test_modeling_flax_common.py 39.2 KB
Newer Older
Sylvain Gugger's avatar
Sylvain Gugger committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# Copyright 2020 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
import copy
16
import inspect
Sylvain Gugger's avatar
Sylvain Gugger committed
17
import random
18
import tempfile
19
import unittest
20
from typing import List, Tuple
Sylvain Gugger's avatar
Sylvain Gugger committed
21
22
23
24

import numpy as np

import transformers
25
from huggingface_hub import delete_repo, login
26
from requests.exceptions import HTTPError
27
from transformers import BertConfig, is_flax_available, is_torch_available
Daniel Stancl's avatar
Daniel Stancl committed
28
from transformers.models.auto import get_values
29
from transformers.testing_utils import PASS, USER, CaptureLogger, is_pt_flax_cross_test, is_staging_test, require_flax
30
from transformers.utils import logging
Sylvain Gugger's avatar
Sylvain Gugger committed
31
32
33
34
35
36
37


if is_flax_available():
    import os

    import jax
    import jax.numpy as jnp
38
    from flax.core.frozen_dict import unfreeze
Suraj Patil's avatar
Suraj Patil committed
39
    from flax.traverse_util import flatten_dict, unflatten_dict
40
41
42
43
    from transformers import (
        FLAX_MODEL_FOR_QUESTION_ANSWERING_MAPPING,
        FLAX_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING,
        FLAX_MODEL_MAPPING,
44
        FlaxAutoModel,
45
46
47
        FlaxAutoModelForSequenceClassification,
        FlaxBertModel,
    )
48
49
50
51
    from transformers.modeling_flax_pytorch_utils import (
        convert_pytorch_state_dict_to_flax,
        load_flax_weights_in_pytorch_model,
    )
Sylvain Gugger's avatar
Sylvain Gugger committed
52
53
54
55
56
57
58

    os.environ["XLA_PYTHON_CLIENT_MEM_FRACTION"] = "0.12"  # assumed parallelism: 8

if is_torch_available():
    import torch


Daniel Stancl's avatar
Daniel Stancl committed
59
60
61
62
63
64
65
66
def _config_zero_init(config):
    configs_no_init = copy.deepcopy(config)
    for key in configs_no_init.__dict__.keys():
        if "_range" in key or "_std" in key or "initializer_factor" in key:
            setattr(configs_no_init, key, 1e-10)
    return configs_no_init


Sylvain Gugger's avatar
Sylvain Gugger committed
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
def ids_tensor(shape, vocab_size, rng=None):
    """Creates a random int32 tensor of the shape within the vocab size."""
    if rng is None:
        rng = random.Random()

    total_dims = 1
    for dim in shape:
        total_dims *= dim

    values = []
    for _ in range(total_dims):
        values.append(rng.randint(0, vocab_size - 1))

    output = np.array(values, dtype=jnp.int32).reshape(shape)

    return output


Suraj Patil's avatar
Suraj Patil committed
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
def floats_tensor(shape, scale=1.0, rng=None, name=None):
    """Creates a random float32 tensor"""
    if rng is None:
        rng = random.Random()

    total_dims = 1
    for dim in shape:
        total_dims *= dim

    values = []
    for _ in range(total_dims):
        values.append(rng.random() * scale)

    return np.array(values, dtype=jnp.float32).reshape(shape)


Sylvain Gugger's avatar
Sylvain Gugger committed
101
102
103
104
105
106
107
def random_attention_mask(shape, rng=None):
    attn_mask = ids_tensor(shape, vocab_size=2, rng=rng)
    # make sure that at least one token is attended to for each batch
    attn_mask[:, -1] = 1
    return attn_mask


108
@require_flax
Sylvain Gugger's avatar
Sylvain Gugger committed
109
110
111
class FlaxModelTesterMixin:
    model_tester = None
    all_model_classes = ()
112
    test_mismatched_shapes = True
Daniel Stancl's avatar
Daniel Stancl committed
113
    is_encoder_decoder = False
114
    test_head_masking = False
Sylvain Gugger's avatar
Sylvain Gugger committed
115

116
117
118
119
120
121
122
    def _prepare_for_class(self, inputs_dict, model_class):
        inputs_dict = copy.deepcopy(inputs_dict)

        # hack for now until we have AutoModel classes
        if "ForMultipleChoice" in model_class.__name__:
            inputs_dict = {
                k: jnp.broadcast_to(v[:, None], (v.shape[0], self.model_tester.num_choices, v.shape[-1]))
123
                if isinstance(v, (jnp.ndarray, np.ndarray))
124
125
                else v
                for k, v in inputs_dict.items()
126
127
128
129
            }

        return inputs_dict

Sylvain Gugger's avatar
Sylvain Gugger committed
130
    def assert_almost_equals(self, a: np.ndarray, b: np.ndarray, tol: float):
131
        diff = np.abs((a - b)).max()
Sylvain Gugger's avatar
Sylvain Gugger committed
132
133
        self.assertLessEqual(diff, tol, f"Difference between torch and flax is {diff} (>= {tol}).")

