run_squad.py 30.4 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
# Copyright (c) 2018, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
16
""" Finetuning the library models for question-answering on SQuAD (DistilBERT, Bert, XLM, XLNet)."""
17
18

from __future__ import absolute_import, division, print_function
Lysandre's avatar
Lysandre committed
19
from transformers.data.processors.squad import SquadV1Processor, SquadV2Processor
20
21
22
23
24

import argparse
import logging
import os
import random
thomwolf's avatar
thomwolf committed
25
import glob
26
import timeit
27
28
29
30
31
32
import numpy as np
import torch
from torch.utils.data import (DataLoader, RandomSampler, SequentialSampler,
                              TensorDataset)
from torch.utils.data.distributed import DistributedSampler

33
34
35
36
37
38
try:
    from torch.utils.tensorboard import SummaryWriter
except:
    from tensorboardX import SummaryWriter

from tqdm import tqdm, trange
39

40
from transformers import (WEIGHTS_NAME, BertConfig,
thomwolf's avatar
thomwolf committed
41
42
43
44
                                  BertForQuestionAnswering, BertTokenizer,
                                  XLMConfig, XLMForQuestionAnswering,
                                  XLMTokenizer, XLNetConfig,
                                  XLNetForQuestionAnswering,
45
46
                                  XLNetTokenizer,
                                  DistilBertConfig, DistilBertForQuestionAnswering, DistilBertTokenizer)
thomwolf's avatar
thomwolf committed
47

Lysandre's avatar
Lysandre committed
48
from transformers import AdamW, get_linear_schedule_with_warmup, squad_convert_examples_to_features
49

Lysandre's avatar
Lysandre committed
50
from utils_squad import (convert_examples_to_features as old_convert, read_squad_examples as old_read, RawResult, write_predictions,
51
                         RawResultExtended, write_predictions_extended)
52

thomwolf's avatar
thomwolf committed
53
54
55
# The follwing import is the official SQuAD evaluation script (2.0).
# You can remove it from the dependencies if you are using this script outside of the library
# We've added it here for automated tests (see examples/test_examples.py file)
56
57
from utils_squad_evaluate import EVAL_OPTS, main as evaluate_on_squad

58
59
logger = logging.getLogger(__name__)

thomwolf's avatar
thomwolf committed
60
61
ALL_MODELS = sum((tuple(conf.pretrained_config_archive_map.keys()) \
                  for conf in (BertConfig, XLNetConfig, XLMConfig)), ())
thomwolf's avatar
thomwolf committed
62
63

MODEL_CLASSES = {
thomwolf's avatar
thomwolf committed
64
65
66
    'bert': (BertConfig, BertForQuestionAnswering, BertTokenizer),
    'xlnet': (XLNetConfig, XLNetForQuestionAnswering, XLNetTokenizer),
    'xlm': (XLMConfig, XLMForQuestionAnswering, XLMTokenizer),
67
    'distilbert': (DistilBertConfig, DistilBertForQuestionAnswering, DistilBertTokenizer)
thomwolf's avatar
thomwolf committed
68
69
}

thomwolf's avatar
thomwolf committed
70
71
72
73
74
75
76
def set_seed(args):
    random.seed(args.seed)
    np.random.seed(args.seed)
    torch.manual_seed(args.seed)
    if args.n_gpu > 0:
        torch.cuda.manual_seed_all(args.seed)

77
78
def to_list(tensor):
    return tensor.detach().cpu().tolist()
thomwolf's avatar
thomwolf committed
79

80
def train(args, train_dataset, model, tokenizer):
thomwolf's avatar
thomwolf committed
81
82
83
84
    """ Train the model """
    if args.local_rank in [-1, 0]:
        tb_writer = SummaryWriter()

85
    args.train_batch_size = args.per_gpu_train_batch_size * max(1, args.n_gpu)
thomwolf's avatar
thomwolf committed
86
87
88
89
    train_sampler = RandomSampler(train_dataset) if args.local_rank == -1 else DistributedSampler(train_dataset)
    train_dataloader = DataLoader(train_dataset, sampler=train_sampler, batch_size=args.train_batch_size)

    if args.max_steps > 0:
90
        t_total = args.max_steps
thomwolf's avatar
thomwolf committed
91
92
        args.num_train_epochs = args.max_steps // (len(train_dataloader) // args.gradient_accumulation_steps) + 1
    else:
93
        t_total = len(train_dataloader) // args.gradient_accumulation_steps * args.num_train_epochs
thomwolf's avatar
thomwolf committed
94

