tokenization_xlm.py 14.9 KB
Newer Older
thomwolf's avatar
xlm  
thomwolf committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
# coding=utf-8
# Copyright 2019 The Open AI Team Authors and The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Tokenization classes for OpenAI GPT."""
from __future__ import (absolute_import, division, print_function,
                        unicode_literals)

import json
import logging
import os
import re
23
import unicodedata
thomwolf's avatar
xlm  
thomwolf committed
24
25
from io import open

26
27
import sacremoses as sm

28
from .tokenization_utils import PreTrainedTokenizer
thomwolf's avatar
thomwolf committed
29
from .tokenization_bert import BasicTokenizer
thomwolf's avatar
xlm  
thomwolf committed
30
31
32

logger = logging.getLogger(__name__)

33
34
35
VOCAB_FILES_NAMES = {
    'vocab_file': 'vocab.json',
    'merges_file': 'merges.txt',
thomwolf's avatar
xlm  
thomwolf committed
36
}
37
38
39
40
41

PRETRAINED_VOCAB_FILES_MAP = {
    'vocab_file':
    {
        'xlm-mlm-en-2048': "https://s3.amazonaws.com/models.huggingface.co/bert/xlm-mlm-en-2048-vocab.json",
42
43
44
45
46
47
48
        'xlm-mlm-ende-1024': "https://s3.amazonaws.com/models.huggingface.co/bert/xlm-mlm-ende-1024-vocab.json",
        'xlm-mlm-enfr-1024': "https://s3.amazonaws.com/models.huggingface.co/bert/xlm-mlm-enfr-1024-vocab.json",
        'xlm-mlm-enro-1024': "https://s3.amazonaws.com/models.huggingface.co/bert/xlm-mlm-enro-1024-vocab.json",
        'xlm-mlm-tlm-xnli15-1024': "https://s3.amazonaws.com/models.huggingface.co/bert/xlm-mlm-tlm-xnli15-1024-vocab.json",
        'xlm-mlm-xnli15-1024': "https://s3.amazonaws.com/models.huggingface.co/bert/xlm-mlm-xnli15-1024-vocab.json",
        'xlm-clm-enfr-1024': "https://s3.amazonaws.com/models.huggingface.co/bert/xlm-clm-enfr-1024-vocab.json",
        'xlm-clm-ende-1024': "https://s3.amazonaws.com/models.huggingface.co/bert/xlm-clm-ende-1024-vocab.json",
49
50
51
52
    },
    'merges_file':
    {
        'xlm-mlm-en-2048': "https://s3.amazonaws.com/models.huggingface.co/bert/xlm-mlm-en-2048-merges.txt",
53
54
55
56
57
58
59
        'xlm-mlm-ende-1024': "https://s3.amazonaws.com/models.huggingface.co/bert/xlm-mlm-ende-1024-merges.txt",
        'xlm-mlm-enfr-1024': "https://s3.amazonaws.com/models.huggingface.co/bert/xlm-mlm-enfr-1024-merges.txt",
        'xlm-mlm-enro-1024': "https://s3.amazonaws.com/models.huggingface.co/bert/xlm-mlm-enro-1024-merges.txt",
        'xlm-mlm-tlm-xnli15-1024': "https://s3.amazonaws.com/models.huggingface.co/bert/xlm-mlm-tlm-xnli15-1024-merges.txt",
        'xlm-mlm-xnli15-1024': "https://s3.amazonaws.com/models.huggingface.co/bert/xlm-mlm-xnli15-1024-merges.txt",
        'xlm-clm-enfr-1024': "https://s3.amazonaws.com/models.huggingface.co/bert/xlm-mlm-enfr-1024-merges.txt",
        'xlm-clm-ende-1024': "https://s3.amazonaws.com/models.huggingface.co/bert/xlm-mlm-ende-1024-merges.txt",
60
    },
thomwolf's avatar
xlm  
thomwolf committed
61
}
62
63

PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = {
thomwolf's avatar
xlm  
thomwolf committed
64
    'xlm-mlm-en-2048': 512,
65
66
67
68
69
70
71
    'xlm-mlm-ende-1024': 512,
    'xlm-mlm-enfr-1024': 512,
    'xlm-mlm-enro-1024': 512,
    'xlm-mlm-tlm-xnli15-1024': 512,
    'xlm-mlm-xnli15-1024': 512,
    'xlm-clm-enfr-1024': 512,
    'xlm-clm-ende-1024': 512,
thomwolf's avatar
xlm  
thomwolf committed
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
}

def get_pairs(word):
    """
    Return set of symbol pairs in a word.
    word is represented as tuple of symbols (symbols being variable-length strings)
    """
    pairs = set()
    prev_char = word[0]
    for char in word[1:]:
        pairs.add((prev_char, char))
        prev_char = char
    return pairs

def text_standardize(text):
    """
    fixes some issues the spacy tokenizer had on books corpus
    also does some whitespace standardization
    """
    text = text.replace('—', '-')
    text = text.replace('–', '-')
    text = text.replace('―', '-')
    text = text.replace('…', '...')
    text = text.replace('´', "'")
    text = re.sub(r'''(-+|~+|!+|"+|;+|\?+|\++|,+|\)+|\(+|\\+|\/+|\*+|\[+|\]+|}+|{+|\|+|_+)''', r' \1 ', text)
    text = re.sub(r'\s*\n\s*', ' \n ', text)
    text = re.sub(r'[^\S\n]+', ' ', text)
    return text.strip()

101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187

def lowercase_and_remove_accent(text):
    """
    Lowercase and strips accents from a piece of text based on
    https://github.com/facebookresearch/XLM/blob/master/tools/lowercase_and_remove_accent.py
    """
    text = text.lower()
    text = unicodedata.normalize("NFD", text)
    output = []
    for char in text:
        cat = unicodedata.category(char)
        if cat == "Mn":
            continue
        output.append(char)
    return "".join(output).lower()


def replace_unicode_punct(text):
    '''
    Port of https://github.com/moses-smt/mosesdecoder/blob/master/scripts/tokenizer/replace-unicode-punctuation.perl
    '''
    text = text.replace(',', ',')
    text = text.replace('。 *', '. ')
    text = text.replace('、', ',')
    text = text.replace('”', '"')
    text = text.replace('“', '"')
    text = text.replace('∶', ':')
    text = text.replace(':', ':')
    text = text.replace('?', '?')
    text = text.replace('《', '"')
    text = text.replace('》', '"')
    text = text.replace(')', ')')
    text = text.replace('!', '!')
    text = text.replace('(', '(')
    text = text.replace(';', ';')
    text = text.replace('1', '"')
    text = text.replace('」', '"')
    text = text.replace('「', '"')
    text = text.replace('0', '0')
    text = text.replace('3', '3')
    text = text.replace('2', '2')
    text = text.replace('5', '5')
    text = text.replace('6', '6')
    text = text.replace('9', '9')
    text = text.replace('7', '7')
    text = text.replace('8', '8')
    text = text.replace('4', '4')
    text = re.sub(r'.\s*', '. ', text)
    text = text.replace('~', '~')
    text = text.replace('’', '\'')
    text = text.replace('…', '...')
    text = text.replace('━', '-')
    text = text.replace('〈', '<')
    text = text.replace('〉', '>')
    text = text.replace('【', '[')
    text = text.replace('】', ']')
    text = text.replace('%', '%')
    return text


def remove_non_printing_char(text):
    '''
    Port of https://github.com/moses-smt/mosesdecoder/blob/master/scripts/tokenizer/remove-non-printing-char.perl
    '''
    output = []
    for char in text:
        cat = unicodedata.category(char)
        if cat.startswith('C'):
            continue
        output.append(char)
    return "".join(output)


def romanian_preprocessing(text):
    '''Sennrich's WMT16 scripts for Romanian preprocessing, used by model `xlm-mlm-enro-1024`'''
    # https://github.com/rsennrich/wmt16-scripts/blob/master/preprocess/normalise-romanian.py
    text = text.replace("\u015e", "\u0218").replace("\u015f", "\u0219")
    text = text.replace("\u0162", "\u021a").replace("\u0163", "\u021b")
    # https://github.com/rsennrich/wmt16-scripts/blob/master/preprocess/remove-diacritics.py
    text = text.replace("\u0218", "S").replace("\u0219", "s") #s-comma
    text = text.replace("\u021a", "T").replace("\u021b", "t") #t-comma
    text = text.replace("\u0102", "A").replace("\u0103", "a")
    text = text.replace("\u00C2", "A").replace("\u00E2", "a")
    text = text.replace("\u00CE", "I").replace("\u00EE", "i")
    return text


188
class XLMTokenizer(PreTrainedTokenizer):
thomwolf's avatar
xlm  
thomwolf committed
189
190
    """
    BPE tokenizer for XLM, adapted from OpenAI BPE tokenizer. Peculiarities:
191

thomwolf's avatar
xlm  
thomwolf committed
192
        - lower case all inputs
193
194
195
196
197
198
199

        - uses `SpaCy tokenizer <https://spacy.io/api/tokenizer/>`_ and \
        `ftfy <https://ftfy.readthedocs.io/en/latest/>`_ for pre-BPE tokenization if they are installed, \
        fallback to BERT's BasicTokenizer if not.