134
135
136
137
138
139
140
141
142
143
144
145
146
147
    def test_model_outputs_equivalence(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        def check_equivalence(model, tuple_inputs, dict_inputs, additional_kwargs={}):
            tuple_output = model(**tuple_inputs, return_dict=False, **additional_kwargs)
            dict_output = model(**dict_inputs, return_dict=True, **additional_kwargs).to_tuple()

            def recursive_check(tuple_object, dict_object):
                if isinstance(tuple_object, (List, Tuple)):
                    for tuple_iterable_value, dict_iterable_value in zip(tuple_object, dict_object):
                        recursive_check(tuple_iterable_value, dict_iterable_value)
                elif tuple_object is None:
                    return
                else:
148
                    self.assert_almost_equals(jnp.nan_to_num(tuple_object), jnp.nan_to_num(dict_object), 1e-5)
149

150
            recursive_check(tuple_output, dict_output)
151
152
153
154
155
156
157
158
159
160
161
162

        for model_class in self.all_model_classes:
            model = model_class(config)

            tuple_inputs = self._prepare_for_class(inputs_dict, model_class)
            dict_inputs = self._prepare_for_class(inputs_dict, model_class)
            check_equivalence(model, tuple_inputs, dict_inputs)

            tuple_inputs = self._prepare_for_class(inputs_dict, model_class)
            dict_inputs = self._prepare_for_class(inputs_dict, model_class)
            check_equivalence(model, tuple_inputs, dict_inputs, {"output_hidden_states": True})

163
    @is_pt_flax_cross_test
164
    def test_equivalence_pt_to_flax(self):
Sylvain Gugger's avatar
Sylvain Gugger committed
165
166
167
168
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            with self.subTest(model_class.__name__):
169
                # prepare inputs
170
                prepared_inputs_dict = self._prepare_for_class(inputs_dict, model_class)
171
172
173
                pt_inputs = {k: torch.tensor(v.tolist()) for k, v in prepared_inputs_dict.items()}

                # load corresponding PyTorch class
Sylvain Gugger's avatar
Sylvain Gugger committed
174
175
176
                pt_model_class_name = model_class.__name__[4:]  # Skip the "Flax" at the beginning
                pt_model_class = getattr(transformers, pt_model_class_name)

177
                pt_model = pt_model_class(config).eval()
Daniel Stancl's avatar
Daniel Stancl committed
178
179
180
                # Flax models don't use the `use_cache` option and cache is not returned as a default.
                # So we disable `use_cache` here for PyTorch model.
                pt_model.config.use_cache = False
181
                fx_model = model_class(config, dtype=jnp.float32)
182

183
                fx_state = convert_pytorch_state_dict_to_flax(pt_model.state_dict(), fx_model)
184
                fx_model.params = fx_state
Sylvain Gugger's avatar
Sylvain Gugger committed
185
186
187

                with torch.no_grad():
                    pt_outputs = pt_model(**pt_inputs).to_tuple()
188

189
                fx_outputs = fx_model(**prepared_inputs_dict).to_tuple()
Sylvain Gugger's avatar
Sylvain Gugger committed
190
191
                self.assertEqual(len(fx_outputs), len(pt_outputs), "Output lengths differ between Flax and PyTorch")
                for fx_output, pt_output in zip(fx_outputs, pt_outputs):
192
                    self.assert_almost_equals(fx_output, pt_output.numpy(), 4e-2)
Sylvain Gugger's avatar
Sylvain Gugger committed
193

194
195
196
197
                with tempfile.TemporaryDirectory() as tmpdirname:
                    pt_model.save_pretrained(tmpdirname)
                    fx_model_loaded = model_class.from_pretrained(tmpdirname, from_pt=True)