95
    # Prepare optimizer and schedule (linear warmup and decay)
thomwolf's avatar
thomwolf committed
96
97
    no_decay = ['bias', 'LayerNorm.weight']
    optimizer_grouped_parameters = [
98
        {'params': [p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay)], 'weight_decay': args.weight_decay},
thomwolf's avatar
thomwolf committed
99
100
        {'params': [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay)], 'weight_decay': 0.0}
        ]
101
    optimizer = AdamW(optimizer_grouped_parameters, lr=args.learning_rate, eps=args.adam_epsilon)
102
    scheduler = get_linear_schedule_with_warmup(optimizer, num_warmup_steps=args.warmup_steps, num_training_steps=t_total)
thomwolf's avatar
thomwolf committed
103
104
105
106
107
108
109
    if args.fp16:
        try:
            from apex import amp
        except ImportError:
            raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use fp16 training.")
        model, optimizer = amp.initialize(model, optimizer, opt_level=args.fp16_opt_level)

110
111
112
113
    # multi-gpu training (should be after apex fp16 initialization)
    if args.n_gpu > 1:
        model = torch.nn.DataParallel(model)

thomwolf's avatar
thomwolf committed
114
115
116
117
118
119
    # Distributed training (should be after apex fp16 initialization)
    if args.local_rank != -1:
        model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.local_rank],
                                                          output_device=args.local_rank,
                                                          find_unused_parameters=True)

thomwolf's avatar
thomwolf committed
120
121
122
123
    # Train!
    logger.info("***** Running training *****")
    logger.info("  Num examples = %d", len(train_dataset))
    logger.info("  Num Epochs = %d", args.num_train_epochs)
124
125
126
    logger.info("  Instantaneous batch size per GPU = %d", args.per_gpu_train_batch_size)
    logger.info("  Total train batch size (w. parallel, distributed & accumulation) = %d",
                   args.train_batch_size * args.gradient_accumulation_steps * (torch.distributed.get_world_size() if args.local_rank != -1 else 1))
thomwolf's avatar
thomwolf committed
127
    logger.info("  Gradient Accumulation steps = %d", args.gradient_accumulation_steps)
128
    logger.info("  Total optimization steps = %d", t_total)
thomwolf's avatar
thomwolf committed
129
130
131

    global_step = 0
    tr_loss, logging_loss = 0.0, 0.0
132
133
134
135
136
137
138
    model.zero_grad()
    train_iterator = trange(int(args.num_train_epochs), desc="Epoch", disable=args.local_rank not in [-1, 0])
    set_seed(args)  # Added here for reproductibility (even between python 2 and 3)
    for _ in train_iterator:
        epoch_iterator = tqdm(train_dataloader, desc="Iteration", disable=args.local_rank not in [-1, 0])
        for step, batch in enumerate(epoch_iterator):
            model.train()
thomwolf's avatar
thomwolf committed
139
            batch = tuple(t.to(args.device) for t in batch)
140
            inputs = {'input_ids':       batch[0],
Simon Layton's avatar
Simon Layton committed
141
142
                      'attention_mask':  batch[1],
                      'start_positions': batch[3],
143
                      'end_positions':   batch[4]}
144
145
            if args.model_type != 'distilbert':
                inputs['token_type_ids'] = None if args.model_type == 'xlm' else batch[2]
146
147
            if args.model_type in ['xlnet', 'xlm']:
                inputs.update({'cls_index': batch[5],
thomwolf's avatar
thomwolf committed
148
                               'p_mask':       batch[6]})
Peiqin Lin's avatar
typos  
Peiqin Lin committed
149
            outputs = model(**inputs)
150
            loss = outputs[0]  # model outputs are always tuple in transformers (see doc)
thomwolf's avatar
thomwolf committed
151

