run_translation.py 29.7 KB
Newer Older
1
#!/usr/bin/env python
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
# coding=utf-8
# Copyright The HuggingFace Team and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Fine-tuning the library models for sequence to sequence.
"""
# You can also adapt this script on your own sequence to sequence task. Pointers for this are left as comments.

import logging
import os
import sys
from dataclasses import dataclass, field
from typing import Optional

27
import datasets
28
import evaluate
29
import numpy as np
30
from datasets import load_dataset
31
32
33
34
35
36
37
38

import transformers
from transformers import (
    AutoConfig,
    AutoModelForSeq2SeqLM,
    AutoTokenizer,
    DataCollatorForSeq2Seq,
    HfArgumentParser,
39
40
41
    M2M100Tokenizer,
    MBart50Tokenizer,
    MBart50TokenizerFast,
42
    MBartTokenizer,
43
    MBartTokenizerFast,
44
45
46
47
48
    Seq2SeqTrainer,
    Seq2SeqTrainingArguments,
    default_data_collator,
    set_seed,
)
49
from transformers.trainer_utils import get_last_checkpoint
50
from transformers.utils import check_min_version, send_example_telemetry
51
from transformers.utils.versions import require_version
52
53


54
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
Arthur Zucker's avatar
Arthur Zucker committed
55
check_min_version("4.42.0.dev0")
Sylvain Gugger's avatar
Sylvain Gugger committed
56

57
require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/translation/requirements.txt")
58

59
60
logger = logging.getLogger(__name__)

61
62
63
# A list of all multilingual tokenizer which require src_lang and tgt_lang attributes.
MULTILINGUAL_TOKENIZERS = [MBartTokenizer, MBartTokenizerFast, MBart50Tokenizer, MBart50TokenizerFast, M2M100Tokenizer]

64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91

@dataclass
class ModelArguments:
    """
    Arguments pertaining to which model/config/tokenizer we are going to fine-tune from.
    """

    model_name_or_path: str = field(
        metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"}
    )
    config_name: Optional[str] = field(
        default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"}
    )
    tokenizer_name: Optional[str] = field(
        default=None, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"}
    )
    cache_dir: Optional[str] = field(
        default=None,
        metadata={"help": "Where to store the pretrained models downloaded from huggingface.co"},
    )
    use_fast_tokenizer: bool = field(
        default=True,
        metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."},
    )
    model_revision: str = field(
        default="main",
        metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."},
    )
92
93
    token: str = field(
        default=None,
94
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
95
            "help": (
96
97
                "The token to use as HTTP bearer authorization for remote files. If not specified, will use the token "
                "generated when running `huggingface-cli login` (stored in `~/.huggingface`)."
Sylvain Gugger's avatar
Sylvain Gugger committed
98
            )
99
100
        },
    )
101
102
103
104
    trust_remote_code: bool = field(
        default=False,
        metadata={
            "help": (
105
                "Whether or not to allow for custom models defined on the Hub in their own modeling files. This option "
106
                "should only be set to `True` for repositories you trust and in which you have read the code, as it will "
107
108
109
110
                "execute code present on the Hub on your local machine."
            )
        },
    )
111
112
113
114
115
116
117
118


@dataclass
class DataTrainingArguments:
    """
    Arguments pertaining to what data we are going to input our model for training and eval.
    """

119
120
121
    source_lang: str = field(default=None, metadata={"help": "Source language id for translation."})
    target_lang: str = field(default=None, metadata={"help": "Target language id for translation."})

