tokenization_xlm.py 18.5 KB
Newer Older
thomwolf's avatar
xlm  
thomwolf committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
# coding=utf-8
# Copyright 2019 The Open AI Team Authors and The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Tokenization classes for OpenAI GPT."""
from __future__ import (absolute_import, division, print_function,
                        unicode_literals)

import json
import logging
import os
import re
23
import sys
24
import unicodedata
thomwolf's avatar
xlm  
thomwolf committed
25
26
from io import open

27
28
import sacremoses as sm

29
from .tokenization_utils import PreTrainedTokenizer
thomwolf's avatar
thomwolf committed
30
from .tokenization_bert import BasicTokenizer
thomwolf's avatar
xlm  
thomwolf committed
31
32
33

logger = logging.getLogger(__name__)

34
35
36
VOCAB_FILES_NAMES = {
    'vocab_file': 'vocab.json',
    'merges_file': 'merges.txt',
thomwolf's avatar
xlm  
thomwolf committed
37
}
38
39
40
41
42

PRETRAINED_VOCAB_FILES_MAP = {
    'vocab_file':
    {
        'xlm-mlm-en-2048': "https://s3.amazonaws.com/models.huggingface.co/bert/xlm-mlm-en-2048-vocab.json",
43
44
45
46
47
48
49
        'xlm-mlm-ende-1024': "https://s3.amazonaws.com/models.huggingface.co/bert/xlm-mlm-ende-1024-vocab.json",
        'xlm-mlm-enfr-1024': "https://s3.amazonaws.com/models.huggingface.co/bert/xlm-mlm-enfr-1024-vocab.json",
        'xlm-mlm-enro-1024': "https://s3.amazonaws.com/models.huggingface.co/bert/xlm-mlm-enro-1024-vocab.json",
        'xlm-mlm-tlm-xnli15-1024': "https://s3.amazonaws.com/models.huggingface.co/bert/xlm-mlm-tlm-xnli15-1024-vocab.json",
        'xlm-mlm-xnli15-1024': "https://s3.amazonaws.com/models.huggingface.co/bert/xlm-mlm-xnli15-1024-vocab.json",
        'xlm-clm-enfr-1024': "https://s3.amazonaws.com/models.huggingface.co/bert/xlm-clm-enfr-1024-vocab.json",
        'xlm-clm-ende-1024': "https://s3.amazonaws.com/models.huggingface.co/bert/xlm-clm-ende-1024-vocab.json",
50
51
52
53
    },
    'merges_file':
    {
        'xlm-mlm-en-2048': "https://s3.amazonaws.com/models.huggingface.co/bert/xlm-mlm-en-2048-merges.txt",
54
55
56
57
58
59
60
        'xlm-mlm-ende-1024': "https://s3.amazonaws.com/models.huggingface.co/bert/xlm-mlm-ende-1024-merges.txt",
        'xlm-mlm-enfr-1024': "https://s3.amazonaws.com/models.huggingface.co/bert/xlm-mlm-enfr-1024-merges.txt",
        'xlm-mlm-enro-1024': "https://s3.amazonaws.com/models.huggingface.co/bert/xlm-mlm-enro-1024-merges.txt",
        'xlm-mlm-tlm-xnli15-1024': "https://s3.amazonaws.com/models.huggingface.co/bert/xlm-mlm-tlm-xnli15-1024-merges.txt",
        'xlm-mlm-xnli15-1024': "https://s3.amazonaws.com/models.huggingface.co/bert/xlm-mlm-xnli15-1024-merges.txt",
        'xlm-clm-enfr-1024': "https://s3.amazonaws.com/models.huggingface.co/bert/xlm-mlm-enfr-1024-merges.txt",
        'xlm-clm-ende-1024': "https://s3.amazonaws.com/models.huggingface.co/bert/xlm-mlm-ende-1024-merges.txt",
61
    },
thomwolf's avatar
xlm  
thomwolf committed
62
}
63
64

PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = {
thomwolf's avatar
xlm  
thomwolf committed
65
    'xlm-mlm-en-2048': 512,
66
67
68
69
70
71
72
    'xlm-mlm-ende-1024': 512,
    'xlm-mlm-enfr-1024': 512,
    'xlm-mlm-enro-1024': 512,
    'xlm-mlm-tlm-xnli15-1024': 512,
    'xlm-mlm-xnli15-1024': 512,
    'xlm-clm-enfr-1024': 512,
    'xlm-clm-ende-1024': 512,
thomwolf's avatar
xlm  
thomwolf committed
73
74
75
76
77
78
79
80
81
82
83
84
85
86
}

def get_pairs(word):
    """
    Return set of symbol pairs in a word.
    word is represented as tuple of symbols (symbols being variable-length strings)
    """
    pairs = set()
    prev_char = word[0]
    for char in word[1:]:
        pairs.add((prev_char, char))
        prev_char = char
    return pairs

87
88
89
90
91
92

def lowercase_and_remove_accent(text):
    """
    Lowercase and strips accents from a piece of text based on
    https://github.com/facebookresearch/XLM/blob/master/tools/lowercase_and_remove_accent.py
    """
93
    text = ' '.join(text)
94
95
96
97
98
99
100
101
    text = text.lower()
    text = unicodedata.normalize("NFD", text)
    output = []
    for char in text:
        cat = unicodedata.category(char)
        if cat == "Mn":
            continue
        output.append(char)
102
    return "".join(output).lower().split(' ')
103
104
105
106
107
108
109


def replace_unicode_punct(text):
    '''
    Port of https://github.com/moses-smt/mosesdecoder/blob/master/scripts/tokenizer/replace-unicode-punctuation.perl
    '''
    text = text.replace(',', ',')
Shijie Wu's avatar
Shijie Wu committed
110
    text = re.sub(r'。\s*', '. ', text)
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
    text = text.replace('、', ',')
    text = text.replace('”', '"')
    text = text.replace('“', '"')
    text = text.replace('∶', ':')
    text = text.replace(':', ':')
    text = text.replace('?', '?')
    text = text.replace('《', '"')
    text = text.replace('》', '"')
    text = text.replace(')', ')')
    text = text.replace('!', '!')
    text = text.replace('(', '(')
    text = text.replace(';', ';')
    text = text.replace('1', '"')
    text = text.replace('」', '"')
    text = text.replace('「', '"')
    text = text.replace('0', '0')
    text = text.replace('3', '3')
    text = text.replace('2', '2')
    text = text.replace('5', '5')
    text = text.replace('6', '6')
    text = text.replace('9', '9')
    text = text.replace('7', '7')
    text = text.replace('8', '8')
    text = text.replace('4', '4')
    text = re.sub(r'.\s*', '. ', text)
    text = text.replace('~', '~')
    text = text.replace('’', '\'')
    text = text.replace('…', '...')
    text = text.replace('━', '-')
    text = text.replace('〈', '<')
    text = text.replace('〉', '>')
    text = text.replace('【', '[')
    text = text.replace('】', ']')
    text = text.replace('%', '%')
    return text


def remove_non_printing_char(text):
    '''
    Port of https://github.com/moses-smt/mosesdecoder/blob/master/scripts/tokenizer/remove-non-printing-char.perl
    '''
    output = []
    for char in text:
        cat = unicodedata.category(char)
        if cat.startswith('C'):
            continue
        output.append(char)
    return "".join(output)


def romanian_preprocessing(text):
    '''Sennrich's WMT16 scripts for Romanian preprocessing, used by model `xlm-mlm-enro-1024`'''
    # https://github.com/rsennrich/wmt16-scripts/blob/master/preprocess/normalise-romanian.py
    text = text.replace("\u015e", "\u0218").replace("\u015f", "\u0219")
    text = text.replace("\u0162", "\u021a").replace("\u0163", "\u021b")
    # https://github.com/rsennrich/wmt16-scripts/blob/master/preprocess/remove-diacritics.py
    text = text.replace("\u0218", "S").replace("\u0219", "s") #s-comma
    text = text.replace("\u021a", "T").replace("\u021b", "t") #t-comma
    text = text.replace("\u0102", "A").replace("\u0103", "a")
    text = text.replace("\u00C2", "A").replace("\u00E2", "a")
    text = text.replace("\u00CE", "I").replace("\u00EE", "i")
    return text


175
class XLMTokenizer(PreTrainedTokenizer):
thomwolf's avatar
xlm  
thomwolf committed
176
    """
177
    BPE tokenizer for XLM
178

179
        - Moses preprocessing & tokenization for most supported languages
180