152
            if args.n_gpu > 1:
thomwolf's avatar
thomwolf committed
153
                loss = loss.mean() # mean() to average on multi-gpu parallel (not distributed) training
154
155
            if args.gradient_accumulation_steps > 1:
                loss = loss / args.gradient_accumulation_steps
thomwolf's avatar
thomwolf committed
156

157
158
159
160
161
162
163
164
            if args.fp16:
                with amp.scale_loss(loss, optimizer) as scaled_loss:
                    scaled_loss.backward()
            else:
                loss.backward()

            tr_loss += loss.item()
            if (step + 1) % args.gradient_accumulation_steps == 0:
165
166
167
168
169
                if args.fp16:
                    torch.nn.utils.clip_grad_norm_(amp.master_params(optimizer), args.max_grad_norm)
                else:
                    torch.nn.utils.clip_grad_norm_(model.parameters(), args.max_grad_norm)

170
                optimizer.step()
171
                scheduler.step()  # Update learning rate schedule
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
                model.zero_grad()
                global_step += 1

                if args.local_rank in [-1, 0] and args.logging_steps > 0 and global_step % args.logging_steps == 0:
                    # Log metrics
                    if args.local_rank == -1 and args.evaluate_during_training:  # Only evaluate when single GPU otherwise metrics may not average well
                        results = evaluate(args, model, tokenizer)
                        for key, value in results.items():
                            tb_writer.add_scalar('eval_{}'.format(key), value, global_step)
                    tb_writer.add_scalar('lr', scheduler.get_lr()[0], global_step)
                    tb_writer.add_scalar('loss', (tr_loss - logging_loss)/args.logging_steps, global_step)
                    logging_loss = tr_loss

                if args.local_rank in [-1, 0] and args.save_steps > 0 and global_step % args.save_steps == 0:
                    # Save model checkpoint
                    output_dir = os.path.join(args.output_dir, 'checkpoint-{}'.format(global_step))
                    if not os.path.exists(output_dir):
                        os.makedirs(output_dir)
                    model_to_save = model.module if hasattr(model, 'module') else model  # Take care of distributed/parallel training
                    model_to_save.save_pretrained(output_dir)
                    torch.save(args, os.path.join(output_dir, 'training_args.bin'))
                    logger.info("Saving model checkpoint to %s", output_dir)

            if args.max_steps > 0 and global_step > args.max_steps:
                epoch_iterator.close()
                break
        if args.max_steps > 0 and global_step > args.max_steps:
            train_iterator.close()
            break

thomwolf's avatar
thomwolf committed
202
203
204
    if args.local_rank in [-1, 0]:
        tb_writer.close()

205
206
207
208
209
210
211
212
213
214
215
216
217
218
    return global_step, tr_loss / global_step


def evaluate(args, model, tokenizer, prefix=""):
    dataset, examples, features = load_and_cache_examples(args, tokenizer, evaluate=True, output_examples=True)

    if not os.path.exists(args.output_dir) and args.local_rank in [-1, 0]:
        os.makedirs(args.output_dir)

    args.eval_batch_size = args.per_gpu_eval_batch_size * max(1, args.n_gpu)
    # Note that DistributedSampler samples randomly
    eval_sampler = SequentialSampler(dataset) if args.local_rank == -1 else DistributedSampler(dataset)
    eval_dataloader = DataLoader(dataset, sampler=eval_sampler, batch_size=args.eval_batch_size)

ronakice's avatar
ronakice committed
219
220
221
222
    # multi-gpu evaluate
    if args.n_gpu > 1:
        model = torch.nn.DataParallel(model)

223
224
225
226
227
    # Eval!
    logger.info("***** Running evaluation {} *****".format(prefix))
    logger.info("  Num examples = %d", len(dataset))
    logger.info("  Batch size = %d", args.eval_batch_size)
    all_results = []
228
    start_time = timeit.default_timer()
229
230
231
232
233
    for batch in tqdm(eval_dataloader, desc="Evaluating"):
        model.eval()
        batch = tuple(t.to(args.device) for t in batch)
        with torch.no_grad():
            inputs = {'input_ids':      batch[0],
234
                      'attention_mask': batch[1]
thomwolf's avatar
thomwolf committed
235
                      }
236
237
            if args.model_type != 'distilbert':
                inputs['token_type_ids'] = None if args.model_type == 'xlm' else batch[2]  # XLM don't use segment_ids
238
239
240
241
            example_indices = batch[3]
            if args.model_type in ['xlnet', 'xlm']:
                inputs.update({'cls_index': batch[4],
                               'p_mask':    batch[5]})
242
243
244
245
246
            outputs = model(**inputs)