122
123
124
125
126
127
    dataset_name: Optional[str] = field(
        default=None, metadata={"help": "The name of the dataset to use (via the datasets library)."}
    )
    dataset_config_name: Optional[str] = field(
        default=None, metadata={"help": "The configuration name of the dataset to use (via the datasets library)."}
    )
128
    train_file: Optional[str] = field(default=None, metadata={"help": "The input training data file (a jsonlines)."})
129
130
    validation_file: Optional[str] = field(
        default=None,
131
        metadata={
132
            "help": "An optional input evaluation data file to evaluate the metrics (sacrebleu) on a jsonlines file."
133
134
135
136
        },
    )
    test_file: Optional[str] = field(
        default=None,
137
        metadata={"help": "An optional input test data file to evaluate the metrics (sacrebleu) on a jsonlines file."},
138
139
140
141
142
143
144
145
146
147
148
    )
    overwrite_cache: bool = field(
        default=False, metadata={"help": "Overwrite the cached training and evaluation sets"}
    )
    preprocessing_num_workers: Optional[int] = field(
        default=None,
        metadata={"help": "The number of processes to use for the preprocessing."},
    )
    max_source_length: Optional[int] = field(
        default=1024,
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
149
150
151
152
            "help": (
                "The maximum total input sequence length after tokenization. Sequences longer "
                "than this will be truncated, sequences shorter will be padded."
            )
153
154
155
156
157
        },
    )
    max_target_length: Optional[int] = field(
        default=128,
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
158
159
160
161
            "help": (
                "The maximum total sequence length for target text after tokenization. Sequences longer "
                "than this will be truncated, sequences shorter will be padded."
            )
162
163
164
        },
    )
    val_max_target_length: Optional[int] = field(
165
        default=None,
166
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
167
168
            "help": (
                "The maximum total sequence length for validation target text after tokenization. Sequences longer "
169
                "than this will be truncated, sequences shorter will be padded. Will default to `max_target_length`. "
Sylvain Gugger's avatar
Sylvain Gugger committed
170
171
172
                "This argument is also used to override the ``max_length`` param of ``model.generate``, which is used "
                "during ``evaluate`` and ``predict``."
            )
173
174
175
176
177
        },
    )
    pad_to_max_length: bool = field(
        default=False,
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
178
179
180
181
182
            "help": (
                "Whether to pad all samples to model maximum sentence length. "
                "If False, will pad the samples dynamically when batching to the maximum length in the batch. More "
                "efficient on GPU but very bad for TPU."
            )
183
184
185
186
187
        },
    )
    max_train_samples: Optional[int] = field(
        default=None,
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
188
189
190
191
            "help": (
                "For debugging purposes or quicker training, truncate the number of training examples to this "
                "value if set."
            )
192
193
        },
    )
194
    max_eval_samples: Optional[int] = field(
195
196
        default=None,
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
197
198
199
200
            "help": (
                "For debugging purposes or quicker training, truncate the number of evaluation examples to this "
                "value if set."
            )
201
202
        },
    )
203
    max_predict_samples: Optional[int] = field(
204
205
        default=None,
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
206
207
208
209
            "help": (
                "For debugging purposes or quicker training, truncate the number of prediction examples to this "
                "value if set."
            )
210
211
212
        },
    )
    num_beams: Optional[int] = field(
213
        default=1,
214
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
215
216
217
218
            "help": (
                "Number of beams to use for evaluation. This argument will be passed to ``model.generate``, "
                "which is used during ``evaluate`` and ``predict``."
            )
219
220
        },
    )
221
222
223
224
225
226
    ignore_pad_token_for_loss: bool = field(
        default=True,
        metadata={
            "help": "Whether to ignore the tokens corresponding to padded labels in the loss computation or not."
        },
    )
227
228
229
    source_prefix: Optional[str] = field(
        default=None, metadata={"help": "A prefix to add before every source text (useful for T5 models)."}
    )
230
231
232
    forced_bos_token: Optional[str] = field(
        default=None,
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
233
234
235
236
237
            "help": (
                "The token to force as the first generated token after the :obj:`decoder_start_token_id`.Useful for"
                " multilingual models like :doc:`mBART <../model_doc/mbart>` where the first generated token needs to"
                " be the target language token.(Usually it is the target language token)"
            )
238
239
        },
    )
240
241
242
243

    def __post_init__(self):
        if self.dataset_name is None and self.train_file is None and self.validation_file is None:
            raise ValueError("Need either a dataset name or a training/validation file.")
244
245
246
        elif self.source_lang is None or self.target_lang is None:
            raise ValueError("Need to specify the source language and the target language.")

