "76": "simple",
                            "77": "sk",
                            "78": "sl",
                            "79": "sq",
                            "80": "sr",
                            "81": "sv",
                            "82": "sw",
                            "83": "ta",
                            "84": "te",
                            "85": "th",
                            "86": "tl",
                            "87": "tr",
                            "88": "tt",
                            "89": "uk",
                            "90": "ur",
                            "91": "uz",
                            "92": "vi",
                            "93": "war",
                            "94": "wuu",
                            "95": "yi",
                            "96": "zh",
                            "97": "zh_classical",
                            "98": "zh_min_nan",
                            "99": "zh_yue"
                        },
                        "lang2id": {
                            "af": 0,
                            "als": 1,
                            "am": 2,
                            "an": 3,
                            "ang": 4,
                            "ar": 5,
                            "arz": 6,
                            "ast": 7,
                            "az": 8,
                            "bar": 9,
                            "be": 10,
                            "bg": 11,
                            "bn": 12,
                            "br": 13,
                            "bs": 14,
                            "ca": 15,
                            "ceb": 16,
                            "ckb": 17,
                            "cs": 18,
                            "cy": 19,
                            "da": 20,
                            "de": 21,
                            "el": 22,
                            "en": 23,
                            "eo": 24,
                            "es": 25,
                            "et": 26,
                            "eu": 27,
                            "fa": 28,
                            "fi": 29,
                            "fr": 30,
                            "fy": 31,
                            "ga": 32,
                            "gan": 33,
                            "gl": 34,
                            "gu": 35,
                            "he": 36,
                            "hi": 37,
                            "hr": 38,
                            "hu": 39,
                            "hy": 40,
                            "ia": 41,
                            "id": 42,
                            "is": 43,
                            "it": 44,
                            "ja": 45,
                            "jv": 46,
                            "ka": 47,
                            "kk": 48,
                            "kn": 49,
                            "ko": 50,
                            "ku": 51,
                            "la": 52,
                            "lb": 53,
                            "lt": 54,
                            "lv": 55,
                            "mk": 56,
                            "ml": 57,
                            "mn": 58,
                            "mr": 59,
                            "ms": 60,
                            "my": 61,
                            "nds": 62,
                            "ne": 63,
                            "nl": 64,
                            "nn": 65,
                            "no": 66,
                            "oc": 67,
                            "pl": 68,
                            "pt": 69,
                            "ro": 70,
                            "ru": 71,
                            "scn": 72,
                            "sco": 73,
                            "sh": 74,
                            "si": 75,
                            "simple": 76,
                            "sk": 77,
                            "sl": 78,
                            "sq": 79,
                            "sr": 80,
                            "sv": 81,
                            "sw": 82,
                            "ta": 83,
                            "te": 84,
                            "th": 85,
                            "tl": 86,
                            "tr": 87,
                            "tt": 88,
                            "uk": 89,
                            "ur": 90,
                            "uz": 91,
                            "vi": 92,
                            "war": 93,
                            "wuu": 94,
                            "yi": 95,
                            "zh": 96,
                            "zh_classical": 97,
                            "zh_min_nan": 98,
                            "zh_yue": 99
                        }},
thomwolf's avatar
xlm  
thomwolf committed
413
414
415
416
417
418
419
420
421
422
423
424
425
426
}

def get_pairs(word):
    """
    Return set of symbol pairs in a word.
    word is represented as tuple of symbols (symbols being variable-length strings)
    """
    pairs = set()
    prev_char = word[0]
    for char in word[1:]:
        pairs.add((prev_char, char))
        prev_char = char
    return pairs

427
428
429
430
431
432

def lowercase_and_remove_accent(text):
    """
    Lowercase and strips accents from a piece of text based on
    https://github.com/facebookresearch/XLM/blob/master/tools/lowercase_and_remove_accent.py
    """
433
    text = ' '.join(text)
434
435
436
437
438
439
440
441
    text = text.lower()
    text = unicodedata.normalize("NFD", text)
    output = []
    for char in text:
        cat = unicodedata.category(char)
        if cat == "Mn":
            continue
        output.append(char)
442
    return "".join(output).lower().split(' ')
443
444
445
446
447
448
449