        for i, example_index in enumerate(example_indices):
            eval_feature = features[example_index.item()]
            unique_id = int(eval_feature.unique_id)
247
248
249
250
251
252
253
254
255
256
257
258
259
            if args.model_type in ['xlnet', 'xlm']:
                # XLNet uses a more complex post-processing procedure
                result = RawResultExtended(unique_id            = unique_id,
                                           start_top_log_probs  = to_list(outputs[0][i]),
                                           start_top_index      = to_list(outputs[1][i]),
                                           end_top_log_probs    = to_list(outputs[2][i]),
                                           end_top_index        = to_list(outputs[3][i]),
                                           cls_logits           = to_list(outputs[4][i]))
            else:
                result = RawResult(unique_id    = unique_id,
                                   start_logits = to_list(outputs[0][i]),
                                   end_logits   = to_list(outputs[1][i]))
            all_results.append(result)
260

261
262
263
    evalTime = timeit.default_timer() - start_time
    logger.info("  Evaluation done in total %f secs (%f sec per example)", evalTime, evalTime / len(dataset))

thomwolf's avatar
thomwolf committed
264
    # Compute predictions
265
266
    output_prediction_file = os.path.join(args.output_dir, "predictions_{}.json".format(prefix))
    output_nbest_file = os.path.join(args.output_dir, "nbest_predictions_{}.json".format(prefix))
267
268
269
270
    if args.version_2_with_negative:
        output_null_log_odds_file = os.path.join(args.output_dir, "null_odds_{}.json".format(prefix))
    else:
        output_null_log_odds_file = None
271
272
273
274
275
276

    if args.model_type in ['xlnet', 'xlm']:
        # XLNet uses a more complex post-processing procedure
        write_predictions_extended(examples, features, all_results, args.n_best_size,
                        args.max_answer_length, output_prediction_file,
                        output_nbest_file, output_null_log_odds_file, args.predict_file,
277
278
                        model.config.start_n_top, model.config.end_n_top,
                        args.version_2_with_negative, tokenizer, args.verbose_logging)
279
280
281
282
283
    else:
        write_predictions(examples, features, all_results, args.n_best_size,
                        args.max_answer_length, args.do_lower_case, output_prediction_file,
                        output_nbest_file, output_null_log_odds_file, args.verbose_logging,
                        args.version_2_with_negative, args.null_score_diff_threshold)
284

thomwolf's avatar
thomwolf committed
285
    # Evaluate with the official SQuAD script
286
287
288
289
290
291
292
    evaluate_options = EVAL_OPTS(data_file=args.predict_file,
                                 pred_file=output_prediction_file,
                                 na_prob_file=output_null_log_odds_file)
    results = evaluate_on_squad(evaluate_options)
    return results

def load_and_cache_examples(args, tokenizer, evaluate=False, output_examples=False):
VictorSanh's avatar
VictorSanh committed
293
    if args.local_rank not in [-1, 0] and not evaluate:
thomwolf's avatar
thomwolf committed
294
295
        torch.distributed.barrier()  # Make sure only the first process in distributed training process the dataset, and the others will use the cache

296
297
298
    # Load data features from cache or dataset file
    input_file = args.predict_file if evaluate else args.train_file
    cached_features_file = os.path.join(os.path.dirname(input_file), 'cached_{}_{}_{}'.format(
thomwolf's avatar
thomwolf committed
299
        'dev' if evaluate else 'train',
300
        list(filter(None, args.model_name_or_path.split('/'))).pop(),
301
302
        str(args.max_seq_length)))
    if os.path.exists(cached_features_file) and not args.overwrite_cache and not output_examples:
thomwolf's avatar
thomwolf committed
303
304
305
        logger.info("Loading features from cached file %s", cached_features_file)
        features = torch.load(cached_features_file)
    else:
306
        logger.info("Creating features from dataset file at %s", input_file)
Lysandre's avatar
Lysandre committed
307
308
309
310
311
312
313
314
315
316
317
318
319
320

