tokenization_xlm.py 25.1 KB
Newer Older
thomwolf's avatar
xlm  
thomwolf committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
# coding=utf-8
# Copyright 2019 The Open AI Team Authors and The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Tokenization classes for OpenAI GPT."""
from __future__ import (absolute_import, division, print_function,
                        unicode_literals)

import json
import logging
import os
import re
23
import sys
24
import unicodedata
thomwolf's avatar
xlm  
thomwolf committed
25
26
from io import open

27
28
import sacremoses as sm

29
from .tokenization_utils import PreTrainedTokenizer
thomwolf's avatar
thomwolf committed
30
from .tokenization_bert import BasicTokenizer
thomwolf's avatar
xlm  
thomwolf committed
31
32
33

logger = logging.getLogger(__name__)

34
35
36
VOCAB_FILES_NAMES = {
    'vocab_file': 'vocab.json',
    'merges_file': 'merges.txt',
thomwolf's avatar
xlm  
thomwolf committed
37
}
38
39
40
41
42

PRETRAINED_VOCAB_FILES_MAP = {
    'vocab_file':
    {
        'xlm-mlm-en-2048': "https://s3.amazonaws.com/models.huggingface.co/bert/xlm-mlm-en-2048-vocab.json",
43
44
45
46
47
48
49
        'xlm-mlm-ende-1024': "https://s3.amazonaws.com/models.huggingface.co/bert/xlm-mlm-ende-1024-vocab.json",
        'xlm-mlm-enfr-1024': "https://s3.amazonaws.com/models.huggingface.co/bert/xlm-mlm-enfr-1024-vocab.json",
        'xlm-mlm-enro-1024': "https://s3.amazonaws.com/models.huggingface.co/bert/xlm-mlm-enro-1024-vocab.json",
        'xlm-mlm-tlm-xnli15-1024': "https://s3.amazonaws.com/models.huggingface.co/bert/xlm-mlm-tlm-xnli15-1024-vocab.json",
        'xlm-mlm-xnli15-1024': "https://s3.amazonaws.com/models.huggingface.co/bert/xlm-mlm-xnli15-1024-vocab.json",
        'xlm-clm-enfr-1024': "https://s3.amazonaws.com/models.huggingface.co/bert/xlm-clm-enfr-1024-vocab.json",
        'xlm-clm-ende-1024': "https://s3.amazonaws.com/models.huggingface.co/bert/xlm-clm-ende-1024-vocab.json",
50
51
52
        'xlm-mlm-17-1280': "https://s3.amazonaws.com/models.huggingface.co/bert/xlm-mlm-17-1280-vocab.json",
        'xlm-mlm-100-1280': "https://s3.amazonaws.com/models.huggingface.co/bert/xlm-mlm-17-1280-vocab.json",
    }
53
54
55
    'merges_file':
    {
        'xlm-mlm-en-2048': "https://s3.amazonaws.com/models.huggingface.co/bert/xlm-mlm-en-2048-merges.txt",
56
57
58
59
60
61
62
        'xlm-mlm-ende-1024': "https://s3.amazonaws.com/models.huggingface.co/bert/xlm-mlm-ende-1024-merges.txt",
        'xlm-mlm-enfr-1024': "https://s3.amazonaws.com/models.huggingface.co/bert/xlm-mlm-enfr-1024-merges.txt",
        'xlm-mlm-enro-1024': "https://s3.amazonaws.com/models.huggingface.co/bert/xlm-mlm-enro-1024-merges.txt",
        'xlm-mlm-tlm-xnli15-1024': "https://s3.amazonaws.com/models.huggingface.co/bert/xlm-mlm-tlm-xnli15-1024-merges.txt",
        'xlm-mlm-xnli15-1024': "https://s3.amazonaws.com/models.huggingface.co/bert/xlm-mlm-xnli15-1024-merges.txt",
        'xlm-clm-enfr-1024': "https://s3.amazonaws.com/models.huggingface.co/bert/xlm-mlm-enfr-1024-merges.txt",
        'xlm-clm-ende-1024': "https://s3.amazonaws.com/models.huggingface.co/bert/xlm-mlm-ende-1024-merges.txt",
63
64
        'xlm-mlm-17-1280': "https://s3.amazonaws.com/models.huggingface.co/bert/xlm-mlm-17-1280-merges.txt",
        'xlm-mlm-100-1280': "https://s3.amazonaws.com/models.huggingface.co/bert/xlm-mlm-17-1280-merges.txt",
65
    },
thomwolf's avatar
xlm  
thomwolf committed
66
}
67
68

PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = {
thomwolf's avatar
xlm  
thomwolf committed
69
    'xlm-mlm-en-2048': 512,
70
71
72
73
74
75
76
    'xlm-mlm-ende-1024': 512,
    'xlm-mlm-enfr-1024': 512,
    'xlm-mlm-enro-1024': 512,
    'xlm-mlm-tlm-xnli15-1024': 512,
    'xlm-mlm-xnli15-1024': 512,
    'xlm-clm-enfr-1024': 512,
    'xlm-clm-ende-1024': 512,
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
    'xlm-mlm-17-1280': 512,
    'xlm-mlm-100-1280': 512,
}

PRETRAINED_INIT_CONFIGURATION = {
    'xlm-mlm-en-2048': {"do_lowercase_and_remove_accent": True},
    'xlm-mlm-ende-1024': { "do_lowercase_and_remove_accent": True,
                            "id2lang": { "0": "de",
                                        "1": "en"},
                           "lang2id": { "de": 0,
                                        "en": 1 }},
    'xlm-mlm-enfr-1024': { "do_lowercase_and_remove_accent": True,
                           "id2lang": { "0": "en",
                                        "1": "fr"},
                           "lang2id": { "en": 0,
                                        "fr": 1 }},
    'xlm-mlm-enro-1024': { "do_lowercase_and_remove_accent": True,
                           "id2lang": { "0": "en",
                                        "1": "ro"},
                           "lang2id": { "en": 0,
                                        "ro": 1 }},
    'xlm-mlm-tlm-xnli15-1024': { "do_lowercase_and_remove_accent": True,
                                 "id2lang": {   "0": "ar",
                                                "1": "bg",
                                                "2": "de",
                                                "3": "el",
                                                "4": "en",
                                                "5": "es",
                                                "6": "fr",
                                                "7": "hi",
                                                "8": "ru",
                                                "9": "sw",
                                                "10": "th",
                                                "11": "tr",
                                                "12": "ur",
                                                "13": "vi",
                                                "14": "zh"},
                                 "lang2id": {   "ar": 0,
                                                "bg": 1,
                                                "de": 2,
                                                "el": 3,
                                                "en": 4,
                                                "es": 5,
                                                "fr": 6,
                                                "hi": 7,
                                                "ru": 8,
                                                "sw": 9,
                                                "th": 10,
                                                "tr": 11,
                                                "ur": 12,
                                                "vi": 13,
                                                "zh": 14 }},
    'xlm-mlm-xnli15-1024': { "do_lowercase_and_remove_accent": True,
                             "id2lang": {   "0": "ar",
                                                "1": "bg",
                                                "2": "de",
                                                "3": "el",
                                                "4": "en",
                                                "5": "es",
                                                "6": "fr",
                                                "7": "hi",
                                                "8": "ru",
                                                "9": "sw",
                                                "10": "th",
                                                "11": "tr",
                                                "12": "ur",
                                                "13": "vi",
                                                "14": "zh"},
                                 "lang2id": {   "ar": 0,
                                                "bg": 1,
                                                "de": 2,
                                                "el": 3,
                                                "en": 4,
                                                "es": 5,
                                                "fr": 6,
                                                "hi": 7,
                                                "ru": 8,
                                                "sw": 9,
                                                "th": 10,
                                                "tr": 11,
                                                "ur": 12,
                                                "vi": 13,
                                                "zh": 14 }},
    'xlm-clm-enfr-1024': { "do_lowercase_and_remove_accent": True,
                           "id2lang": { "0": "en",
                                        "1": "fr"},
                           "lang2id": { "en": 0,
                                        "fr": 1 }},
    'xlm-clm-ende-1024': { "do_lowercase_and_remove_accent": True,
                           "id2lang": { "0": "de",
                                        "1": "en"},
                           "lang2id": { "de": 0,
                                        "en": 1 }},
    'xlm-mlm-17-1280': {"do_lowercase_and_remove_accent": False},
    'xlm-mlm-100-1280': {"do_lowercase_and_remove_accent": False},
thomwolf's avatar
xlm  
thomwolf committed
172
173
174
175
176
177
178
179
180
181
182
183
184
185
}

def get_pairs(word):
    """
    Return set of symbol pairs in a word.
    word is represented as tuple of symbols (symbols being variable-length strings)
    """
    pairs = set()
    prev_char = word[0]
    for char in word[1:]:
        pairs.add((prev_char, char))
        prev_char = char
    return pairs

