"examples/pytorch/text-generation/README.md" did not exist on "783d7d2629e97c5f0c5f9ef01b8c66410275c204"
run_glue.py 25.6 KB
Newer Older
1
#!/usr/bin/env python
thomwolf's avatar
thomwolf committed
2
# coding=utf-8
Sylvain Gugger's avatar
Sylvain Gugger committed
3
# Copyright 2020 The HuggingFace Inc. team. All rights reserved.
thomwolf's avatar
thomwolf committed
4
5
6
7
8
9
10
11
12
13
14
15
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Lysandre's avatar
Lysandre committed
16
""" Finetuning the library models for sequence classification on GLUE."""
Sylvain Gugger's avatar
Sylvain Gugger committed
17
# You can also adapt this script on your own text classification task. Pointers for this are left as comments.
thomwolf's avatar
thomwolf committed
18
19
20

import logging
import os
Sylvain Gugger's avatar
Sylvain Gugger committed
21
import random
22
import sys
23
from dataclasses import dataclass, field
Sylvain Gugger's avatar
Sylvain Gugger committed
24
from typing import Optional
thomwolf's avatar
thomwolf committed
25

26
import datasets
thomwolf's avatar
thomwolf committed
27
import numpy as np
Sylvain Gugger's avatar
Sylvain Gugger committed
28
from datasets import load_dataset, load_metric
thomwolf's avatar
thomwolf committed
29

Sylvain Gugger's avatar
Sylvain Gugger committed
30
import transformers
31
from transformers import (
Sylvain Gugger's avatar
Sylvain Gugger committed
32
33
34
    AutoConfig,
    AutoModelForSequenceClassification,
    AutoTokenizer,
35
    DataCollatorWithPadding,
Sylvain Gugger's avatar
Sylvain Gugger committed
36
    EvalPrediction,
37
    HfArgumentParser,
Sylvain Gugger's avatar
Sylvain Gugger committed
38
    PretrainedConfig,
Julien Chaumond's avatar
Julien Chaumond committed
39
    Trainer,
40
    TrainingArguments,
Sylvain Gugger's avatar
Sylvain Gugger committed
41
    default_data_collator,
Julien Chaumond's avatar
Julien Chaumond committed
42
    set_seed,
43
)
44
from transformers.trainer_utils import get_last_checkpoint
45
from transformers.utils import check_min_version
46
from transformers.utils.versions import require_version
Sylvain Gugger's avatar
Sylvain Gugger committed
47

Aymeric Augustin's avatar
Aymeric Augustin committed
48

49
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
Sylvain Gugger's avatar
Sylvain Gugger committed
50
check_min_version("4.18.0.dev0")
Lysandre's avatar
Lysandre committed
51

52
require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/text-classification/requirements.txt")
53

Sylvain Gugger's avatar
Sylvain Gugger committed
54
55
56
57
58
59
60
61
62
63
64
task_to_keys = {
    "cola": ("sentence", None),
    "mnli": ("premise", "hypothesis"),
    "mrpc": ("sentence1", "sentence2"),
    "qnli": ("question", "sentence"),
    "qqp": ("question1", "question2"),
    "rte": ("sentence1", "sentence2"),
    "sst2": ("sentence", None),
    "stsb": ("sentence1", "sentence2"),
    "wnli": ("sentence1", "sentence2"),
}
thomwolf's avatar
thomwolf committed
65
66
67

logger = logging.getLogger(__name__)

thomwolf's avatar
thomwolf committed
68

Sylvain Gugger's avatar
Sylvain Gugger committed
69
70
71
72
73
74
75
76
77
78
79
80
81
82
@dataclass
class DataTrainingArguments:
    """
    Arguments pertaining to what data we are going to input our model for training and eval.

    Using `HfArgumentParser` we can turn this class
    into argparse arguments to be able to specify them on
    the command line.
    """