        processor = SquadV2Processor()
        examples = processor.get_dev_examples("examples/squad") if evaluate else processor.get_train_examples("examples/squad")
        features = squad_convert_examples_to_features(
            examples=examples,
            tokenizer=tokenizer,
            max_seq_length=args.max_seq_length,
            doc_stride=args.doc_stride,
            max_query_length=args.max_query_length,
            is_training=not evaluate,
            sequence_a_is_doc=True if args.model_type in ['xlnet'] else False
        )


thomwolf's avatar
thomwolf committed
321
322
323
324
        if args.local_rank in [-1, 0]:
            logger.info("Saving features into cached file %s", cached_features_file)
            torch.save(features, cached_features_file)

VictorSanh's avatar
VictorSanh committed
325
    if args.local_rank == 0 and not evaluate:
thomwolf's avatar
thomwolf committed
326
327
        torch.distributed.barrier()  # Make sure only the first process in distributed training process the dataset, and the others will use the cache

thomwolf's avatar
thomwolf committed
328
    # Convert to Tensors and build dataset
329
    all_input_ids = torch.tensor([f.input_ids for f in features], dtype=torch.long)
Lysandre's avatar
Lysandre committed
330
331
    all_input_mask = torch.tensor([f.attention_mask for f in features], dtype=torch.long)
    all_segment_ids = torch.tensor([f.token_type_ids for f in features], dtype=torch.long)
332
333
    all_cls_index = torch.tensor([f.cls_index for f in features], dtype=torch.long)
    all_p_mask = torch.tensor([f.p_mask for f in features], dtype=torch.float)
334
    if evaluate:
thomwolf's avatar
thomwolf committed
335
        all_example_index = torch.arange(all_input_ids.size(0), dtype=torch.long)
336
337
        dataset = TensorDataset(all_input_ids, all_input_mask, all_segment_ids,
                                all_example_index, all_cls_index, all_p_mask)
338
339
340
    else:
        all_start_positions = torch.tensor([f.start_position for f in features], dtype=torch.long)
        all_end_positions = torch.tensor([f.end_position for f in features], dtype=torch.long)
341
342
343
        dataset = TensorDataset(all_input_ids, all_input_mask, all_segment_ids,
                                all_start_positions, all_end_positions,
                                all_cls_index, all_p_mask)
thomwolf's avatar
thomwolf committed
344

345
346
    if output_examples:
        return dataset, examples, features
thomwolf's avatar
thomwolf committed
347
348
    return dataset

349
350
351
352
353

def main():
    parser = argparse.ArgumentParser()

    ## Required parameters
thomwolf's avatar
thomwolf committed
354
355
356
357
    parser.add_argument("--train_file", default=None, type=str, required=True,
                        help="SQuAD json for training. E.g., train-v1.1.json")
    parser.add_argument("--predict_file", default=None, type=str, required=True,
                        help="SQuAD json for predictions. E.g., dev-v1.1.json or test-v1.1.json")
358
359
360
361
    parser.add_argument("--model_type", default=None, type=str, required=True,
                        help="Model type selected in the list: " + ", ".join(MODEL_CLASSES.keys()))
    parser.add_argument("--model_name_or_path", default=None, type=str, required=True,
                        help="Path to pre-trained model or shortcut name selected in the list: " + ", ".join(ALL_MODELS))
362
363
364
365
    parser.add_argument("--output_dir", default=None, type=str, required=True,
                        help="The output directory where the model checkpoints and predictions will be written.")

    ## Other parameters
366
367
368
369
370
371
372
    parser.add_argument("--config_name", default="", type=str,
                        help="Pretrained config name or path if not the same as model_name")
    parser.add_argument("--tokenizer_name", default="", type=str,
                        help="Pretrained tokenizer name or path if not the same as model_name")
    parser.add_argument("--cache_dir", default="", type=str,
                        help="Where do you want to store the pre-trained models downloaded from s3")

thomwolf's avatar
thomwolf committed
373
374
375
376
377
    parser.add_argument('--version_2_with_negative', action='store_true',
                        help='If true, the SQuAD examples contain some that do not have an answer.')
    parser.add_argument('--null_score_diff_threshold', type=float, default=0.0,
                        help="If null_score - best_non_null is greater than the threshold predict null.")