186
187
188
189
190
191

def lowercase_and_remove_accent(text):
    """
    Lowercase and strips accents from a piece of text based on
    https://github.com/facebookresearch/XLM/blob/master/tools/lowercase_and_remove_accent.py
    """
192
    text = ' '.join(text)
193
194
195
196
197
198
199
200
    text = text.lower()
    text = unicodedata.normalize("NFD", text)
    output = []
    for char in text:
        cat = unicodedata.category(char)
        if cat == "Mn":
            continue
        output.append(char)
201
    return "".join(output).lower().split(' ')
202
203
204
205
206
207
208


def replace_unicode_punct(text):
    '''
    Port of https://github.com/moses-smt/mosesdecoder/blob/master/scripts/tokenizer/replace-unicode-punctuation.perl
    '''
    text = text.replace(',', ',')
Shijie Wu's avatar
Shijie Wu committed
209
    text = re.sub(r'。\s*', '. ', text)
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
    text = text.replace('、', ',')
    text = text.replace('”', '"')
    text = text.replace('“', '"')
    text = text.replace('∶', ':')
    text = text.replace(':', ':')
    text = text.replace('?', '?')
    text = text.replace('《', '"')
    text = text.replace('》', '"')
    text = text.replace(')', ')')
    text = text.replace('!', '!')
    text = text.replace('(', '(')
    text = text.replace(';', ';')
    text = text.replace('1', '"')
    text = text.replace('」', '"')
    text = text.replace('「', '"')
    text = text.replace('0', '0')
    text = text.replace('3', '3')
    text = text.replace('2', '2')
    text = text.replace('5', '5')
    text = text.replace('6', '6')
    text = text.replace('9', '9')
    text = text.replace('7', '7')
    text = text.replace('8', '8')
    text = text.replace('4', '4')
    text = re.sub(r'.\s*', '. ', text)
    text = text.replace('~', '~')
    text = text.replace('’', '\'')
    text = text.replace('…', '...')
    text = text.replace('━', '-')
    text = text.replace('〈', '<')
    text = text.replace('〉', '>')
    text = text.replace('【', '[')
    text = text.replace('】', ']')
    text = text.replace('%', '%')
    return text


def remove_non_printing_char(text):
    '''
    Port of https://github.com/moses-smt/mosesdecoder/blob/master/scripts/tokenizer/remove-non-printing-char.perl
    '''
    output = []
    for char in text:
        cat = unicodedata.category(char)
        if cat.startswith('C'):
            continue
        output.append(char)
    return "".join(output)


def romanian_preprocessing(text):
    '''Sennrich's WMT16 scripts for Romanian preprocessing, used by model `xlm-mlm-enro-1024`'''
    # https://github.com/rsennrich/wmt16-scripts/blob/master/preprocess/normalise-romanian.py
    text = text.replace("\u015e", "\u0218").replace("\u015f", "\u0219")
    text = text.replace("\u0162", "\u021a").replace("\u0163", "\u021b")
    # https://github.com/rsennrich/wmt16-scripts/blob/master/preprocess/remove-diacritics.py
    text = text.replace("\u0218", "S").replace("\u0219", "s") #s-comma
    text = text.replace("\u021a", "T").replace("\u021b", "t") #t-comma
    text = text.replace("\u0102", "A").replace("\u0103", "a")
    text = text.replace("\u00C2", "A").replace("\u00E2", "a")
    text = text.replace("\u00CE", "I").replace("\u00EE", "i")
    return text


274
class XLMTokenizer(PreTrainedTokenizer):
thomwolf's avatar
xlm  
thomwolf committed
275
    """
276
    BPE tokenizer for XLM
277

278
        - Moses preprocessing & tokenization for most supported languages
279

280
281
282
        - Language specific tokenization for Chinese (Jieba), Japanese (KyTea) and Thai (PyThaiNLP)

        - (optionally) lower case & normalize all inputs text
283
284

        - argument ``special_tokens`` and function ``set_special_tokens``, can be used to add additional symbols \
285
286
287
288
289
290
291
        (ex: "__classify__") to a vocabulary
        
        - `lang2id` attribute maps the languages supported by the model with their ids if provided (automatically set for pretrained vocabularies)

        - `id2lang` attributes does reverse mapping if provided (automatically set for pretrained vocabularies)