    task_name: Optional[str] = field(
        default=None,
        metadata={"help": "The name of the task to train on: " + ", ".join(task_to_keys.keys())},
    )
83
84
85
86
87
88
    dataset_name: Optional[str] = field(
        default=None, metadata={"help": "The name of the dataset to use (via the datasets library)."}
    )
    dataset_config_name: Optional[str] = field(
        default=None, metadata={"help": "The configuration name of the dataset to use (via the datasets library)."}
    )
Sylvain Gugger's avatar
Sylvain Gugger committed
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
    max_seq_length: int = field(
        default=128,
        metadata={
            "help": "The maximum total input sequence length after tokenization. Sequences longer "
            "than this will be truncated, sequences shorter will be padded."
        },
    )
    overwrite_cache: bool = field(
        default=False, metadata={"help": "Overwrite the cached preprocessed datasets or not."}
    )
    pad_to_max_length: bool = field(
        default=True,
        metadata={
            "help": "Whether to pad all samples to `max_seq_length`. "
            "If False, will pad the samples dynamically when batching to the maximum length in the batch."
        },
    )
106
107
108
109
110
111
112
    max_train_samples: Optional[int] = field(
        default=None,
        metadata={
            "help": "For debugging purposes or quicker training, truncate the number of training examples to this "
            "value if set."
        },
    )
113
    max_eval_samples: Optional[int] = field(
114
115
        default=None,
        metadata={
116
            "help": "For debugging purposes or quicker training, truncate the number of evaluation examples to this "
117
118
119
            "value if set."
        },
    )
120
    max_predict_samples: Optional[int] = field(
121
122
        default=None,
        metadata={
123
            "help": "For debugging purposes or quicker training, truncate the number of prediction examples to this "
124
125
126
            "value if set."
        },
    )
Sylvain Gugger's avatar
Sylvain Gugger committed
127
128
129
130
131
132
    train_file: Optional[str] = field(
        default=None, metadata={"help": "A csv or a json file containing the training data."}
    )
    validation_file: Optional[str] = field(
        default=None, metadata={"help": "A csv or a json file containing the validation data."}
    )
133
    test_file: Optional[str] = field(default=None, metadata={"help": "A csv or a json file containing the test data."})
Sylvain Gugger's avatar
Sylvain Gugger committed
134
135
136
137
138
139

    def __post_init__(self):
        if self.task_name is not None:
            self.task_name = self.task_name.lower()
            if self.task_name not in task_to_keys.keys():
                raise ValueError("Unknown task, you should pick one in " + ",".join(task_to_keys.keys()))
140
141
        elif self.dataset_name is not None:
            pass
Sylvain Gugger's avatar
Sylvain Gugger committed
142
        elif self.train_file is None or self.validation_file is None:
143
            raise ValueError("Need either a GLUE task, a training/validation file or a dataset name.")
Sylvain Gugger's avatar
Sylvain Gugger committed
144
        else:
145
146
147
148
149
150
            train_extension = self.train_file.split(".")[-1]
            assert train_extension in ["csv", "json"], "`train_file` should be a csv or a json file."
            validation_extension = self.validation_file.split(".")[-1]
            assert (
                validation_extension == train_extension
            ), "`validation_file` should have the same extension (csv or json) as `train_file`."
Sylvain Gugger's avatar
Sylvain Gugger committed
151
152


153
154
155
156
157
158
159
@dataclass
class ModelArguments:
    """
    Arguments pertaining to which model/config/tokenizer we are going to fine-tune from.
    """

    model_name_or_path: str = field(
Julien Chaumond's avatar
Julien Chaumond committed
160
        metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"}
161
    )
162
163
    config_name: Optional[str] = field(
        default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"}
164
    )
165
166
    tokenizer_name: Optional[str] = field(
        default=None, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"}
167
    )
168
    cache_dir: Optional[str] = field(
169
170
        default=None,
        metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"},
171
    )
Sylvain Gugger's avatar
Sylvain Gugger committed
172
173
174
175
    use_fast_tokenizer: bool = field(
        default=True,
        metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."},
    )
176
177
178
179
180
181
182
183
184
185
186
    model_revision: str = field(
        default="main",
        metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."},
    )
    use_auth_token: bool = field(
        default=False,
        metadata={
            "help": "Will use the token generated when running `transformers-cli login` (necessary to use this script "
            "with private models)."
        },
    )
187
188


189
def main():
Julien Chaumond's avatar
Julien Chaumond committed
190
191
192
    # See all possible arguments in src/transformers/training_args.py
    # or by passing the --help flag to this script.
    # We now keep distinct sets of args, for a cleaner separation of concerns.
193

194
195
196
197
198
199
200
    parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments))
    if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
        # If we pass only one argument to the script and it's the path to a json file,
        # let's parse it to get our arguments.
        model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1]))
    else:
        model_args, data_args, training_args = parser.parse_args_into_dataclasses()
thomwolf's avatar
thomwolf committed
201
202