181
182
183
        - Language specific tokenization for Chinese (Jieba), Japanese (KyTea) and Thai (PyThaiNLP)

        - (optionally) lower case & normalize all inputs text
184
185
186

        - argument ``special_tokens`` and function ``set_special_tokens``, can be used to add additional symbols \
        (ex: "__classify__") to a vocabulary.
thomwolf's avatar
xlm  
thomwolf committed
187
    """
188
189
190
    vocab_files_names = VOCAB_FILES_NAMES
    pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP
    max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
thomwolf's avatar
xlm  
thomwolf committed
191

192
193
194
195
196
197
198
199
200
201
    def __init__(self, vocab_file, merges_file, unk_token="<unk>", bos_token="<s>",
                 sep_token="</s>", pad_token="<pad>", cls_token="</s>",
                 mask_token="<special1>", additional_special_tokens=["<special0>",
                 "<special1>", "<special2>", "<special3>", "<special4>", "<special5>",
                 "<special6>", "<special7>", "<special8>", "<special9>"], **kwargs):
        super(XLMTokenizer, self).__init__(unk_token=unk_token, bos_token=bos_token,
                                           sep_token=sep_token, pad_token=pad_token,
                                           cls_token=cls_token, mask_token=mask_token,
                                           additional_special_tokens=additional_special_tokens,
                                           **kwargs)
202
203
204
205
206
207
208
209

        # cache of sm.MosesPunctNormalizer instance
        self.cache_moses_punct_normalizer = dict()
        # cache of sm.MosesTokenizer instance
        self.cache_moses_tokenizer = dict()
        self.lang_with_custom_tokenizer = set(['zh', 'th', 'ja'])
        # True for current supported model (v1.2.0), False for XLM-17 & 100
        self.do_lowercase_and_remove_accent = True
Shijie Wu's avatar
Shijie Wu committed
210
211
        self.ja_word_tokenizer = None
        self.zh_word_tokenizer = None
thomwolf's avatar
xlm  
thomwolf committed
212
213
214
215
216
217
218

        self.encoder = json.load(open(vocab_file, encoding="utf-8"))
        self.decoder = {v:k for k,v in self.encoder.items()}
        merges = open(merges_file, encoding='utf-8').read().split('\n')[:-1]
        merges = [tuple(merge.split()[:2]) for merge in merges]
        self.bpe_ranks = dict(zip(merges, range(len(merges))))
        self.cache = {}
219

220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
    def moses_punct_norm(self, text, lang):
        if lang not in self.cache_moses_punct_normalizer:
            punct_normalizer = sm.MosesPunctNormalizer(lang=lang)
            self.cache_moses_punct_normalizer[lang] = punct_normalizer
        else:
            punct_normalizer = self.cache_moses_punct_normalizer[lang]
        return punct_normalizer.normalize(text)

    def moses_tokenize(self, text, lang):
        if lang not in self.cache_moses_tokenizer:
            moses_tokenizer = sm.MosesTokenizer(lang=lang)
            self.cache_moses_tokenizer[lang] = moses_tokenizer
        else:
            moses_tokenizer = self.cache_moses_tokenizer[lang]
        return moses_tokenizer.tokenize(text, return_str=False, escape=False)

    def moses_pipeline(self, text, lang):
        text = replace_unicode_punct(text)
        text = self.moses_punct_norm(text, lang)
        text = remove_non_printing_char(text)
        return text

Shijie Wu's avatar
Shijie Wu committed
242
243
244
    def ja_tokenize(self, text):
        if self.ja_word_tokenizer is None:
            try:
245
                import Mykytea
Shijie Wu's avatar
Shijie Wu committed
246
                self.ja_word_tokenizer = Mykytea.Mykytea('-model %s/local/share/kytea/model.bin' % os.path.expanduser('~'))
247
248
            except:
                logger.error("Make sure you install KyTea (https://github.com/neubig/kytea) and it's python wrapper (https://github.com/chezou/Mykytea-python) with the following steps")
Shijie Wu's avatar
Shijie Wu committed
249
250
251
252
                logger.error("1. git clone git@github.com:neubig/kytea.git && cd kytea")
                logger.error("2. autoreconf -i")
                logger.error("3. ./configure --prefix=$HOME/local")
                logger.error("4. make && make install")
253
                logger.error("5. pip install kytea")
Shijie Wu's avatar
Shijie Wu committed
254
255
256
                import sys; sys.exit()
        return list(self.ja_word_tokenizer.getWS(text))