        - `do_lowercase_and_remove_accent` controle lower casing and accent (automatically set for pretrained vocabularies)
thomwolf's avatar
xlm  
thomwolf committed
292
    """
293
294
    vocab_files_names = VOCAB_FILES_NAMES
    pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP
295
    pretrained_init_configuration = PRETRAINED_INIT_CONFIGURATION
296
    max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
thomwolf's avatar
xlm  
thomwolf committed
297

298
299
300
301
    def __init__(self, vocab_file, merges_file, unk_token="<unk>", bos_token="<s>",
                 sep_token="</s>", pad_token="<pad>", cls_token="</s>",
                 mask_token="<special1>", additional_special_tokens=["<special0>",
                 "<special1>", "<special2>", "<special3>", "<special4>", "<special5>",
302
303
304
                 "<special6>", "<special7>", "<special8>", "<special9>"],
                 lang2id=None, id2lang=None, do_lowercase_and_remove_accent=True,
                 **kwargs):
305
306
307
308
309
        super(XLMTokenizer, self).__init__(unk_token=unk_token, bos_token=bos_token,
                                           sep_token=sep_token, pad_token=pad_token,
                                           cls_token=cls_token, mask_token=mask_token,
                                           additional_special_tokens=additional_special_tokens,
                                           **kwargs)
310
311
312
313
314
315
316

        # cache of sm.MosesPunctNormalizer instance
        self.cache_moses_punct_normalizer = dict()
        # cache of sm.MosesTokenizer instance
        self.cache_moses_tokenizer = dict()
        self.lang_with_custom_tokenizer = set(['zh', 'th', 'ja'])
        # True for current supported model (v1.2.0), False for XLM-17 & 100
317
318
319
320
321
322
        self.do_lowercase_and_remove_accent = do_lowercase_and_remove_accent
        self.lang2id = lang2id
        self.id2lang = id2lang
        if lang2id is not None and id2lang is not None:
            assert len(lang2id) == len(id2lang)

Shijie Wu's avatar
Shijie Wu committed
323
324
        self.ja_word_tokenizer = None
        self.zh_word_tokenizer = None
thomwolf's avatar
xlm  
thomwolf committed
325
326
327
328
329
330
331

        self.encoder = json.load(open(vocab_file, encoding="utf-8"))
        self.decoder = {v:k for k,v in self.encoder.items()}
        merges = open(merges_file, encoding='utf-8').read().split('\n')[:-1]
        merges = [tuple(merge.split()[:2]) for merge in merges]
        self.bpe_ranks = dict(zip(merges, range(len(merges))))
        self.cache = {}
332

333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
    def moses_punct_norm(self, text, lang):
        if lang not in self.cache_moses_punct_normalizer:
            punct_normalizer = sm.MosesPunctNormalizer(lang=lang)
            self.cache_moses_punct_normalizer[lang] = punct_normalizer
        else:
            punct_normalizer = self.cache_moses_punct_normalizer[lang]
        return punct_normalizer.normalize(text)

    def moses_tokenize(self, text, lang):
        if lang not in self.cache_moses_tokenizer:
            moses_tokenizer = sm.MosesTokenizer(lang=lang)
            self.cache_moses_tokenizer[lang] = moses_tokenizer
        else:
            moses_tokenizer = self.cache_moses_tokenizer[lang]
        return moses_tokenizer.tokenize(text, return_str=False, escape=False)

    def moses_pipeline(self, text, lang):
        text = replace_unicode_punct(text)
        text = self.moses_punct_norm(text, lang)
        text = remove_non_printing_char(text)
        return text

Shijie Wu's avatar
Shijie Wu committed
355
356
357
    def ja_tokenize(self, text):
        if self.ja_word_tokenizer is None:
            try:
358
                import Mykytea
Shijie Wu's avatar
Shijie Wu committed
359
                self.ja_word_tokenizer = Mykytea.Mykytea('-model %s/local/share/kytea/model.bin' % os.path.expanduser('~'))
360
            except (AttributeError, ImportError) as e:
361
                logger.error("Make sure you install KyTea (https://github.com/neubig/kytea) and it's python wrapper (https://github.com/chezou/Mykytea-python) with the following steps")
Shijie Wu's avatar
Shijie Wu committed
362
363
364
365
                logger.error("1. git clone git@github.com:neubig/kytea.git && cd kytea")
                logger.error("2. autoreconf -i")
                logger.error("3. ./configure --prefix=$HOME/local")
                logger.error("4. make && make install")
366
                logger.error("5. pip install kytea")
367
                raise e
Shijie Wu's avatar
Shijie Wu committed
368
369
        return list(self.ja_word_tokenizer.getWS(text))