198
                fx_outputs_loaded = fx_model_loaded(**prepared_inputs_dict).to_tuple()
199
200
201
202
                self.assertEqual(
                    len(fx_outputs_loaded), len(pt_outputs), "Output lengths differ between Flax and PyTorch"
                )
                for fx_output_loaded, pt_output in zip(fx_outputs_loaded, pt_outputs):
203
                    self.assert_almost_equals(fx_output_loaded, pt_output.numpy(), 4e-2)
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219

    @is_pt_flax_cross_test
    def test_equivalence_flax_to_pt(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            with self.subTest(model_class.__name__):
                # prepare inputs
                prepared_inputs_dict = self._prepare_for_class(inputs_dict, model_class)
                pt_inputs = {k: torch.tensor(v.tolist()) for k, v in prepared_inputs_dict.items()}

                # load corresponding PyTorch class
                pt_model_class_name = model_class.__name__[4:]  # Skip the "Flax" at the beginning
                pt_model_class = getattr(transformers, pt_model_class_name)

                pt_model = pt_model_class(config).eval()
Daniel Stancl's avatar
Daniel Stancl committed
220
221
222
                # Flax models don't use the `use_cache` option and cache is not returned as a default.
                # So we disable `use_cache` here for PyTorch model.
                pt_model.config.use_cache = False
223
224
225
226
227
228
229
230
231
232
                fx_model = model_class(config, dtype=jnp.float32)

                pt_model = load_flax_weights_in_pytorch_model(pt_model, fx_model.params)

                # make sure weights are tied in PyTorch
                pt_model.tie_weights()

                with torch.no_grad():
                    pt_outputs = pt_model(**pt_inputs).to_tuple()

233
                fx_outputs = fx_model(**prepared_inputs_dict).to_tuple()
234
                self.assertEqual(len(fx_outputs), len(pt_outputs), "Output lengths differ between Flax and PyTorch")
Daniel Stancl's avatar
Daniel Stancl committed
235

236
                for fx_output, pt_output in zip(fx_outputs, pt_outputs):
237
                    self.assert_almost_equals(fx_output, pt_output.numpy(), 4e-2)
238
239
240
241
242
243
244
245
246
247
248
249

                with tempfile.TemporaryDirectory() as tmpdirname:
                    fx_model.save_pretrained(tmpdirname)
                    pt_model_loaded = pt_model_class.from_pretrained(tmpdirname, from_flax=True)

                with torch.no_grad():
                    pt_outputs_loaded = pt_model_loaded(**pt_inputs).to_tuple()

                self.assertEqual(
                    len(fx_outputs), len(pt_outputs_loaded), "Output lengths differ between Flax and PyTorch"
                )
                for fx_output, pt_output in zip(fx_outputs, pt_outputs_loaded):
250
                    self.assert_almost_equals(fx_output, pt_output.numpy(), 4e-2)
251
252

    def test_from_pretrained_save_pretrained(self):
Sylvain Gugger's avatar
Sylvain Gugger committed
253
254
255
256
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            with self.subTest(model_class.__name__):
257
                model = model_class(config)
Sylvain Gugger's avatar
Sylvain Gugger committed
258

259
                prepared_inputs_dict = self._prepare_for_class(inputs_dict, model_class)
260
                outputs = model(**prepared_inputs_dict).to_tuple()
Sylvain Gugger's avatar
Sylvain Gugger committed
261

262
                # verify that normal save_pretrained works as expected
263
264
265
266
                with tempfile.TemporaryDirectory() as tmpdirname:
                    model.save_pretrained(tmpdirname)
                    model_loaded = model_class.from_pretrained(tmpdirname)

267
                outputs_loaded = model_loaded(**prepared_inputs_dict).to_tuple()
268
269
270
271
272
273
274
275
276
277
                for output_loaded, output in zip(outputs_loaded, outputs):
                    self.assert_almost_equals(output_loaded, output, 1e-3)

                # verify that save_pretrained for distributed training
                # with `params=params` works as expected
                with tempfile.TemporaryDirectory() as tmpdirname:
                    model.save_pretrained(tmpdirname, params=model.params)
                    model_loaded = model_class.from_pretrained(tmpdirname)

                outputs_loaded = model_loaded(**prepared_inputs_dict).to_tuple()
278
                for output_loaded, output in zip(outputs_loaded, outputs):
279
                    self.assert_almost_equals(output_loaded, output, 1e-3)
280

281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
    def test_save_load_from_base(self):
        config, _ = self.model_tester.prepare_config_and_inputs_for_common()
        base_class = FLAX_MODEL_MAPPING[config.__class__]

        for model_class in self.all_model_classes:
            if model_class == base_class:
                continue

            model = base_class(config)
            base_params = flatten_dict(unfreeze(model.params))