    # Setup logging
203
    logging.basicConfig(
204
        format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
205
        datefmt="%m/%d/%Y %H:%M:%S",
206
        handlers=[logging.StreamHandler(sys.stdout)],
207
    )
208
209
210
211
212
213
214

    log_level = training_args.get_process_log_level()
    logger.setLevel(log_level)
    datasets.utils.logging.set_verbosity(log_level)
    transformers.utils.logging.set_verbosity(log_level)
    transformers.utils.logging.enable_default_handler()
    transformers.utils.logging.enable_explicit_format()
Sylvain Gugger's avatar
Sylvain Gugger committed
215
216

    # Log on each process the small summary:
217
    logger.warning(
Sylvain Gugger's avatar
Sylvain Gugger committed
218
219
        f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}"
        + f"distributed training: {bool(training_args.local_rank != -1)}, 16-bits training: {training_args.fp16}"
220
    )
Sylvain Gugger's avatar
Sylvain Gugger committed
221
    logger.info(f"Training/evaluation parameters {training_args}")
thomwolf's avatar
thomwolf committed
222

223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
    # Detecting last checkpoint.
    last_checkpoint = None
    if os.path.isdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir:
        last_checkpoint = get_last_checkpoint(training_args.output_dir)
        if last_checkpoint is None and len(os.listdir(training_args.output_dir)) > 0:
            raise ValueError(
                f"Output directory ({training_args.output_dir}) already exists and is not empty. "
                "Use --overwrite_output_dir to overcome."
            )
        elif last_checkpoint is not None and training_args.resume_from_checkpoint is None:
            logger.info(
                f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change "
                "the `--output_dir` or add `--overwrite_output_dir` to train from scratch."
            )

Sylvain Gugger's avatar
Sylvain Gugger committed
238
    # Set seed before initializing model.
Julien Chaumond's avatar
Julien Chaumond committed
239
    set_seed(training_args.seed)
thomwolf's avatar
thomwolf committed
240

Sylvain Gugger's avatar
Sylvain Gugger committed
241
    # Get the datasets: you can either provide your own CSV/JSON training and evaluation files (see below)
Sylvain Gugger's avatar
Sylvain Gugger committed
242
    # or specify a GLUE benchmark task (the dataset will be downloaded automatically from the datasets Hub).
Sylvain Gugger's avatar
Sylvain Gugger committed
243
244
245
246
247
248
249
250
251
252
253
254
    #
    # For CSV/JSON files, this script will use as labels the column called 'label' and as pair of sentences the
    # sentences in columns called 'sentence1' and 'sentence2' if such column exists or the first two columns not named
    # label if at least two columns are provided.
    #
    # If the CSVs/JSONs contain only one non-label column, the script does single sentence classification on this
    # single column. You can easily tweak this behavior (see below)
    #
    # In distributed training, the load_dataset function guarantee that only one local process can concurrently
    # download the dataset.
    if data_args.task_name is not None:
        # Downloading and loading a dataset from the hub.
255
256
257
258
259
260
        raw_datasets = load_dataset(
            "glue",
            data_args.task_name,
            cache_dir=model_args.cache_dir,
            use_auth_token=True if model_args.use_auth_token else None,
        )
261
262
    elif data_args.dataset_name is not None:
        # Downloading and loading a dataset from the hub.
263
        raw_datasets = load_dataset(
264
265
266
267
            data_args.dataset_name,
            data_args.dataset_config_name,
            cache_dir=model_args.cache_dir,
            use_auth_token=True if model_args.use_auth_token else None,
268
        )
Sylvain Gugger's avatar
Sylvain Gugger committed
269
    else:
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
        # Loading a dataset from your local files.
        # CSV/JSON training and evaluation files are needed.
        data_files = {"train": data_args.train_file, "validation": data_args.validation_file}

        # Get the test dataset: you can provide your own CSV/JSON test file (see below)
        # when you use `do_predict` without specifying a GLUE benchmark task.
        if training_args.do_predict:
            if data_args.test_file is not None:
                train_extension = data_args.train_file.split(".")[-1]
                test_extension = data_args.test_file.split(".")[-1]
                assert (
                    test_extension == train_extension
                ), "`test_file` should have the same extension (csv or json) as `train_file`."
                data_files["test"] = data_args.test_file
            else:
                raise ValueError("Need either a GLUE task or a test file for `do_predict`.")