378
379
380
381
382
383
384
385
    parser.add_argument("--max_seq_length", default=384, type=int,
                        help="The maximum total input sequence length after WordPiece tokenization. Sequences "
                             "longer than this will be truncated, and sequences shorter than this will be padded.")
    parser.add_argument("--doc_stride", default=128, type=int,
                        help="When splitting up a long document into chunks, how much stride to take between chunks.")
    parser.add_argument("--max_query_length", default=64, type=int,
                        help="The maximum number of tokens for the question. Questions longer than this will "
                             "be truncated to this length.")
thomwolf's avatar
thomwolf committed
386
387
    parser.add_argument("--do_train", action='store_true',
                        help="Whether to run training.")
388
    parser.add_argument("--do_eval", action='store_true',
thomwolf's avatar
thomwolf committed
389
                        help="Whether to run eval on the dev set.")
390
391
    parser.add_argument("--evaluate_during_training", action='store_true',
                        help="Rul evaluation during training at each logging step.")
thomwolf's avatar
thomwolf committed
392
    parser.add_argument("--do_lower_case", action='store_true',
393
                        help="Set this flag if you are using an uncased model.")
thomwolf's avatar
thomwolf committed
394

395
396
397
398
    parser.add_argument("--per_gpu_train_batch_size", default=8, type=int,
                        help="Batch size per GPU/CPU for training.")
    parser.add_argument("--per_gpu_eval_batch_size", default=8, type=int,
                        help="Batch size per GPU/CPU for evaluation.")
thomwolf's avatar
thomwolf committed
399
400
401
402
    parser.add_argument("--learning_rate", default=5e-5, type=float,
                        help="The initial learning rate for Adam.")
    parser.add_argument('--gradient_accumulation_steps', type=int, default=1,
                        help="Number of updates steps to accumulate before performing a backward/update pass.")
403
    parser.add_argument("--weight_decay", default=0.0, type=float,
Kazutoshi Shinoda's avatar
Kazutoshi Shinoda committed
404
                        help="Weight decay if we apply some.")
405
406
407
408
    parser.add_argument("--adam_epsilon", default=1e-8, type=float,
                        help="Epsilon for Adam optimizer.")
    parser.add_argument("--max_grad_norm", default=1.0, type=float,
                        help="Max gradient norm.")
409
410
    parser.add_argument("--num_train_epochs", default=3.0, type=float,
                        help="Total number of training epochs to perform.")
411
412
413
414
    parser.add_argument("--max_steps", default=-1, type=int,
                        help="If > 0: set total number of training steps to perform. Override num_train_epochs.")
    parser.add_argument("--warmup_steps", default=0, type=int,
                        help="Linear warmup over warmup_steps.")
415
    parser.add_argument("--n_best_size", default=20, type=int,
thomwolf's avatar
thomwolf committed
416
                        help="The total number of n-best predictions to generate in the nbest_predictions.json output file.")
417
418
419
420
421
422
    parser.add_argument("--max_answer_length", default=30, type=int,
                        help="The maximum length of an answer that can be generated. This is needed because the start "
                             "and end predictions are not conditioned on one another.")
    parser.add_argument("--verbose_logging", action='store_true',
                        help="If true, all of the warnings related to data processing will be printed. "
                             "A number of warnings are expected for a normal SQuAD evaluation.")
thomwolf's avatar
thomwolf committed
423