370
371
372
    @property
    def vocab_size(self):
        return len(self.encoder)
thomwolf's avatar
xlm  
thomwolf committed
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416

    def bpe(self, token):
        word = tuple(token[:-1]) + (token[-1] + '</w>',)
        if token in self.cache:
            return self.cache[token]
        pairs = get_pairs(word)

        if not pairs:
            return token+'</w>'

        while True:
            bigram = min(pairs, key=lambda pair: self.bpe_ranks.get(pair, float('inf')))
            if bigram not in self.bpe_ranks:
                break
            first, second = bigram
            new_word = []
            i = 0
            while i < len(word):
                try:
                    j = word.index(first, i)
                    new_word.extend(word[i:j])
                    i = j
                except:
                    new_word.extend(word[i:])
                    break

                if word[i] == first and i < len(word)-1 and word[i+1] == second:
                    new_word.append(first+second)
                    i += 2
                else:
                    new_word.append(word[i])
                    i += 1
            new_word = tuple(new_word)
            word = new_word
            if len(word) == 1:
                break
            else:
                pairs = get_pairs(word)
        word = ' '.join(word)
        if word == '\n  </w>':
            word = '\n</w>'
        self.cache[token] = word
        return word

417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
    def _tokenize(self, text, lang='en', bypass_tokenizer=False):
        """
        Tokenize a string given language code. For Chinese, Japanese and Thai, we use a language specific tokenizerself. Otherwise, we use Moses.

        Details of tokenization:
        - [sacremoses](https://github.com/alvations/sacremoses): port of Moses
            - Install with `pip install sacremoses`
        - [pythainlp](https://github.com/PyThaiNLP/pythainlp): Thai tokenizer
            - Install with `pip install pythainlp`
        - [kytea](https://github.com/chezou/Mykytea-python): Japanese tokenizer, wrapper of [KyTea](https://github.com/neubig/kytea)
            - Install with the following steps:
            ```
            git clone git@github.com:neubig/kytea.git && cd kytea
            autoreconf -i
            ./configure --prefix=$HOME/local
            make && make install
            pip install kytea
            ```
        - [jieba](https://github.com/fxsjy/jieba): Chinese tokenizer *
            - Install with `pip install jieba`

        \* The original XLM used [Stanford Segmenter](https://nlp.stanford.edu/software/stanford-segmenter-2018-10-16.zip).
        However, the wrapper (`nltk.tokenize.stanford_segmenter`) is slow due to JVM overhead, and it will be deprecated.
        Jieba is a lot faster and pip-installable. Note there is some mismatch with the Stanford Segmenter. It should be fine
        if you fine-tune the model with Chinese supervisionself. If you want the same exact behaviour, use the original XLM
        [preprocessing script](https://github.com/facebookresearch/XLM/tree/master/tools) to tokenize the sentence externally,
        and set `bypass_tokenizer=True` to bypass the tokenizer.

        Args:
            - lang: ISO language code (default = 'en') (string). Languages should belong of the model supported languages. However, we don't enforce it.
            - bypass_tokenizer: Allow users to preprocess and tokenize the sentences externally (default = False)  (bool). If True, we only apply BPE.

        Returns:
            List of tokens.
        """
452
453
        if lang and self.lang2id and lang not in self.lang2id:
            logger.error("Supplied language code not found in lang2id mapping. Please check that your language is supported by the loaded pretrained model.")
454
455
456
        if bypass_tokenizer:
            text = text.split()
        elif lang not in self.lang_with_custom_tokenizer:
457
458
459
460
461
            text = self.moses_pipeline(text, lang=lang)
            # TODO: make sure we are using `xlm-mlm-enro-1024`, since XLM-100 doesn't have this step
            if lang == 'ro':
                text = romanian_preprocessing(text)
            text = self.moses_tokenize(text, lang=lang)
Shijie Wu's avatar
Shijie Wu committed
462
463
        elif lang == 'th':
            text = self.moses_pipeline(text, lang=lang)
464
465
466
            try:
                if 'pythainlp' not in sys.modules:
                    from pythainlp.tokenize import word_tokenize as th_word_tokenize
467
            except (AttributeError, ImportError) as e:
468
469
                logger.error("Make sure you install PyThaiNLP (https://github.com/PyThaiNLP/pythainlp) with the following steps")
                logger.error("1. pip install pythainlp")
470
                raise e
Shijie Wu's avatar
Shijie Wu committed
471
472
            text = th_word_tokenize(text)
        elif lang == 'zh':
473
474
475
            try:
                if 'jieba' not in sys.modules:
                    import jieba
476
            except (AttributeError, ImportError) as e:
477
478
                logger.error("Make sure you install Jieba (https://github.com/fxsjy/jieba) with the following steps")
                logger.error("1. pip install jieba")
479
                raise e
Shijie Wu's avatar
Shijie Wu committed
480
481
482
483
484
485
            text = ' '.join(jieba.cut(text))
            text = self.moses_pipeline(text, lang=lang)
            text = text.split()
        elif lang == 'ja':
            text = self.moses_pipeline(text, lang=lang)
            text = self.ja_tokenize(text)
thomwolf's avatar
xlm  
thomwolf committed
486
        else:
Shijie Wu's avatar
Shijie Wu committed
487
488
            raise ValueError('It should not reach here')