def replace_unicode_punct(text):
    '''
    Port of https://github.com/moses-smt/mosesdecoder/blob/master/scripts/tokenizer/replace-unicode-punctuation.perl
    '''
    text = text.replace(',', ',')
Shijie Wu's avatar
Shijie Wu committed
450
    text = re.sub(r'。\s*', '. ', text)
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
    text = text.replace('、', ',')
    text = text.replace('”', '"')
    text = text.replace('“', '"')
    text = text.replace('∶', ':')
    text = text.replace(':', ':')
    text = text.replace('?', '?')
    text = text.replace('《', '"')
    text = text.replace('》', '"')
    text = text.replace(')', ')')
    text = text.replace('!', '!')
    text = text.replace('(', '(')
    text = text.replace(';', ';')
    text = text.replace('1', '"')
    text = text.replace('」', '"')
    text = text.replace('「', '"')
    text = text.replace('0', '0')
    text = text.replace('3', '3')
    text = text.replace('2', '2')
    text = text.replace('5', '5')
    text = text.replace('6', '6')
    text = text.replace('9', '9')
    text = text.replace('7', '7')
    text = text.replace('8', '8')
    text = text.replace('4', '4')
    text = re.sub(r'.\s*', '. ', text)
    text = text.replace('~', '~')
    text = text.replace('’', '\'')
    text = text.replace('…', '...')
    text = text.replace('━', '-')
    text = text.replace('〈', '<')
    text = text.replace('〉', '>')
    text = text.replace('【', '[')
    text = text.replace('】', ']')
    text = text.replace('%', '%')
    return text


def remove_non_printing_char(text):
    '''
    Port of https://github.com/moses-smt/mosesdecoder/blob/master/scripts/tokenizer/remove-non-printing-char.perl
    '''
    output = []
    for char in text:
        cat = unicodedata.category(char)
        if cat.startswith('C'):
            continue
        output.append(char)
    return "".join(output)


def romanian_preprocessing(text):
    '''Sennrich's WMT16 scripts for Romanian preprocessing, used by model `xlm-mlm-enro-1024`'''
    # https://github.com/rsennrich/wmt16-scripts/blob/master/preprocess/normalise-romanian.py
    text = text.replace("\u015e", "\u0218").replace("\u015f", "\u0219")
    text = text.replace("\u0162", "\u021a").replace("\u0163", "\u021b")
    # https://github.com/rsennrich/wmt16-scripts/blob/master/preprocess/remove-diacritics.py
    text = text.replace("\u0218", "S").replace("\u0219", "s") #s-comma
    text = text.replace("\u021a", "T").replace("\u021b", "t") #t-comma
    text = text.replace("\u0102", "A").replace("\u0103", "a")
    text = text.replace("\u00C2", "A").replace("\u00E2", "a")
    text = text.replace("\u00CE", "I").replace("\u00EE", "i")
    return text


515
class XLMTokenizer(PreTrainedTokenizer):
thomwolf's avatar
xlm  
thomwolf committed
516
    """
517
    BPE tokenizer for XLM
518

519
        - Moses preprocessing & tokenization for most supported languages
520

521
522
523
        - Language specific tokenization for Chinese (Jieba), Japanese (KyTea) and Thai (PyThaiNLP)

        - (optionally) lower case & normalize all inputs text
524
525

        - argument ``special_tokens`` and function ``set_special_tokens``, can be used to add additional symbols \
526
527
528
529
530
531
532
        (ex: "__classify__") to a vocabulary
        
        - `lang2id` attribute maps the languages supported by the model with their ids if provided (automatically set for pretrained vocabularies)

        - `id2lang` attributes does reverse mapping if provided (automatically set for pretrained vocabularies)

        - `do_lowercase_and_remove_accent` controle lower casing and accent (automatically set for pretrained vocabularies)
thomwolf's avatar
xlm  
thomwolf committed
533
    """
534
535
    vocab_files_names = VOCAB_FILES_NAMES
    pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP
536
    pretrained_init_configuration = PRETRAINED_INIT_CONFIGURATION
537
    max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
thomwolf's avatar
xlm  
thomwolf committed
538

539
540
541
542
    def __init__(self, vocab_file, merges_file, unk_token="<unk>", bos_token="<s>",
                 sep_token="</s>", pad_token="<pad>", cls_token="</s>",
                 mask_token="<special1>", additional_special_tokens=["<special0>",
                 "<special1>", "<special2>", "<special3>", "<special4>", "<special5>",
543
544
545
                 "<special6>", "<special7>", "<special8>", "<special9>"],
                 lang2id=None, id2lang=None, do_lowercase_and_remove_accent=True,
                 **kwargs):
546
547
548
549
550
        super(XLMTokenizer, self).__init__(unk_token=unk_token, bos_token=bos_token,
                                           sep_token=sep_token, pad_token=pad_token,
                                           cls_token=cls_token, mask_token=mask_token,
                                           additional_special_tokens=additional_special_tokens,
                                           **kwargs)
551
552
553
554
555
556
557