        for key in data_files.keys():
            logger.info(f"load a local file for {key}: {data_files[key]}")

        if data_args.train_file.endswith(".csv"):
            # Loading a dataset from local csv files
292
293
294
295
296
297
            raw_datasets = load_dataset(
                "csv",
                data_files=data_files,
                cache_dir=model_args.cache_dir,
                use_auth_token=True if model_args.use_auth_token else None,
            )
298
299
        else:
            # Loading a dataset from local json files
300
301
302
303
304
305
            raw_datasets = load_dataset(
                "json",
                data_files=data_files,
                cache_dir=model_args.cache_dir,
                use_auth_token=True if model_args.use_auth_token else None,
            )
Sylvain Gugger's avatar
Sylvain Gugger committed
306
307
308
309
310
311
312
    # See more about loading any type of standard or custom dataset at
    # https://huggingface.co/docs/datasets/loading_datasets.html.

    # Labels
    if data_args.task_name is not None:
        is_regression = data_args.task_name == "stsb"
        if not is_regression:
313
            label_list = raw_datasets["train"].features["label"].names
Sylvain Gugger's avatar
Sylvain Gugger committed
314
315
316
317
318
            num_labels = len(label_list)
        else:
            num_labels = 1
    else:
        # Trying to have good defaults here, don't hesitate to tweak to your needs.
319
        is_regression = raw_datasets["train"].features["label"].dtype in ["float32", "float64"]
Sylvain Gugger's avatar
Sylvain Gugger committed
320
321
322
323
324
        if is_regression:
            num_labels = 1
        else:
            # A useful fast method:
            # https://huggingface.co/docs/datasets/package_reference/main_classes.html#datasets.Dataset.unique
325
            label_list = raw_datasets["train"].unique("label")
Sylvain Gugger's avatar
Sylvain Gugger committed
326
327
            label_list.sort()  # Let's sort it for determinism
            num_labels = len(label_list)
thomwolf's avatar
thomwolf committed
328
329

    # Load pretrained model and tokenizer
Julien Chaumond's avatar
Julien Chaumond committed
330
    #
Sylvain Gugger's avatar
Sylvain Gugger committed
331
    # In distributed training, the .from_pretrained methods guarantee that only one local process can concurrently
Julien Chaumond's avatar
Julien Chaumond committed
332
    # download model & vocab.
333
    config = AutoConfig.from_pretrained(
Julien Chaumond's avatar
Julien Chaumond committed
334
        model_args.config_name if model_args.config_name else model_args.model_name_or_path,
335
        num_labels=num_labels,
Julien Chaumond's avatar
Julien Chaumond committed
336
337
        finetuning_task=data_args.task_name,
        cache_dir=model_args.cache_dir,
338
339
        revision=model_args.model_revision,
        use_auth_token=True if model_args.use_auth_token else None,
340
    )
341
    tokenizer = AutoTokenizer.from_pretrained(
Julien Chaumond's avatar
Julien Chaumond committed
342
343
        model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path,
        cache_dir=model_args.cache_dir,
Sylvain Gugger's avatar
Sylvain Gugger committed
344
        use_fast=model_args.use_fast_tokenizer,
345
346
        revision=model_args.model_revision,
        use_auth_token=True if model_args.use_auth_token else None,
347
    )
348
    model = AutoModelForSequenceClassification.from_pretrained(
Julien Chaumond's avatar
Julien Chaumond committed
349
350
        model_args.model_name_or_path,
        from_tf=bool(".ckpt" in model_args.model_name_or_path),
351
        config=config,
Julien Chaumond's avatar
Julien Chaumond committed
352
        cache_dir=model_args.cache_dir,
353
354
        revision=model_args.model_revision,
        use_auth_token=True if model_args.use_auth_token else None,
355
    )
thomwolf's avatar
thomwolf committed
356

357
    # Preprocessing the raw_datasets
Sylvain Gugger's avatar
Sylvain Gugger committed
358
359
360
361
    if data_args.task_name is not None:
        sentence1_key, sentence2_key = task_to_keys[data_args.task_name]
    else:
        # Again, we try to have some nice defaults but don't hesitate to tweak to your use case.
362
        non_label_column_names = [name for name in raw_datasets["train"].column_names if name != "label"]
Sylvain Gugger's avatar
Sylvain Gugger committed
363
364
365
366
367
368
369
370
371
372
373
374
375
376
        if "sentence1" in non_label_column_names and "sentence2" in non_label_column_names:
            sentence1_key, sentence2_key = "sentence1", "sentence2"
        else:
            if len(non_label_column_names) >= 2:
                sentence1_key, sentence2_key = non_label_column_names[:2]
            else:
                sentence1_key, sentence2_key = non_label_column_names[0], None