257
258
259
    @property
    def vocab_size(self):
        return len(self.encoder)
thomwolf's avatar
xlm  
thomwolf committed
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303

    def bpe(self, token):
        word = tuple(token[:-1]) + (token[-1] + '</w>',)
        if token in self.cache:
            return self.cache[token]
        pairs = get_pairs(word)

        if not pairs:
            return token+'</w>'

        while True:
            bigram = min(pairs, key=lambda pair: self.bpe_ranks.get(pair, float('inf')))
            if bigram not in self.bpe_ranks:
                break
            first, second = bigram
            new_word = []
            i = 0
            while i < len(word):
                try:
                    j = word.index(first, i)
                    new_word.extend(word[i:j])
                    i = j
                except:
                    new_word.extend(word[i:])
                    break

                if word[i] == first and i < len(word)-1 and word[i+1] == second:
                    new_word.append(first+second)
                    i += 2
                else:
                    new_word.append(word[i])
                    i += 1
            new_word = tuple(new_word)
            word = new_word
            if len(word) == 1:
                break
            else:
                pairs = get_pairs(word)
        word = ' '.join(word)
        if word == '\n  </w>':
            word = '\n</w>'
        self.cache[token] = word
        return word

304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
    def _tokenize(self, text, lang='en', bypass_tokenizer=False):
        """
        Tokenize a string given language code. For Chinese, Japanese and Thai, we use a language specific tokenizerself. Otherwise, we use Moses.

        Details of tokenization:
        - [sacremoses](https://github.com/alvations/sacremoses): port of Moses
            - Install with `pip install sacremoses`
        - [pythainlp](https://github.com/PyThaiNLP/pythainlp): Thai tokenizer
            - Install with `pip install pythainlp`
        - [kytea](https://github.com/chezou/Mykytea-python): Japanese tokenizer, wrapper of [KyTea](https://github.com/neubig/kytea)
            - Install with the following steps:
            ```
            git clone git@github.com:neubig/kytea.git && cd kytea
            autoreconf -i
            ./configure --prefix=$HOME/local
            make && make install
            pip install kytea
            ```
        - [jieba](https://github.com/fxsjy/jieba): Chinese tokenizer *
            - Install with `pip install jieba`

        \* The original XLM used [Stanford Segmenter](https://nlp.stanford.edu/software/stanford-segmenter-2018-10-16.zip).
        However, the wrapper (`nltk.tokenize.stanford_segmenter`) is slow due to JVM overhead, and it will be deprecated.
        Jieba is a lot faster and pip-installable. Note there is some mismatch with the Stanford Segmenter. It should be fine
        if you fine-tune the model with Chinese supervisionself. If you want the same exact behaviour, use the original XLM
        [preprocessing script](https://github.com/facebookresearch/XLM/tree/master/tools) to tokenize the sentence externally,
        and set `bypass_tokenizer=True` to bypass the tokenizer.

        Args:
            - lang: ISO language code (default = 'en') (string). Languages should belong of the model supported languages. However, we don't enforce it.
            - bypass_tokenizer: Allow users to preprocess and tokenize the sentences externally (default = False)  (bool). If True, we only apply BPE.

        Returns:
            List of tokens.
        """
        if bypass_tokenizer:
            text = text.split()
        elif lang not in self.lang_with_custom_tokenizer:
342
343
344
345
346
            text = self.moses_pipeline(text, lang=lang)
            # TODO: make sure we are using `xlm-mlm-enro-1024`, since XLM-100 doesn't have this step
            if lang == 'ro':
                text = romanian_preprocessing(text)
            text = self.moses_tokenize(text, lang=lang)
Shijie Wu's avatar
Shijie Wu committed
347
348
        elif lang == 'th':
            text = self.moses_pipeline(text, lang=lang)
349
350
351
352
353
354
355
            try:
                if 'pythainlp' not in sys.modules:
                    from pythainlp.tokenize import word_tokenize as th_word_tokenize
            except:
                logger.error("Make sure you install PyThaiNLP (https://github.com/PyThaiNLP/pythainlp) with the following steps")
                logger.error("1. pip install pythainlp")
                import sys; sys.exit()
Shijie Wu's avatar
Shijie Wu committed
356
357
            text = th_word_tokenize(text)
        elif lang == 'zh':
358
359
360
361
362
363
364
            try:
                if 'jieba' not in sys.modules:
                    import jieba
            except:
                logger.error("Make sure you install Jieba (https://github.com/fxsjy/jieba) with the following steps")
                logger.error("1. pip install jieba")
                import sys; sys.exit()
Shijie Wu's avatar
Shijie Wu committed
365
366
367
368
369
370
            text = ' '.join(jieba.cut(text))
            text = self.moses_pipeline(text, lang=lang)
            text = text.split()
        elif lang == 'ja':
            text = self.moses_pipeline(text, lang=lang)
            text = self.ja_tokenize(text)
thomwolf's avatar
xlm  
thomwolf committed
371
        else:
Shijie Wu's avatar
Shijie Wu committed
372
373
            raise ValueError('It should not reach here')