        # cache of sm.MosesPunctNormalizer instance
        self.cache_moses_punct_normalizer = dict()
        # cache of sm.MosesTokenizer instance
        self.cache_moses_tokenizer = dict()
        self.lang_with_custom_tokenizer = set(['zh', 'th', 'ja'])
        # True for current supported model (v1.2.0), False for XLM-17 & 100
558
559
560
561
562
563
        self.do_lowercase_and_remove_accent = do_lowercase_and_remove_accent
        self.lang2id = lang2id
        self.id2lang = id2lang
        if lang2id is not None and id2lang is not None:
            assert len(lang2id) == len(id2lang)

Shijie Wu's avatar
Shijie Wu committed
564
565
        self.ja_word_tokenizer = None
        self.zh_word_tokenizer = None
thomwolf's avatar
xlm  
thomwolf committed
566
567
568
569
570
571
572

        self.encoder = json.load(open(vocab_file, encoding="utf-8"))
        self.decoder = {v:k for k,v in self.encoder.items()}
        merges = open(merges_file, encoding='utf-8').read().split('\n')[:-1]
        merges = [tuple(merge.split()[:2]) for merge in merges]
        self.bpe_ranks = dict(zip(merges, range(len(merges))))
        self.cache = {}
573

574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
    def moses_punct_norm(self, text, lang):
        if lang not in self.cache_moses_punct_normalizer:
            punct_normalizer = sm.MosesPunctNormalizer(lang=lang)
            self.cache_moses_punct_normalizer[lang] = punct_normalizer
        else:
            punct_normalizer = self.cache_moses_punct_normalizer[lang]
        return punct_normalizer.normalize(text)

    def moses_tokenize(self, text, lang):
        if lang not in self.cache_moses_tokenizer:
            moses_tokenizer = sm.MosesTokenizer(lang=lang)
            self.cache_moses_tokenizer[lang] = moses_tokenizer
        else:
            moses_tokenizer = self.cache_moses_tokenizer[lang]
        return moses_tokenizer.tokenize(text, return_str=False, escape=False)

    def moses_pipeline(self, text, lang):
        text = replace_unicode_punct(text)
        text = self.moses_punct_norm(text, lang)
        text = remove_non_printing_char(text)
        return text

Shijie Wu's avatar
Shijie Wu committed
596
597
598
    def ja_tokenize(self, text):
        if self.ja_word_tokenizer is None:
            try:
599
                import Mykytea
Shijie Wu's avatar
Shijie Wu committed
600
                self.ja_word_tokenizer = Mykytea.Mykytea('-model %s/local/share/kytea/model.bin' % os.path.expanduser('~'))
601
            except (AttributeError, ImportError) as e:
602
                logger.error("Make sure you install KyTea (https://github.com/neubig/kytea) and it's python wrapper (https://github.com/chezou/Mykytea-python) with the following steps")
Shijie Wu's avatar
Shijie Wu committed
603
604
605
606
                logger.error("1. git clone git@github.com:neubig/kytea.git && cd kytea")
                logger.error("2. autoreconf -i")
                logger.error("3. ./configure --prefix=$HOME/local")
                logger.error("4. make && make install")
607
                logger.error("5. pip install kytea")
608
                raise e
Shijie Wu's avatar
Shijie Wu committed
609
610
        return list(self.ja_word_tokenizer.getWS(text))