            # check that all base model weights are loaded correctly
            with tempfile.TemporaryDirectory() as tmpdirname:
                model.save_pretrained(tmpdirname)
                head_model = model_class.from_pretrained(tmpdirname)

                base_param_from_head = flatten_dict(unfreeze(head_model.params[head_model.base_model_prefix]))

                for key in base_param_from_head.keys():
                    max_diff = (base_params[key] - base_param_from_head[key]).sum().item()
                    self.assertLessEqual(max_diff, 1e-3, msg=f"{key} not identical")

    def test_save_load_to_base(self):
        config, _ = self.model_tester.prepare_config_and_inputs_for_common()
        base_class = FLAX_MODEL_MAPPING[config.__class__]

        for model_class in self.all_model_classes:
            if model_class == base_class:
                continue

            model = model_class(config)
            base_params_from_head = flatten_dict(unfreeze(model.params[model.base_model_prefix]))

            # check that all base model weights are loaded correctly
            with tempfile.TemporaryDirectory() as tmpdirname:
                model.save_pretrained(tmpdirname)
                base_model = base_class.from_pretrained(tmpdirname)

                base_params = flatten_dict(unfreeze(base_model.params))

                for key in base_params_from_head.keys():
                    max_diff = (base_params[key] - base_params_from_head[key]).sum().item()
                    self.assertLessEqual(max_diff, 1e-3, msg=f"{key} not identical")

325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
    @is_pt_flax_cross_test
    def test_save_load_from_base_pt(self):
        config, _ = self.model_tester.prepare_config_and_inputs_for_common()
        base_class = FLAX_MODEL_MAPPING[config.__class__]

        for model_class in self.all_model_classes:
            if model_class == base_class:
                continue

            model = base_class(config)
            base_params = flatten_dict(unfreeze(model.params))

            # convert Flax model to PyTorch model
            pt_model_class = getattr(transformers, base_class.__name__[4:])  # Skip the "Flax" at the beginning
            pt_model = pt_model_class(config).eval()
            pt_model = load_flax_weights_in_pytorch_model(pt_model, model.params)

            # check that all base model weights are loaded correctly
            with tempfile.TemporaryDirectory() as tmpdirname:
                # save pt model
                pt_model.save_pretrained(tmpdirname)
                head_model = model_class.from_pretrained(tmpdirname, from_pt=True)

                base_param_from_head = flatten_dict(unfreeze(head_model.params[head_model.base_model_prefix]))

                for key in base_param_from_head.keys():
                    max_diff = (base_params[key] - base_param_from_head[key]).sum().item()
                    self.assertLessEqual(max_diff, 1e-3, msg=f"{key} not identical")

    @is_pt_flax_cross_test
    def test_save_load_to_base_pt(self):
        config, _ = self.model_tester.prepare_config_and_inputs_for_common()
        base_class = FLAX_MODEL_MAPPING[config.__class__]

        for model_class in self.all_model_classes:
            if model_class == base_class:
                continue

            model = model_class(config)
            base_params_from_head = flatten_dict(unfreeze(model.params[model.base_model_prefix]))

            # convert Flax model to PyTorch model
            pt_model_class = getattr(transformers, model_class.__name__[4:])  # Skip the "Flax" at the beginning
            pt_model = pt_model_class(config).eval()
            pt_model = load_flax_weights_in_pytorch_model(pt_model, model.params)

            # check that all base model weights are loaded correctly
            with tempfile.TemporaryDirectory() as tmpdirname:
                pt_model.save_pretrained(tmpdirname)
                base_model = base_class.from_pretrained(tmpdirname, from_pt=True)

                base_params = flatten_dict(unfreeze(base_model.params))

                for key in base_params_from_head.keys():
                    max_diff = (base_params[key] - base_params_from_head[key]).sum().item()
                    self.assertLessEqual(max_diff, 1e-3, msg=f"{key} not identical")

382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
    @is_pt_flax_cross_test
    def test_save_load_bf16_to_base_pt(self):
        config, _ = self.model_tester.prepare_config_and_inputs_for_common()
        base_class = FLAX_MODEL_MAPPING[config.__class__]

        for model_class in self.all_model_classes:
            if model_class == base_class:
                continue

            model = model_class(config)
            model.params = model.to_bf16(model.params)
            base_params_from_head = flatten_dict(unfreeze(model.params[model.base_model_prefix]))