247
248
249
250
        # accepting both json and jsonl file extensions, as
        # many jsonlines files actually have a .json extension
        valid_extensions = ["json", "jsonl"]

251
252
        if self.train_file is not None:
            extension = self.train_file.split(".")[-1]
253
            assert extension in valid_extensions, "`train_file` should be a jsonlines file."
254
255
        if self.validation_file is not None:
            extension = self.validation_file.split(".")[-1]
256
            assert extension in valid_extensions, "`validation_file` should be a jsonlines file."
257
258
        if self.val_max_target_length is None:
            self.val_max_target_length = self.max_target_length
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273


def main():
    # See all possible arguments in src/transformers/training_args.py
    # or by passing the --help flag to this script.
    # We now keep distinct sets of args, for a cleaner separation of concerns.

    parser = HfArgumentParser((ModelArguments, DataTrainingArguments, Seq2SeqTrainingArguments))
    if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
        # If we pass only one argument to the script and it's the path to a json file,
        # let's parse it to get our arguments.
        model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1]))
    else:
        model_args, data_args, training_args = parser.parse_args_into_dataclasses()

274
275
276
277
    # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The
    # information sent is the one passed as arguments along with your Python/PyTorch versions.
    send_example_telemetry("run_translation", model_args, data_args)

278
279
    # Setup logging
    logging.basicConfig(
280
        format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
281
282
283
        datefmt="%m/%d/%Y %H:%M:%S",
        handlers=[logging.StreamHandler(sys.stdout)],
    )
284

285
286
287
288
    if training_args.should_log:
        # The default of training_args.log_level is passive, so we set log level at info here to have that default.
        transformers.utils.logging.set_verbosity_info()

289
    log_level = training_args.get_process_log_level()
290
291
292
    logger.setLevel(log_level)
    datasets.utils.logging.set_verbosity(log_level)
    transformers.utils.logging.set_verbosity(log_level)
293
294
    transformers.utils.logging.enable_default_handler()
    transformers.utils.logging.enable_explicit_format()
295
296
297

    # Log on each process the small summary:
    logger.warning(
298
        f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}, "
299
        + f"distributed training: {training_args.parallel_mode.value == 'distributed'}, 16-bits training: {training_args.fp16}"
300
301
302
    )
    logger.info(f"Training/evaluation parameters {training_args}")

303
    if data_args.source_prefix is None and model_args.model_name_or_path in [
304
305
306
307
308
        "google-t5/t5-small",
        "google-t5/t5-base",
        "google-t5/t5-large",
        "google-t5/t5-3b",
        "google-t5/t5-11b",
309
310
311
312
313
314
    ]:
        logger.warning(
            "You're running a t5 model but didn't provide a source prefix, which is expected, e.g. with "
            "`--source_prefix 'translate English to German: ' `"
        )

315
316
317
318
319
320
321
322
323
    # Detecting last checkpoint.
    last_checkpoint = None
    if os.path.isdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir:
        last_checkpoint = get_last_checkpoint(training_args.output_dir)
        if last_checkpoint is None and len(os.listdir(training_args.output_dir)) > 0:
            raise ValueError(
                f"Output directory ({training_args.output_dir}) already exists and is not empty. "
                "Use --overwrite_output_dir to overcome."
            )
324
        elif last_checkpoint is not None and training_args.resume_from_checkpoint is None:
325
326
327
328
            logger.info(
                f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change "
                "the `--output_dir` or add `--overwrite_output_dir` to train from scratch."
            )
329
330
331
332