611
612
613
    @property
    def vocab_size(self):
        return len(self.encoder)
thomwolf's avatar
xlm  
thomwolf committed
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657

    def bpe(self, token):
        word = tuple(token[:-1]) + (token[-1] + '</w>',)
        if token in self.cache:
            return self.cache[token]
        pairs = get_pairs(word)

        if not pairs:
            return token+'</w>'

        while True:
            bigram = min(pairs, key=lambda pair: self.bpe_ranks.get(pair, float('inf')))
            if bigram not in self.bpe_ranks:
                break
            first, second = bigram
            new_word = []
            i = 0
            while i < len(word):
                try:
                    j = word.index(first, i)
                    new_word.extend(word[i:j])
                    i = j
                except:
                    new_word.extend(word[i:])
                    break

                if word[i] == first and i < len(word)-1 and word[i+1] == second:
                    new_word.append(first+second)
                    i += 2
                else:
                    new_word.append(word[i])
                    i += 1
            new_word = tuple(new_word)
            word = new_word
            if len(word) == 1:
                break
            else:
                pairs = get_pairs(word)
        word = ' '.join(word)
        if word == '\n  </w>':
            word = '\n</w>'
        self.cache[token] = word
        return word

658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
    def _tokenize(self, text, lang='en', bypass_tokenizer=False):
        """
        Tokenize a string given language code. For Chinese, Japanese and Thai, we use a language specific tokenizerself. Otherwise, we use Moses.

        Details of tokenization:
        - [sacremoses](https://github.com/alvations/sacremoses): port of Moses
            - Install with `pip install sacremoses`
        - [pythainlp](https://github.com/PyThaiNLP/pythainlp): Thai tokenizer
            - Install with `pip install pythainlp`
        - [kytea](https://github.com/chezou/Mykytea-python): Japanese tokenizer, wrapper of [KyTea](https://github.com/neubig/kytea)
            - Install with the following steps:
            ```
            git clone git@github.com:neubig/kytea.git && cd kytea
            autoreconf -i
            ./configure --prefix=$HOME/local
            make && make install
            pip install kytea
            ```
        - [jieba](https://github.com/fxsjy/jieba): Chinese tokenizer *
            - Install with `pip install jieba`

        \* The original XLM used [Stanford Segmenter](https://nlp.stanford.edu/software/stanford-segmenter-2018-10-16.zip).
        However, the wrapper (`nltk.tokenize.stanford_segmenter`) is slow due to JVM overhead, and it will be deprecated.
        Jieba is a lot faster and pip-installable. Note there is some mismatch with the Stanford Segmenter. It should be fine
        if you fine-tune the model with Chinese supervisionself. If you want the same exact behaviour, use the original XLM
        [preprocessing script](https://github.com/facebookresearch/XLM/tree/master/tools) to tokenize the sentence externally,
        and set `bypass_tokenizer=True` to bypass the tokenizer.

        Args:
            - lang: ISO language code (default = 'en') (string). Languages should belong of the model supported languages. However, we don't enforce it.
            - bypass_tokenizer: Allow users to preprocess and tokenize the sentences externally (default = False)  (bool). If True, we only apply BPE.

        Returns:
            List of tokens.
        """
693
694
        if lang and self.lang2id and lang not in self.lang2id:
            logger.error("Supplied language code not found in lang2id mapping. Please check that your language is supported by the loaded pretrained model.")
695
696
697
        if bypass_tokenizer:
            text = text.split()
        elif lang not in self.lang_with_custom_tokenizer:
698
699
700
701
702
            text = self.moses_pipeline(text, lang=lang)
            # TODO: make sure we are using `xlm-mlm-enro-1024`, since XLM-100 doesn't have this step
            if lang == 'ro':
                text = romanian_preprocessing(text)
            text = self.moses_tokenize(text, lang=lang)
Shijie Wu's avatar
Shijie Wu committed
703
704
        elif lang == 'th':
            text = self.moses_pipeline(text, lang=lang)
705
706
707
            try:
                if 'pythainlp' not in sys.modules:
                    from pythainlp.tokenize import word_tokenize as th_word_tokenize
708
709
                else:
                    th_word_tokenize = sys.modules['pythainlp'].word_tokenize
710
            except (AttributeError, ImportError) as e:
711
712
                logger.error("Make sure you install PyThaiNLP (https://github.com/PyThaiNLP/pythainlp) with the following steps")
                logger.error("1. pip install pythainlp")
713
                raise e
Shijie Wu's avatar
Shijie Wu committed
714
715
            text = th_word_tokenize(text)
        elif lang == 'zh':
716
717
718
            try:
                if 'jieba' not in sys.modules:
                    import jieba
719
720
                else:
                    jieba = sys.modules['jieba']
721
            except (AttributeError, ImportError) as e:
722
723
                logger.error("Make sure you install Jieba (https://github.com/fxsjy/jieba) with the following steps")
                logger.error("1. pip install jieba")
724
                raise e
Shijie Wu's avatar
Shijie Wu committed
725
726
727
728
729
730
            text = ' '.join(jieba.cut(text))
            text = self.moses_pipeline(text, lang=lang)
            text = text.split()
        elif lang == 'ja':
            text = self.moses_pipeline(text, lang=lang)
            text = self.ja_tokenize(text)
thomwolf's avatar
xlm  
thomwolf committed
731
        else:
Shijie Wu's avatar
Shijie Wu committed
732
733
            raise ValueError('It should not reach here')