        - argument ``special_tokens`` and function ``set_special_tokens``, can be used to add additional symbols \
        (ex: "__classify__") to a vocabulary.
thomwolf's avatar
xlm  
thomwolf committed
200
    """
201
202
203
    vocab_files_names = VOCAB_FILES_NAMES
    pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP
    max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
thomwolf's avatar
xlm  
thomwolf committed
204

205
206
207
208
209
210
211
212
213
214
    def __init__(self, vocab_file, merges_file, unk_token="<unk>", bos_token="<s>",
                 sep_token="</s>", pad_token="<pad>", cls_token="</s>",
                 mask_token="<special1>", additional_special_tokens=["<special0>",
                 "<special1>", "<special2>", "<special3>", "<special4>", "<special5>",
                 "<special6>", "<special7>", "<special8>", "<special9>"], **kwargs):
        super(XLMTokenizer, self).__init__(unk_token=unk_token, bos_token=bos_token,
                                           sep_token=sep_token, pad_token=pad_token,
                                           cls_token=cls_token, mask_token=mask_token,
                                           additional_special_tokens=additional_special_tokens,
                                           **kwargs)
215
216
217
218
219
220
221
222

        # cache of sm.MosesPunctNormalizer instance
        self.cache_moses_punct_normalizer = dict()
        # cache of sm.MosesTokenizer instance
        self.cache_moses_tokenizer = dict()
        self.lang_with_custom_tokenizer = set(['zh', 'th', 'ja'])
        # True for current supported model (v1.2.0), False for XLM-17 & 100
        self.do_lowercase_and_remove_accent = True
thomwolf's avatar
xlm  
thomwolf committed
223
224
225
226
227
228
229

        self.encoder = json.load(open(vocab_file, encoding="utf-8"))
        self.decoder = {v:k for k,v in self.encoder.items()}
        merges = open(merges_file, encoding='utf-8').read().split('\n')[:-1]
        merges = [tuple(merge.split()[:2]) for merge in merges]
        self.bpe_ranks = dict(zip(merges, range(len(merges))))
        self.cache = {}
230

231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
    def moses_punct_norm(self, text, lang):
        if lang not in self.cache_moses_punct_normalizer:
            punct_normalizer = sm.MosesPunctNormalizer(lang=lang)
            self.cache_moses_punct_normalizer[lang] = punct_normalizer
        else:
            punct_normalizer = self.cache_moses_punct_normalizer[lang]
        return punct_normalizer.normalize(text)

    def moses_tokenize(self, text, lang):
        if lang not in self.cache_moses_tokenizer:
            moses_tokenizer = sm.MosesTokenizer(lang=lang)
            self.cache_moses_tokenizer[lang] = moses_tokenizer
        else:
            moses_tokenizer = self.cache_moses_tokenizer[lang]
        return moses_tokenizer.tokenize(text, return_str=False, escape=False)

    def moses_pipeline(self, text, lang):
        text = replace_unicode_punct(text)
        text = self.moses_punct_norm(text, lang)
        text = remove_non_printing_char(text)
        return text

253
254
255
    @property
    def vocab_size(self):
        return len(self.encoder)
thomwolf's avatar
xlm  
thomwolf committed
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299

    def bpe(self, token):
        word = tuple(token[:-1]) + (token[-1] + '</w>',)
        if token in self.cache:
            return self.cache[token]
        pairs = get_pairs(word)

        if not pairs:
            return token+'</w>'

        while True:
            bigram = min(pairs, key=lambda pair: self.bpe_ranks.get(pair, float('inf')))
            if bigram not in self.bpe_ranks:
                break
            first, second = bigram
            new_word = []
            i = 0
            while i < len(word):
                try:
                    j = word.index(first, i)
                    new_word.extend(word[i:j])
                    i = j
                except:
                    new_word.extend(word[i:])
                    break

                if word[i] == first and i < len(word)-1 and word[i+1] == second:
                    new_word.append(first+second)
                    i += 2
                else:
                    new_word.append(word[i])
                    i += 1
            new_word = tuple(new_word)
            word = new_word
            if len(word) == 1:
                break
            else:
                pairs = get_pairs(word)
        word = ' '.join(word)
        if word == '\n  </w>':
            word = '\n</w>'
        self.cache[token] = word
        return word