    # Padding strategy
    if data_args.pad_to_max_length:
        padding = "max_length"
    else:
        # We will pad later, dynamically at batch creation, to the max sequence length in each batch
        padding = False
thomwolf's avatar
thomwolf committed
377

Sylvain Gugger's avatar
Sylvain Gugger committed
378
379
380
381
382
    # Some models have set the order of the labels to use, so let's make sure we do use it.
    label_to_id = None
    if (
        model.config.label2id != PretrainedConfig(num_labels=num_labels).label2id
        and data_args.task_name is not None
383
        and not is_regression
Sylvain Gugger's avatar
Sylvain Gugger committed
384
385
386
387
    ):
        # Some have all caps in their config, some don't.
        label_name_to_id = {k.lower(): v for k, v in model.config.label2id.items()}
        if list(sorted(label_name_to_id.keys())) == list(sorted(label_list)):
388
            label_to_id = {i: int(label_name_to_id[label_list[i]]) for i in range(num_labels)}
Sylvain Gugger's avatar
Sylvain Gugger committed
389
        else:
390
            logger.warning(
Sylvain Gugger's avatar
Sylvain Gugger committed
391
392
393
394
                "Your model seems to have been trained with labels, but they don't match the dataset: ",
                f"model labels: {list(sorted(label_name_to_id.keys()))}, dataset labels: {list(sorted(label_list))}."
                "\nIgnoring the model labels as a result.",
            )
395
    elif data_args.task_name is None and not is_regression:
Sylvain Gugger's avatar
Sylvain Gugger committed
396
        label_to_id = {v: i for i, v in enumerate(label_list)}
397

398
399
400
    if label_to_id is not None:
        model.config.label2id = label_to_id
        model.config.id2label = {id: label for label, id in config.label2id.items()}
401
402
403
    elif data_args.task_name is not None and not is_regression:
        model.config.label2id = {l: i for i, l in enumerate(label_list)}
        model.config.id2label = {id: label for label, id in config.label2id.items()}
404

405
    if data_args.max_seq_length > tokenizer.model_max_length:
406
        logger.warning(
407
408
409
410
411
            f"The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the"
            f"model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}."
        )
    max_seq_length = min(data_args.max_seq_length, tokenizer.model_max_length)

Sylvain Gugger's avatar
Sylvain Gugger committed
412
413
414
415
416
    def preprocess_function(examples):
        # Tokenize the texts
        args = (
            (examples[sentence1_key],) if sentence2_key is None else (examples[sentence1_key], examples[sentence2_key])
        )
417
        result = tokenizer(*args, padding=padding, max_length=max_seq_length, truncation=True)
Sylvain Gugger's avatar
Sylvain Gugger committed
418
419
420

        # Map labels to IDs (not necessary for GLUE tasks)
        if label_to_id is not None and "label" in examples:
421
            result["label"] = [(label_to_id[l] if l != -1 else -1) for l in examples["label"]]
Sylvain Gugger's avatar
Sylvain Gugger committed
422
423
        return result

424
425
426
427
428
429
430
    with training_args.main_process_first(desc="dataset map pre-processing"):
        raw_datasets = raw_datasets.map(
            preprocess_function,
            batched=True,
            load_from_cache_file=not data_args.overwrite_cache,
            desc="Running tokenizer on dataset",
        )
431
    if training_args.do_train:
432
        if "train" not in raw_datasets:
433
            raise ValueError("--do_train requires a train dataset")
434
        train_dataset = raw_datasets["train"]
435
        if data_args.max_train_samples is not None:
436
437
            max_train_samples = min(len(train_dataset), data_args.max_train_samples)
            train_dataset = train_dataset.select(range(max_train_samples))
Sylvain Gugger's avatar
Sylvain Gugger committed
438