424
425
426
427
428
429
    parser.add_argument('--logging_steps', type=int, default=50,
                        help="Log every X updates steps.")
    parser.add_argument('--save_steps', type=int, default=50,
                        help="Save checkpoint every X updates steps.")
    parser.add_argument("--eval_all_checkpoints", action='store_true',
                        help="Evaluate all checkpoints starting with the same prefix as model_name ending and ending with step number")
thomwolf's avatar
thomwolf committed
430
    parser.add_argument("--no_cuda", action='store_true',
431
                        help="Whether not to use CUDA when available")
432
433
434
435
    parser.add_argument('--overwrite_output_dir', action='store_true',
                        help="Overwrite the content of the output directory")
    parser.add_argument('--overwrite_cache', action='store_true',
                        help="Overwrite the cached training and evaluation sets")
thomwolf's avatar
thomwolf committed
436
    parser.add_argument('--seed', type=int, default=42,
437
                        help="random seed for initialization")
438

thomwolf's avatar
thomwolf committed
439
    parser.add_argument("--local_rank", type=int, default=-1,
440
                        help="local_rank for distributed training on gpus")
thomwolf's avatar
thomwolf committed
441
442
443
444
445
    parser.add_argument('--fp16', action='store_true',
                        help="Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit")
    parser.add_argument('--fp16_opt_level', type=str, default='O1',
                        help="For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3']."
                             "See details at https://nvidia.github.io/apex/amp.html")
446
447
448
449
    parser.add_argument('--server_ip', type=str, default='', help="Can be used for distant debugging.")
    parser.add_argument('--server_port', type=str, default='', help="Can be used for distant debugging.")
    args = parser.parse_args()

thomwolf's avatar
thomwolf committed
450
451
452
    if os.path.exists(args.output_dir) and os.listdir(args.output_dir) and args.do_train and not args.overwrite_output_dir:
        raise ValueError("Output directory ({}) already exists and is not empty. Use --overwrite_output_dir to overcome.".format(args.output_dir))

453
    # Setup distant debugging if needed
454
455
456
457
458
459
460
    if args.server_ip and args.server_port:
        # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script
        import ptvsd
        print("Waiting for debugger attach")
        ptvsd.enable_attach(address=(args.server_ip, args.server_port), redirect_output=True)
        ptvsd.wait_for_attach()

thomwolf's avatar
thomwolf committed
461
    # Setup CUDA, GPU & distributed training
462
463
    if args.local_rank == -1 or args.no_cuda:
        device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu")
thomwolf's avatar
thomwolf committed
464
465
        args.n_gpu = torch.cuda.device_count()
    else:  # Initializes the distributed backend which will take care of sychronizing nodes/GPUs
466
467
468
        torch.cuda.set_device(args.local_rank)
        device = torch.device("cuda", args.local_rank)
        torch.distributed.init_process_group(backend='nccl')
thomwolf's avatar
thomwolf committed
469
470
        args.n_gpu = 1
    args.device = device
471

thomwolf's avatar
thomwolf committed
472
    # Setup logging
473
474
475
    logging.basicConfig(format = '%(asctime)s - %(levelname)s - %(name)s -   %(message)s',
                        datefmt = '%m/%d/%Y %H:%M:%S',
                        level = logging.INFO if args.local_rank in [-1, 0] else logging.WARN)
thomwolf's avatar
thomwolf committed
476
    logger.warning("Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s",
477
                    args.local_rank, device, args.n_gpu, bool(args.local_rank != -1), args.fp16)
478

479
480
    # Set seed
    set_seed(args)
481

thomwolf's avatar
thomwolf committed
482
    # Load pretrained model and tokenizer
483
    if args.local_rank not in [-1, 0]:
484
485
        torch.distributed.barrier()  # Make sure only the first process in distributed training will download model & vocab

486
    args.model_type = args.model_type.lower()
487
    config_class, model_class, tokenizer_class = MODEL_CLASSES[args.model_type]
thomwolf's avatar
thomwolf committed
488
489
490
491
492
493
494
495
496
    config = config_class.from_pretrained(args.config_name if args.config_name else args.model_name_or_path,
                                          cache_dir=args.cache_dir if args.cache_dir else None)
    tokenizer = tokenizer_class.from_pretrained(args.tokenizer_name if args.tokenizer_name else args.model_name_or_path,
                                                do_lower_case=args.do_lower_case,
                                                cache_dir=args.cache_dir if args.cache_dir else None)
    model = model_class.from_pretrained(args.model_name_or_path,
                                        from_tf=bool('.ckpt' in args.model_name_or_path),
                                        config=config,
                                        cache_dir=args.cache_dir if args.cache_dir else None)
497
498

    if args.local_rank == 0:
499
        torch.distributed.barrier()  # Make sure only the first process in distributed training will download model & vocab
500

thomwolf's avatar
thomwolf committed
501
    model.to(args.device)
502

503
504
    logger.info("Training/evaluation parameters %s", args)