374
375
376
        if self.do_lowercase_and_remove_accent and not bypass_tokenizer:
            text = lowercase_and_remove_accent(text)

Shijie Wu's avatar
Shijie Wu committed
377
378
        split_tokens = []
        for token in text:
379
380
            if token:
                split_tokens.extend([t for t in self.bpe(token).split(' ')])
Shijie Wu's avatar
Shijie Wu committed
381

thomwolf's avatar
xlm  
thomwolf committed
382
383
        return split_tokens

384
385
386
    def _convert_token_to_id(self, token):
        """ Converts a token (str/unicode) in an id using the vocab. """
        return self.encoder.get(token, self.encoder.get(self.unk_token))
thomwolf's avatar
xlm  
thomwolf committed
387

388
389
390
    def _convert_id_to_token(self, index):
        """Converts an index (integer) in a token (string/unicode) using the vocab."""
        return self.decoder.get(index, self.unk_token)
thomwolf's avatar
xlm  
thomwolf committed
391

392
393
394
    def convert_tokens_to_string(self, tokens):
        """ Converts a sequence of tokens (string) in a single string. """
        out_string = ''.join(tokens).replace('</w>', ' ').strip()
thomwolf's avatar
xlm  
thomwolf committed
395
396
        return out_string

397
    def add_special_tokens_single_sentence(self, token_ids):
398
399
400
401
        """
        Adds special tokens to a sequence for sequence classification tasks.
        An XLM sequence has the following format: [CLS] X [SEP]
        """
402
403
        return [self._convert_token_to_id(self.cls_token)] + token_ids + [self._convert_token_to_id(self.sep_token)]

404
405
406
407
408
    def add_special_tokens_sentences_pair(self, token_ids_0, token_ids_1):
        """
        Adds special tokens to a sequence pair for sequence classification tasks.
        An XLM sequence pair has the following format: [CLS] A [SEP] B [SEP]
        """
409
410
        sep = [self._convert_token_to_id(self.sep_token)]
        cls = [self._convert_token_to_id(self.cls_token)]
411
        return cls + token_ids_0 + sep + token_ids_1 + sep
412

413
    def save_vocabulary(self, save_directory):
thomwolf's avatar
xlm  
thomwolf committed
414
        """Save the tokenizer vocabulary and merge files to a directory."""
415
416
        if not os.path.isdir(save_directory):
            logger.error("Vocabulary path ({}) should be a directory".format(save_directory))
thomwolf's avatar
xlm  
thomwolf committed
417
            return
418
419
        vocab_file = os.path.join(save_directory, VOCAB_FILES_NAMES['vocab_file'])
        merge_file = os.path.join(save_directory, VOCAB_FILES_NAMES['merges_file'])
thomwolf's avatar
xlm  
thomwolf committed
420
421
422
423
424
425
426
427
428
429
430
431
432
433

        with open(vocab_file, 'w', encoding='utf-8') as f:
            f.write(json.dumps(self.encoder, ensure_ascii=False))

        index = 0
        with open(merge_file, "w", encoding="utf-8") as writer:
            for bpe_tokens, token_index in sorted(self.bpe_ranks.items(), key=lambda kv: kv[1]):
                if index != token_index:
                    logger.warning("Saving vocabulary to {}: BPE merge indices are not consecutive."
                                   " Please check that the tokenizer is not corrupted!".format(merge_file))
                    index = token_index
                writer.write(' '.join(bpe_tokens) + u'\n')
                index += 1

434
        return vocab_file, merge_file