439
    if training_args.do_eval:
440
        if "validation" not in raw_datasets and "validation_matched" not in raw_datasets:
441
            raise ValueError("--do_eval requires a validation dataset")
442
        eval_dataset = raw_datasets["validation_matched" if data_args.task_name == "mnli" else "validation"]
443
        if data_args.max_eval_samples is not None:
444
445
            max_eval_samples = min(len(eval_dataset), data_args.max_eval_samples)
            eval_dataset = eval_dataset.select(range(max_eval_samples))
446
447

    if training_args.do_predict or data_args.task_name is not None or data_args.test_file is not None:
448
        if "test" not in raw_datasets and "test_matched" not in raw_datasets:
449
            raise ValueError("--do_predict requires a test dataset")
450
        predict_dataset = raw_datasets["test_matched" if data_args.task_name == "mnli" else "test"]
451
        if data_args.max_predict_samples is not None:
452
453
            max_predict_samples = min(len(predict_dataset), data_args.max_predict_samples)
            predict_dataset = predict_dataset.select(range(max_predict_samples))
Sylvain Gugger's avatar
Sylvain Gugger committed
454
455

    # Log a few random samples from the training set:
456
457
458
    if training_args.do_train:
        for index in random.sample(range(len(train_dataset)), 3):
            logger.info(f"Sample {index} of the training set: {train_dataset[index]}.")
Sylvain Gugger's avatar
Sylvain Gugger committed
459
460
461
462

    # Get the metric function
    if data_args.task_name is not None:
        metric = load_metric("glue", data_args.task_name)
463
464
    else:
        metric = load_metric("accuracy")
Sylvain Gugger's avatar
Sylvain Gugger committed
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479

    # You can define your custom compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with a
    # predictions and label_ids field) and has to return a dictionary string to float.
    def compute_metrics(p: EvalPrediction):
        preds = p.predictions[0] if isinstance(p.predictions, tuple) else p.predictions
        preds = np.squeeze(preds) if is_regression else np.argmax(preds, axis=1)
        if data_args.task_name is not None:
            result = metric.compute(predictions=preds, references=p.label_ids)
            if len(result) > 1:
                result["combined_score"] = np.mean(list(result.values())).item()
            return result
        elif is_regression:
            return {"mse": ((preds - p.label_ids) ** 2).mean().item()}
        else:
            return {"accuracy": (preds == p.label_ids).astype(np.float32).mean().item()}
thomwolf's avatar
thomwolf committed
480

481
482
    # Data collator will default to DataCollatorWithPadding when the tokenizer is passed to Trainer, so we change it if
    # we already did the padding.
483
484
485
486
487
488
489
    if data_args.pad_to_max_length:
        data_collator = default_data_collator
    elif training_args.fp16:
        data_collator = DataCollatorWithPadding(tokenizer, pad_to_multiple_of=8)
    else:
        data_collator = None

Julien Chaumond's avatar
Julien Chaumond committed
490
491
492
493
    # Initialize our Trainer
    trainer = Trainer(
        model=model,
        args=training_args,
494
        train_dataset=train_dataset if training_args.do_train else None,
Sylvain Gugger's avatar
Sylvain Gugger committed
495
496
497
        eval_dataset=eval_dataset if training_args.do_eval else None,
        compute_metrics=compute_metrics,
        tokenizer=tokenizer,
498
        data_collator=data_collator,
Julien Chaumond's avatar
Julien Chaumond committed
499
    )
thomwolf's avatar
thomwolf committed
500

thomwolf's avatar
thomwolf committed
501
    # Training
Julien Chaumond's avatar
Julien Chaumond committed
502
    if training_args.do_train:
503
        checkpoint = None
504
505
506
        if training_args.resume_from_checkpoint is not None:
            checkpoint = training_args.resume_from_checkpoint
        elif last_checkpoint is not None:
507
508
            checkpoint = last_checkpoint
        train_result = trainer.train(resume_from_checkpoint=checkpoint)
509
        metrics = train_result.metrics
510
511
512
513
        max_train_samples = (
            data_args.max_train_samples if data_args.max_train_samples is not None else len(train_dataset)
        )
        metrics["train_samples"] = min(max_train_samples, len(train_dataset))
514

Sylvain Gugger's avatar
Sylvain Gugger committed
515
        trainer.save_model()  # Saves the tokenizer too for easy upload
thomwolf's avatar
thomwolf committed
516

517
518
519
        trainer.log_metrics("train", metrics)
        trainer.save_metrics("train", metrics)
        trainer.save_state()
520

thomwolf's avatar
thomwolf committed
521
    # Evaluation
522
    if training_args.do_eval:
Julien Chaumond's avatar
Julien Chaumond committed
523
524
525
        logger.info("*** Evaluate ***")