    # Set seed before initializing model.
    set_seed(training_args.seed)

333
    # Get the datasets: you can either provide your own JSON training and evaluation files (see below)
334
335
336
337
338
339
340
341
342
343
    # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/
    # (the dataset will be downloaded automatically from the datasets Hub).
    #
    # For translation, only JSON files are supported, with one field named "translation" containing two keys for the
    # source and target languages (unless you adapt what follows).
    #
    # In distributed training, the load_dataset function guarantee that only one local process can concurrently
    # download the dataset.
    if data_args.dataset_name is not None:
        # Downloading and loading a dataset from the hub.
344
        raw_datasets = load_dataset(
345
346
347
            data_args.dataset_name,
            data_args.dataset_config_name,
            cache_dir=model_args.cache_dir,
348
            token=model_args.token,
349
        )
350
351
352
353
354
355
356
357
    else:
        data_files = {}
        if data_args.train_file is not None:
            data_files["train"] = data_args.train_file
            extension = data_args.train_file.split(".")[-1]
        if data_args.validation_file is not None:
            data_files["validation"] = data_args.validation_file
            extension = data_args.validation_file.split(".")[-1]
358
359
360
        if data_args.test_file is not None:
            data_files["test"] = data_args.test_file
            extension = data_args.test_file.split(".")[-1]
361
362
363
364
        if extension == "jsonl":
            builder_name = "json"  # the "json" builder reads both .json and .jsonl files
        else:
            builder_name = extension  # e.g. "parquet"
365
        raw_datasets = load_dataset(
366
            builder_name,
367
368
            data_files=data_files,
            cache_dir=model_args.cache_dir,
369
            token=model_args.token,
370
        )
371
    # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at
372
    # https://huggingface.co/docs/datasets/loading.
373
374
375
376
377
378
379
380
381
382

    # Load pretrained model and tokenizer
    #
    # Distributed training:
    # The .from_pretrained methods guarantee that only one local process can concurrently
    # download model & vocab.
    config = AutoConfig.from_pretrained(
        model_args.config_name if model_args.config_name else model_args.model_name_or_path,
        cache_dir=model_args.cache_dir,
        revision=model_args.model_revision,
383
        token=model_args.token,
384
        trust_remote_code=model_args.trust_remote_code,
385
386
387
388
389
390
    )
    tokenizer = AutoTokenizer.from_pretrained(
        model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path,
        cache_dir=model_args.cache_dir,
        use_fast=model_args.use_fast_tokenizer,
        revision=model_args.model_revision,
391
        token=model_args.token,
392
        trust_remote_code=model_args.trust_remote_code,
393
394
395
396
397
398
399
    )
    model = AutoModelForSeq2SeqLM.from_pretrained(
        model_args.model_name_or_path,
        from_tf=bool(".ckpt" in model_args.model_name_or_path),
        config=config,
        cache_dir=model_args.cache_dir,
        revision=model_args.model_revision,
400
        token=model_args.token,
401
        trust_remote_code=model_args.trust_remote_code,
402
403
    )

404
405
406
407
408
    # We resize the embeddings only when necessary to avoid index errors. If you are creating a model from scratch
    # on a small vocab and want a smaller embedding size, remove this test.
    embedding_size = model.get_input_embeddings().weight.shape[0]
    if len(tokenizer) > embedding_size:
        model.resize_token_embeddings(len(tokenizer))
Suraj Patil's avatar
Suraj Patil committed
409

410
    # Set decoder_start_token_id
411
412
413
414
415
416
    if model.config.decoder_start_token_id is None and isinstance(tokenizer, (MBartTokenizer, MBartTokenizerFast)):
        if isinstance(tokenizer, MBartTokenizer):
            model.config.decoder_start_token_id = tokenizer.lang_code_to_id[data_args.target_lang]
        else:
            model.config.decoder_start_token_id = tokenizer.convert_tokens_to_ids(data_args.target_lang)

417
418
419
    if model.config.decoder_start_token_id is None:
        raise ValueError("Make sure that `config.decoder_start_token_id` is correctly defined")

420
    prefix = data_args.source_prefix if data_args.source_prefix is not None else ""
421

422
423
424
    # Preprocessing the datasets.
    # We need to tokenize inputs and targets.
    if training_args.do_train:
425
        column_names = raw_datasets["train"].column_names
426
    elif training_args.do_eval:
427
        column_names = raw_datasets["validation"].column_names
428
    elif training_args.do_predict:
429
        column_names = raw_datasets["test"].column_names
430
431
432
    else:
        logger.info("There is nothing to do. Please pass `do_train`, `do_eval` and/or `do_predict`.")
        return
433
434
435