Simon Layton's avatar
Simon Layton committed
505
506
507
508
509
510
511
512
513
514
    # Before we do anything with models, we want to ensure that we get fp16 execution of torch.einsum if args.fp16 is set.
    # Otherwise it'll default to "promote" mode, and we'll get fp32 operations. Note that running `--fp16_opt_level="O2"` will
    # remove the need for this code, but it is still valid.
    if args.fp16:
        try:
            import apex
            apex.amp.register_half_function(torch, 'einsum')
        except ImportError:
            raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use fp16 training.")

thomwolf's avatar
thomwolf committed
515
    # Training
516
    if args.do_train:
517
        train_dataset = load_and_cache_examples(args, tokenizer, evaluate=False, output_examples=False)
518
        global_step, tr_loss = train(args, train_dataset, model, tokenizer)
519
        logger.info(" global_step = %s, average loss = %s", global_step, tr_loss)
520

521

thomwolf's avatar
thomwolf committed
522
    # Save the trained model and the tokenizer
Peng Qi's avatar
Peng Qi committed
523
    if args.do_train and (args.local_rank == -1 or torch.distributed.get_rank() == 0):
524
525
526
527
528
529
530
531
532
533
        # Create output directory if needed
        if not os.path.exists(args.output_dir) and args.local_rank in [-1, 0]:
            os.makedirs(args.output_dir)

        logger.info("Saving model checkpoint to %s", args.output_dir)
        # Save a trained model, configuration and tokenizer using `save_pretrained()`.
        # They can then be reloaded using `from_pretrained()`
        model_to_save = model.module if hasattr(model, 'module') else model  # Take care of distributed/parallel training
        model_to_save.save_pretrained(args.output_dir)
        tokenizer.save_pretrained(args.output_dir)
534
535

        # Good practice: save your training arguments together with the trained model
536
        torch.save(args, os.path.join(args.output_dir, 'training_args.bin'))
537

538
539
        # Load a trained model and vocabulary that you have fine-tuned
        model = model_class.from_pretrained(args.output_dir)
Peng Qi's avatar
Peng Qi committed
540
        tokenizer = tokenizer_class.from_pretrained(args.output_dir, do_lower_case=args.do_lower_case)
541
542
543
        model.to(args.device)


thomwolf's avatar
thomwolf committed
544
    # Evaluation - we can ask to evaluate all the checkpoints (sub-directories) in a directory
545
546
547
548
549
    results = {}
    if args.do_eval and args.local_rank in [-1, 0]:
        checkpoints = [args.output_dir]
        if args.eval_all_checkpoints:
            checkpoints = list(os.path.dirname(c) for c in sorted(glob.glob(args.output_dir + '/**/' + WEIGHTS_NAME, recursive=True)))
550
            logging.getLogger("transformers.modeling_utils").setLevel(logging.WARN)  # Reduce model loading logs
thomwolf's avatar
thomwolf committed
551

552
        logger.info("Evaluate the following checkpoints: %s", checkpoints)
thomwolf's avatar
thomwolf committed
553

554
        for checkpoint in checkpoints:
thomwolf's avatar
thomwolf committed
555
            # Reload the model
556
557
558
            global_step = checkpoint.split('-')[-1] if len(checkpoints) > 1 else ""
            model = model_class.from_pretrained(checkpoint)
            model.to(args.device)
thomwolf's avatar
thomwolf committed
559
560

            # Evaluate
561
            result = evaluate(args, model, tokenizer, prefix=global_step)
thomwolf's avatar
thomwolf committed
562

563
564
            result = dict((k + ('_{}'.format(global_step) if global_step else ''), v) for k, v in result.items())
            results.update(result)
thomwolf's avatar
thomwolf committed
565

566
    logger.info("Results: {}".format(results))
thomwolf's avatar
thomwolf committed
567

568
    return results
569
570
571
572


if __name__ == "__main__":
    main()