300
    def _tokenize(self, text, lang='en'):
thomwolf's avatar
xlm  
thomwolf committed
301
302
        """ Tokenize a string. """
        split_tokens = []
303
304
305
306
307
308
309
310
        if self.do_lowercase_and_remove_accent:
            text = lowercase_and_remove_accent(text)
        if lang not in self.lang_with_custom_tokenizer:
            text = self.moses_pipeline(text, lang=lang)
            # TODO: make sure we are using `xlm-mlm-enro-1024`, since XLM-100 doesn't have this step
            if lang == 'ro':
                text = romanian_preprocessing(text)
            text = self.moses_tokenize(text, lang=lang)
thomwolf's avatar
xlm  
thomwolf committed
311
312
313
            for token in text:
                split_tokens.extend([t for t in self.bpe(token).split(' ')])
        else:
314
            raise ValueError
thomwolf's avatar
xlm  
thomwolf committed
315
316
        return split_tokens

317
318
319
    def _convert_token_to_id(self, token):
        """ Converts a token (str/unicode) in an id using the vocab. """
        return self.encoder.get(token, self.encoder.get(self.unk_token))
thomwolf's avatar
xlm  
thomwolf committed
320

321
322
323
    def _convert_id_to_token(self, index):
        """Converts an index (integer) in a token (string/unicode) using the vocab."""
        return self.decoder.get(index, self.unk_token)
thomwolf's avatar
xlm  
thomwolf committed
324

325
326
327
    def convert_tokens_to_string(self, tokens):
        """ Converts a sequence of tokens (string) in a single string. """
        out_string = ''.join(tokens).replace('</w>', ' ').strip()
thomwolf's avatar
xlm  
thomwolf committed
328
329
        return out_string

330
    def add_special_tokens_single_sentence(self, token_ids):
331
332
333
334
        """
        Adds special tokens to a sequence for sequence classification tasks.
        An XLM sequence has the following format: [CLS] X [SEP]
        """
335
336
        return [self._convert_token_to_id(self.cls_token)] + token_ids + [self._convert_token_to_id(self.sep_token)]

337
338
339
340
341
    def add_special_tokens_sentences_pair(self, token_ids_0, token_ids_1):
        """
        Adds special tokens to a sequence pair for sequence classification tasks.
        An XLM sequence pair has the following format: [CLS] A [SEP] B [SEP]
        """
342
343
        sep = [self._convert_token_to_id(self.sep_token)]
        cls = [self._convert_token_to_id(self.cls_token)]
344
        return cls + token_ids_0 + sep + token_ids_1 + sep
345

346
    def save_vocabulary(self, save_directory):
thomwolf's avatar
xlm  
thomwolf committed
347
        """Save the tokenizer vocabulary and merge files to a directory."""
348
349
        if not os.path.isdir(save_directory):
            logger.error("Vocabulary path ({}) should be a directory".format(save_directory))
thomwolf's avatar
xlm  
thomwolf committed
350
            return
351
352
        vocab_file = os.path.join(save_directory, VOCAB_FILES_NAMES['vocab_file'])
        merge_file = os.path.join(save_directory, VOCAB_FILES_NAMES['merges_file'])
thomwolf's avatar
xlm  
thomwolf committed
353
354
355
356
357
358
359
360
361
362
363
364
365
366

        with open(vocab_file, 'w', encoding='utf-8') as f:
            f.write(json.dumps(self.encoder, ensure_ascii=False))

        index = 0
        with open(merge_file, "w", encoding="utf-8") as writer:
            for bpe_tokens, token_index in sorted(self.bpe_ranks.items(), key=lambda kv: kv[1]):
                if index != token_index:
                    logger.warning("Saving vocabulary to {}: BPE merge indices are not consecutive."
                                   " Please check that the tokenizer is not corrupted!".format(merge_file))
                    index = token_index
                writer.write(' '.join(bpe_tokens) + u'\n')
                index += 1

367
        return vocab_file, merge_file