    # For translation we set the codes of our source and target languages (only useful for mBART, the others will
    # ignore those attributes).
436
437
438
439
440
441
442
443
444
445
446
447
448
449
    if isinstance(tokenizer, tuple(MULTILINGUAL_TOKENIZERS)):
        assert data_args.target_lang is not None and data_args.source_lang is not None, (
            f"{tokenizer.__class__.__name__} is a multilingual tokenizer which requires --source_lang and "
            "--target_lang arguments."
        )

        tokenizer.src_lang = data_args.source_lang
        tokenizer.tgt_lang = data_args.target_lang

        # For multilingual translation models like mBART-50 and M2M100 we need to force the target language token
        # as the first generated token. We ask the user to explicitly provide this as --forced_bos_token argument.
        forced_bos_token_id = (
            tokenizer.lang_code_to_id[data_args.forced_bos_token] if data_args.forced_bos_token is not None else None
        )
450
        model.config.forced_bos_token_id = forced_bos_token_id
451

452
453
454
    # Get the language codes for input/target.
    source_lang = data_args.source_lang.split("_")[0]
    target_lang = data_args.target_lang.split("_")[0]
455

456
457
458
459
460
461
462
463
464
465
466
467
468
    # Check the whether the source target length fits in the model, if it has absolute positional embeddings
    if (
        hasattr(model.config, "max_position_embeddings")
        and not hasattr(model.config, "relative_attention_max_distance")
        and model.config.max_position_embeddings < data_args.max_source_length
    ):
        raise ValueError(
            f"`--max_source_length` is set to {data_args.max_source_length}, but the model only has"
            f" {model.config.max_position_embeddings} position encodings. Consider either reducing"
            f" `--max_source_length` to {model.config.max_position_embeddings} or using a model with larger position "
            "embeddings"
        )

469
470
471
472
    # Temporarily set max_target_length for training.
    max_target_length = data_args.max_target_length
    padding = "max_length" if data_args.pad_to_max_length else False

473
    if training_args.label_smoothing_factor > 0 and not hasattr(model, "prepare_decoder_input_ids_from_labels"):
474
        logger.warning(
475
            "label_smoothing is enabled but the `prepare_decoder_input_ids_from_labels` method is not defined for "
476
477
478
            f"`{model.__class__.__name__}`. This will lead to loss being calculated twice and will take up more memory"
        )

479
    def preprocess_function(examples):
480
481
        inputs = [ex[source_lang] for ex in examples["translation"]]
        targets = [ex[target_lang] for ex in examples["translation"]]
482
        inputs = [prefix + inp for inp in inputs]
483
484
        model_inputs = tokenizer(inputs, max_length=data_args.max_source_length, padding=padding, truncation=True)

485
486
        # Tokenize targets with the `text_target` keyword argument
        labels = tokenizer(text_target=targets, max_length=max_target_length, padding=padding, truncation=True)
487
488
489
490
491
492
493
494
495
496
497
498

        # If we are padding here, replace all tokenizer.pad_token_id in the labels by -100 when we want to ignore
        # padding in the loss.
        if padding == "max_length" and data_args.ignore_pad_token_for_loss:
            labels["input_ids"] = [
                [(l if l != tokenizer.pad_token_id else -100) for l in label] for label in labels["input_ids"]
            ]

        model_inputs["labels"] = labels["input_ids"]
        return model_inputs

    if training_args.do_train:
499
        if "train" not in raw_datasets:
500
            raise ValueError("--do_train requires a train dataset")
501
        train_dataset = raw_datasets["train"]
502
        if data_args.max_train_samples is not None:
503
504
            max_train_samples = min(len(train_dataset), data_args.max_train_samples)
            train_dataset = train_dataset.select(range(max_train_samples))
505
506
507
508
509
510
511
512
513
        with training_args.main_process_first(desc="train dataset map pre-processing"):
            train_dataset = train_dataset.map(
                preprocess_function,
                batched=True,
                num_proc=data_args.preprocessing_num_workers,
                remove_columns=column_names,
                load_from_cache_file=not data_args.overwrite_cache,
                desc="Running tokenizer on train dataset",
            )
514
515
516