        # Loop to handle MNLI double evaluation (matched, mis-matched)
Sylvain Gugger's avatar
Sylvain Gugger committed
526
        tasks = [data_args.task_name]
Julien Chaumond's avatar
Julien Chaumond committed
527
528
        eval_datasets = [eval_dataset]
        if data_args.task_name == "mnli":
Sylvain Gugger's avatar
Sylvain Gugger committed
529
            tasks.append("mnli-mm")
530
            eval_datasets.append(raw_datasets["validation_mismatched"])
531
            combined = {}
Julien Chaumond's avatar
Julien Chaumond committed
532

Sylvain Gugger's avatar
Sylvain Gugger committed
533
        for eval_dataset, task in zip(eval_datasets, tasks):
534
            metrics = trainer.evaluate(eval_dataset=eval_dataset)
Julien Chaumond's avatar
Julien Chaumond committed
535

536
537
538
539
            max_eval_samples = (
                data_args.max_eval_samples if data_args.max_eval_samples is not None else len(eval_dataset)
            )
            metrics["eval_samples"] = min(max_eval_samples, len(eval_dataset))
540

541
542
            if task == "mnli-mm":
                metrics = {k + "_mm": v for k, v in metrics.items()}
543
            if task is not None and "mnli" in task:
544
545
                combined.update(metrics)

546
            trainer.log_metrics("eval", metrics)
547
            trainer.save_metrics("eval", combined if task is not None and "mnli" in task else metrics)
thomwolf's avatar
thomwolf committed
548

549
    if training_args.do_predict:
550
        logger.info("*** Predict ***")
Sylvain Gugger's avatar
Sylvain Gugger committed
551
552
553

        # Loop to handle MNLI double evaluation (matched, mis-matched)
        tasks = [data_args.task_name]
554
        predict_datasets = [predict_dataset]
555
        if data_args.task_name == "mnli":
Sylvain Gugger's avatar
Sylvain Gugger committed
556
            tasks.append("mnli-mm")
557
            predict_datasets.append(raw_datasets["test_mismatched"])
558

559
        for predict_dataset, task in zip(predict_datasets, tasks):
Sylvain Gugger's avatar
Sylvain Gugger committed
560
            # Removing the `label` columns because it contains -1 and Trainer won't like that.
561
            predict_dataset = predict_dataset.remove_columns("label")
562
            predictions = trainer.predict(predict_dataset, metric_key_prefix="predict").predictions
Sylvain Gugger's avatar
Sylvain Gugger committed
563
            predictions = np.squeeze(predictions) if is_regression else np.argmax(predictions, axis=1)
564

565
            output_predict_file = os.path.join(training_args.output_dir, f"predict_results_{task}.txt")
Sylvain Gugger's avatar
Sylvain Gugger committed
566
            if trainer.is_world_process_zero():
567
568
                with open(output_predict_file, "w") as writer:
                    logger.info(f"***** Predict results {task} *****")
569
570
                    writer.write("index\tprediction\n")
                    for index, item in enumerate(predictions):
Sylvain Gugger's avatar
Sylvain Gugger committed
571
572
                        if is_regression:
                            writer.write(f"{index}\t{item:3.3f}\n")
573
                        else:
Sylvain Gugger's avatar
Sylvain Gugger committed
574
575
                            item = label_list[item]
                            writer.write(f"{index}\t{item}\n")
thomwolf's avatar
thomwolf committed
576

577
578
579
580
581
582
    kwargs = {"finetuned_from": model_args.model_name_or_path, "tasks": "text-classification"}
    if data_args.task_name is not None:
        kwargs["language"] = "en"
        kwargs["dataset_tags"] = "glue"
        kwargs["dataset_args"] = data_args.task_name
        kwargs["dataset"] = f"GLUE {data_args.task_name.upper()}"
Sylvain Gugger's avatar
Sylvain Gugger committed
583

584
    if training_args.push_to_hub:
Sylvain Gugger's avatar
Sylvain Gugger committed
585
        trainer.push_to_hub(**kwargs)
586
587
    else:
        trainer.create_model_card(**kwargs)
Sylvain Gugger's avatar
Sylvain Gugger committed
588

thomwolf's avatar
thomwolf committed
589

Lysandre Debut's avatar
Lysandre Debut committed
590
591
592
593
594
def _mp_fn(index):
    # For xla_spawn (TPUs)
    main()


thomwolf's avatar
thomwolf committed
595
596
if __name__ == "__main__":
    main()