489
490
491
        if self.do_lowercase_and_remove_accent and not bypass_tokenizer:
            text = lowercase_and_remove_accent(text)

Shijie Wu's avatar
Shijie Wu committed
492
493
        split_tokens = []
        for token in text:
494
495
            if token:
                split_tokens.extend([t for t in self.bpe(token).split(' ')])
Shijie Wu's avatar
Shijie Wu committed
496

thomwolf's avatar
xlm  
thomwolf committed
497
498
        return split_tokens

499
500
501
    def _convert_token_to_id(self, token):
        """ Converts a token (str/unicode) in an id using the vocab. """
        return self.encoder.get(token, self.encoder.get(self.unk_token))
thomwolf's avatar
xlm  
thomwolf committed
502

503
504
505
    def _convert_id_to_token(self, index):
        """Converts an index (integer) in a token (string/unicode) using the vocab."""
        return self.decoder.get(index, self.unk_token)
thomwolf's avatar
xlm  
thomwolf committed
506

507
508
509
    def convert_tokens_to_string(self, tokens):
        """ Converts a sequence of tokens (string) in a single string. """
        out_string = ''.join(tokens).replace('</w>', ' ').strip()
thomwolf's avatar
xlm  
thomwolf committed
510
511
        return out_string

512
    def add_special_tokens_single_sentence(self, token_ids):
513
514
515
516
        """
        Adds special tokens to a sequence for sequence classification tasks.
        An XLM sequence has the following format: [CLS] X [SEP]
        """
517
518
        return [self._convert_token_to_id(self.cls_token)] + token_ids + [self._convert_token_to_id(self.sep_token)]

519
520
521
522
523
    def add_special_tokens_sentences_pair(self, token_ids_0, token_ids_1):
        """
        Adds special tokens to a sequence pair for sequence classification tasks.
        An XLM sequence pair has the following format: [CLS] A [SEP] B [SEP]
        """
524
525
        sep = [self._convert_token_to_id(self.sep_token)]
        cls = [self._convert_token_to_id(self.cls_token)]
526
        return cls + token_ids_0 + sep + token_ids_1 + sep
527

528
    def save_vocabulary(self, save_directory):
thomwolf's avatar
xlm  
thomwolf committed
529
        """Save the tokenizer vocabulary and merge files to a directory."""
530
531
        if not os.path.isdir(save_directory):
            logger.error("Vocabulary path ({}) should be a directory".format(save_directory))
thomwolf's avatar
xlm  
thomwolf committed
532
            return
533
534
        vocab_file = os.path.join(save_directory, VOCAB_FILES_NAMES['vocab_file'])
        merge_file = os.path.join(save_directory, VOCAB_FILES_NAMES['merges_file'])
thomwolf's avatar
xlm  
thomwolf committed
535
536
537
538
539
540
541
542
543
544
545
546
547
548

        with open(vocab_file, 'w', encoding='utf-8') as f:
            f.write(json.dumps(self.encoder, ensure_ascii=False))

        index = 0
        with open(merge_file, "w", encoding="utf-8") as writer:
            for bpe_tokens, token_index in sorted(self.bpe_ranks.items(), key=lambda kv: kv[1]):
                if index != token_index:
                    logger.warning("Saving vocabulary to {}: BPE merge indices are not consecutive."
                                   " Please check that the tokenizer is not corrupted!".format(merge_file))
                    index = token_index
                writer.write(' '.join(bpe_tokens) + u'\n')
                index += 1

549
        return vocab_file, merge_file