    if training_args.do_eval:
        max_target_length = data_args.val_max_target_length
517
        if "validation" not in raw_datasets:
518
            raise ValueError("--do_eval requires a validation dataset")
519
        eval_dataset = raw_datasets["validation"]
520
        if data_args.max_eval_samples is not None:
521
522
            max_eval_samples = min(len(eval_dataset), data_args.max_eval_samples)
            eval_dataset = eval_dataset.select(range(max_eval_samples))
523
524
525
526
527
528
529
530
531
        with training_args.main_process_first(desc="validation dataset map pre-processing"):
            eval_dataset = eval_dataset.map(
                preprocess_function,
                batched=True,
                num_proc=data_args.preprocessing_num_workers,
                remove_columns=column_names,
                load_from_cache_file=not data_args.overwrite_cache,
                desc="Running tokenizer on validation dataset",
            )
532

533
534
    if training_args.do_predict:
        max_target_length = data_args.val_max_target_length
535
        if "test" not in raw_datasets:
536
            raise ValueError("--do_predict requires a test dataset")
537
        predict_dataset = raw_datasets["test"]
538
        if data_args.max_predict_samples is not None:
539
540
            max_predict_samples = min(len(predict_dataset), data_args.max_predict_samples)
            predict_dataset = predict_dataset.select(range(max_predict_samples))
541
542
543
544
545
546
547
548
549
        with training_args.main_process_first(desc="prediction dataset map pre-processing"):
            predict_dataset = predict_dataset.map(
                preprocess_function,
                batched=True,
                num_proc=data_args.preprocessing_num_workers,
                remove_columns=column_names,
                load_from_cache_file=not data_args.overwrite_cache,
                desc="Running tokenizer on prediction dataset",
            )
550

551
552
553
554
555
    # Data collator
    label_pad_token_id = -100 if data_args.ignore_pad_token_for_loss else tokenizer.pad_token_id
    if data_args.pad_to_max_length:
        data_collator = default_data_collator
    else:
556
557
        data_collator = DataCollatorForSeq2Seq(
            tokenizer,
558
            model=model,
559
560
561
            label_pad_token_id=label_pad_token_id,
            pad_to_multiple_of=8 if training_args.fp16 else None,
        )
562
563

    # Metric
564
    metric = evaluate.load("sacrebleu", cache_dir=model_args.cache_dir)
565

566
567
    def postprocess_text(preds, labels):
        preds = [pred.strip() for pred in preds]
568
        labels = [[label.strip()] for label in labels]
569
570
571

        return preds, labels

572
573
574
575
    def compute_metrics(eval_preds):
        preds, labels = eval_preds
        if isinstance(preds, tuple):
            preds = preds[0]
576
577
        # Replace -100s used for padding as we can't decode them
        preds = np.where(preds != -100, preds, tokenizer.pad_token_id)
578
        decoded_preds = tokenizer.batch_decode(preds, skip_special_tokens=True)
579
        labels = np.where(labels != -100, labels, tokenizer.pad_token_id)
580
581
582
        decoded_labels = tokenizer.batch_decode(labels, skip_special_tokens=True)

        # Some simple post-processing
583
        decoded_preds, decoded_labels = postprocess_text(decoded_preds, decoded_labels)
584

585
586
        result = metric.compute(predictions=decoded_preds, references=decoded_labels)
        result = {"bleu": result["score"]}
587
588
589

        prediction_lens = [np.count_nonzero(pred != tokenizer.pad_token_id) for pred in preds]
        result["gen_len"] = np.mean(prediction_lens)
590
        result = {k: round(v, 4) for k, v in result.items()}
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
        return result

    # Initialize our Trainer
    trainer = Seq2SeqTrainer(
        model=model,
        args=training_args,
        train_dataset=train_dataset if training_args.do_train else None,
        eval_dataset=eval_dataset if training_args.do_eval else None,
        tokenizer=tokenizer,
        data_collator=data_collator,
        compute_metrics=compute_metrics if training_args.predict_with_generate else None,
    )