            # convert Flax model to PyTorch model
            pt_model_class = getattr(transformers, model_class.__name__[4:])  # Skip the "Flax" at the beginning
            pt_model = pt_model_class(config).eval()
            pt_model = load_flax_weights_in_pytorch_model(pt_model, model.params)

            # check that all base model weights are loaded correctly
            with tempfile.TemporaryDirectory() as tmpdirname:
                pt_model.save_pretrained(tmpdirname)
                base_model = base_class.from_pretrained(tmpdirname, from_pt=True)

                base_params = flatten_dict(unfreeze(base_model.params))

                for key in base_params_from_head.keys():
                    max_diff = (base_params[key] - base_params_from_head[key]).sum().item()
                    self.assertLessEqual(max_diff, 1e-3, msg=f"{key} not identical")

411
412
413
414
415
    def test_jit_compilation(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            with self.subTest(model_class.__name__):
416
                prepared_inputs_dict = self._prepare_for_class(inputs_dict, model_class)
417
                model = model_class(config)
Sylvain Gugger's avatar
Sylvain Gugger committed
418
419

                @jax.jit
Suraj Patil's avatar
Suraj Patil committed
420
                def model_jitted(input_ids, attention_mask=None, **kwargs):
421
                    return model(input_ids=input_ids, attention_mask=attention_mask, **kwargs)
422
423

                with self.subTest("JIT Enabled"):
424
                    jitted_outputs = model_jitted(**prepared_inputs_dict).to_tuple()
Sylvain Gugger's avatar
Sylvain Gugger committed
425
426
427

                with self.subTest("JIT Disabled"):
                    with jax.disable_jit():
428
                        outputs = model_jitted(**prepared_inputs_dict).to_tuple()
Sylvain Gugger's avatar
Sylvain Gugger committed
429
430
431

                self.assertEqual(len(outputs), len(jitted_outputs))
                for jitted_output, output in zip(jitted_outputs, outputs):
Daniel Stancl's avatar
Daniel Stancl committed
432

Sylvain Gugger's avatar
Sylvain Gugger committed
433
                    self.assertEqual(jitted_output.shape, output.shape)
434

435
436
437
438
439
440
441
442
443
    def test_forward_signature(self):
        config, _ = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
            signature = inspect.signature(model.__call__)
            # signature.parameters is an OrderedDict => so arg_names order is deterministic
            arg_names = [*signature.parameters.keys()]

Daniel Stancl's avatar
Daniel Stancl committed
444
445
446
447
448
449
450
451
452
453
454
            if model.config.is_encoder_decoder:
                expected_arg_names = [
                    "input_ids",
                    "attention_mask",
                    "decoder_input_ids",
                    "decoder_attention_mask",
                ]
                self.assertListEqual(arg_names[: len(expected_arg_names)], expected_arg_names)
            else:
                expected_arg_names = ["input_ids", "attention_mask"]
                self.assertListEqual(arg_names[:2], expected_arg_names)
455

456
457
458
459
460
461
462
463
464
465
    def test_naming_convention(self):
        for model_class in self.all_model_classes:
            model_class_name = model_class.__name__
            module_class_name = (
                model_class_name[:-5] + "Module" if model_class_name[-5:] == "Model" else model_class_name + "Module"
            )
            bert_modeling_flax_module = __import__(model_class.__module__, fromlist=[module_class_name])
            module_cls = getattr(bert_modeling_flax_module, module_class_name)

            self.assertIsNotNone(module_cls)
466
467
468
469
470
471

    def test_hidden_states_output(self):
        def check_hidden_states_output(inputs_dict, config, model_class):
            model = model_class(config)

            outputs = model(**self._prepare_for_class(inputs_dict, model_class))
Daniel Stancl's avatar
Daniel Stancl committed
472
            hidden_states = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states
473

Daniel Stancl's avatar
Daniel Stancl committed
474
475
476
477
478
479
480
481
482
            expected_num_layers = getattr(
                self.model_tester, "expected_num_hidden_layers", self.model_tester.num_hidden_layers + 1
            )
            self.assertEqual(len(hidden_states), expected_num_layers)

            if hasattr(self.model_tester, "encoder_seq_length"):
                seq_length = self.model_tester.encoder_seq_length
            else:
                seq_length = self.model_tester.seq_length
483
484
485
486
487
488

            self.assertListEqual(
                list(hidden_states[0].shape[-2:]),
                [seq_length, self.model_tester.hidden_size],
            )