734
735
736
        if self.do_lowercase_and_remove_accent and not bypass_tokenizer:
            text = lowercase_and_remove_accent(text)

Shijie Wu's avatar
Shijie Wu committed
737
738
        split_tokens = []
        for token in text:
739
740
            if token:
                split_tokens.extend([t for t in self.bpe(token).split(' ')])
Shijie Wu's avatar
Shijie Wu committed
741

thomwolf's avatar
xlm  
thomwolf committed
742
743
        return split_tokens

744
745
746
    def _convert_token_to_id(self, token):
        """ Converts a token (str/unicode) in an id using the vocab. """
        return self.encoder.get(token, self.encoder.get(self.unk_token))
thomwolf's avatar
xlm  
thomwolf committed
747

748
749
750
    def _convert_id_to_token(self, index):
        """Converts an index (integer) in a token (string/unicode) using the vocab."""
        return self.decoder.get(index, self.unk_token)
thomwolf's avatar
xlm  
thomwolf committed
751

752
753
754
    def convert_tokens_to_string(self, tokens):
        """ Converts a sequence of tokens (string) in a single string. """
        out_string = ''.join(tokens).replace('</w>', ' ').strip()
thomwolf's avatar
xlm  
thomwolf committed
755
756
        return out_string

757
    def add_special_tokens_single_sequence(self, token_ids):
758
759
760
761
        """
        Adds special tokens to a sequence for sequence classification tasks.
        An XLM sequence has the following format: [CLS] X [SEP]
        """
762
        return [self.cls_token_id] + token_ids + [self.sep_token_id]
763

764
    def add_special_tokens_sequence_pair(self, token_ids_0, token_ids_1):
765
766
767
768
        """
        Adds special tokens to a sequence pair for sequence classification tasks.
        An XLM sequence pair has the following format: [CLS] A [SEP] B [SEP]
        """
769
770
        sep = [self.sep_token_id]
        cls = [self.cls_token_id]
771
        return cls + token_ids_0 + sep + token_ids_1 + sep
772

773
774
775
776
777
778
779
780
781
782
783
784
    def create_mask_from_sequences(self, sequence_0, sequence_1):
        """
        Creates a mask from the two sequences passed to be used in a sequence-pair classification task.
        An XLM sequence pair mask has the following format:
        0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1
        | first sequence    | second sequence
        """
        sep = [self.sep_token_id]
        cls = [self.cls_token_id]

        return len(cls + self.encode(sequence_0) + sep) * [0] + len(self.encode(sequence_1) + sep) * [1]

785
    def save_vocabulary(self, save_directory):
thomwolf's avatar
xlm  
thomwolf committed
786
        """Save the tokenizer vocabulary and merge files to a directory."""
787
788
        if not os.path.isdir(save_directory):
            logger.error("Vocabulary path ({}) should be a directory".format(save_directory))
thomwolf's avatar
xlm  
thomwolf committed
789
            return
790
791
        vocab_file = os.path.join(save_directory, VOCAB_FILES_NAMES['vocab_file'])
        merge_file = os.path.join(save_directory, VOCAB_FILES_NAMES['merges_file'])
thomwolf's avatar
xlm  
thomwolf committed
792
793
794
795
796
797
798
799
800
801
802
803
804
805

        with open(vocab_file, 'w', encoding='utf-8') as f:
            f.write(json.dumps(self.encoder, ensure_ascii=False))

        index = 0
        with open(merge_file, "w", encoding="utf-8") as writer:
            for bpe_tokens, token_index in sorted(self.bpe_ranks.items(), key=lambda kv: kv[1]):
                if index != token_index:
                    logger.warning("Saving vocabulary to {}: BPE merge indices are not consecutive."
                                   " Please check that the tokenizer is not corrupted!".format(merge_file))
                    index = token_index
                writer.write(' '.join(bpe_tokens) + u'\n')
                index += 1

806
        return vocab_file, merge_file