    # Training
    if training_args.do_train:
606
607
608
609
        checkpoint = None
        if training_args.resume_from_checkpoint is not None:
            checkpoint = training_args.resume_from_checkpoint
        elif last_checkpoint is not None:
610
611
            checkpoint = last_checkpoint
        train_result = trainer.train(resume_from_checkpoint=checkpoint)
612
613
        trainer.save_model()  # Saves the tokenizer too for easy upload

614
615
616
617
618
        metrics = train_result.metrics
        max_train_samples = (
            data_args.max_train_samples if data_args.max_train_samples is not None else len(train_dataset)
        )
        metrics["train_samples"] = min(max_train_samples, len(train_dataset))
619

620
621
622
        trainer.log_metrics("train", metrics)
        trainer.save_metrics("train", metrics)
        trainer.save_state()
623
624

    # Evaluation
625
    results = {}
626
627
628
629
630
631
    max_length = (
        training_args.generation_max_length
        if training_args.generation_max_length is not None
        else data_args.val_max_target_length
    )
    num_beams = data_args.num_beams if data_args.num_beams is not None else training_args.generation_num_beams
632
633
634
    if training_args.do_eval:
        logger.info("*** Evaluate ***")

635
        metrics = trainer.evaluate(max_length=max_length, num_beams=num_beams, metric_key_prefix="eval")
636
637
        max_eval_samples = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(eval_dataset)
        metrics["eval_samples"] = min(max_eval_samples, len(eval_dataset))
638

639
640
        trainer.log_metrics("eval", metrics)
        trainer.save_metrics("eval", metrics)
641

642
    if training_args.do_predict:
643
        logger.info("*** Predict ***")
644

645
        predict_results = trainer.predict(
646
            predict_dataset, metric_key_prefix="predict", max_length=max_length, num_beams=num_beams
647
        )
648
649
650
651
652
        metrics = predict_results.metrics
        max_predict_samples = (
            data_args.max_predict_samples if data_args.max_predict_samples is not None else len(predict_dataset)
        )
        metrics["predict_samples"] = min(max_predict_samples, len(predict_dataset))
653

654
655
        trainer.log_metrics("predict", metrics)
        trainer.save_metrics("predict", metrics)
656

657
        if trainer.is_world_process_zero():
658
            if training_args.predict_with_generate:
659
660
                predictions = predict_results.predictions
                predictions = np.where(predictions != -100, predictions, tokenizer.pad_token_id)
661
                predictions = tokenizer.batch_decode(
662
                    predictions, skip_special_tokens=True, clean_up_tokenization_spaces=True
663
                )
664
665
                predictions = [pred.strip() for pred in predictions]
                output_prediction_file = os.path.join(training_args.output_dir, "generated_predictions.txt")
666
                with open(output_prediction_file, "w", encoding="utf-8") as writer:
667
                    writer.write("\n".join(predictions))
668

669
670
671
672
673
674
675
676
    kwargs = {"finetuned_from": model_args.model_name_or_path, "tasks": "translation"}
    if data_args.dataset_name is not None:
        kwargs["dataset_tags"] = data_args.dataset_name
        if data_args.dataset_config_name is not None:
            kwargs["dataset_args"] = data_args.dataset_config_name
            kwargs["dataset"] = f"{data_args.dataset_name} {data_args.dataset_config_name}"
        else:
            kwargs["dataset"] = data_args.dataset_name
Sylvain Gugger's avatar
Sylvain Gugger committed
677

678
679
680
681
682
    languages = [l for l in [data_args.source_lang, data_args.target_lang] if l is not None]
    if len(languages) > 0:
        kwargs["language"] = languages

    if training_args.push_to_hub:
Sylvain Gugger's avatar
Sylvain Gugger committed
683
        trainer.push_to_hub(**kwargs)
684
685
    else:
        trainer.create_model_card(**kwargs)
Sylvain Gugger's avatar
Sylvain Gugger committed
686

687
688
    return results

689
690
691
692
693
694
695
696

def _mp_fn(index):
    # For xla_spawn (TPUs)
    main()


if __name__ == "__main__":
    main()