Daniel Stancl's avatar
Daniel Stancl committed
489
490
491
492
493
494
495
496
497
498
499
500
501
            if config.is_encoder_decoder:
                hidden_states = outputs.decoder_hidden_states

                self.assertIsInstance(hidden_states, (list, tuple))
                self.assertEqual(len(hidden_states), expected_num_layers)
                seq_len = getattr(self.model_tester, "seq_length", None)
                decoder_seq_length = getattr(self.model_tester, "decoder_seq_length", seq_len)

                self.assertListEqual(
                    list(hidden_states[0].shape[-2:]),
                    [decoder_seq_length, self.model_tester.hidden_size],
                )

502
503
504
505
506
507
508
509
510
511
512
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            inputs_dict["output_hidden_states"] = True
            check_hidden_states_output(inputs_dict, config, model_class)

            # check that output_hidden_states also work using config
            del inputs_dict["output_hidden_states"]
            config.output_hidden_states = True

            check_hidden_states_output(inputs_dict, config, model_class)
513
514
515
516
517
518

    def test_attention_outputs(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        config.return_dict = True

        seq_length = getattr(self.model_tester, "seq_length", None)
Daniel Stancl's avatar
Daniel Stancl committed
519
520
521
522
        decoder_seq_length = getattr(self.model_tester, "decoder_seq_length", seq_length)
        encoder_seq_length = getattr(self.model_tester, "encoder_seq_length", seq_length)
        decoder_key_length = getattr(self.model_tester, "decoder_key_length", decoder_seq_length)
        encoder_key_length = getattr(self.model_tester, "key_length", encoder_seq_length)
523
524
525
526
527
528

        for model_class in self.all_model_classes:
            inputs_dict["output_attentions"] = True
            inputs_dict["output_hidden_states"] = False
            model = model_class(config)
            outputs = model(**self._prepare_for_class(inputs_dict, model_class))
Daniel Stancl's avatar
Daniel Stancl committed
529
            attentions = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions
530
531
532
533
534
535
536
            self.assertEqual(len(attentions), self.model_tester.num_hidden_layers)

            # check that output_attentions also work using config
            del inputs_dict["output_attentions"]
            config.output_attentions = True
            model = model_class(config)
            outputs = model(**self._prepare_for_class(inputs_dict, model_class))
Daniel Stancl's avatar
Daniel Stancl committed
537
            attentions = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions
538
539
540
541
            self.assertEqual(len(attentions), self.model_tester.num_hidden_layers)

            self.assertListEqual(
                list(attentions[0].shape[-3:]),
Daniel Stancl's avatar
Daniel Stancl committed
542
                [self.model_tester.num_attention_heads, encoder_seq_length, encoder_key_length],
543
544
545
            )
            out_len = len(outputs)

Daniel Stancl's avatar
Daniel Stancl committed
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
            if self.is_encoder_decoder:
                correct_outlen = 5

                # Question Answering model returns start_logits and end_logits
                if model_class in get_values(FLAX_MODEL_FOR_QUESTION_ANSWERING_MAPPING):
                    correct_outlen += 1  # start_logits and end_logits instead of only 1 output

                self.assertEqual(out_len, correct_outlen)

                # decoder attentions
                decoder_attentions = outputs.decoder_attentions
                self.assertIsInstance(decoder_attentions, (list, tuple))
                self.assertEqual(len(decoder_attentions), self.model_tester.num_hidden_layers)
                self.assertListEqual(
                    list(decoder_attentions[0].shape[-3:]),
                    [self.model_tester.num_attention_heads, decoder_seq_length, decoder_key_length],
                )

                # cross attentions
                cross_attentions = outputs.cross_attentions
                self.assertIsInstance(cross_attentions, (list, tuple))
                self.assertEqual(len(cross_attentions), self.model_tester.num_hidden_layers)
                self.assertListEqual(
                    list(cross_attentions[0].shape[-3:]),
                    [
                        self.model_tester.num_attention_heads,
                        decoder_seq_length,
                        encoder_key_length,
                    ],
                )

577
578
579
580
581
582
            # Check attention is always last and order is fine
            inputs_dict["output_attentions"] = True
            inputs_dict["output_hidden_states"] = True
            model = model_class(config)
            outputs = model(**self._prepare_for_class(inputs_dict, model_class))

Daniel Stancl's avatar
Daniel Stancl committed
583
584
585
586
587
588
            if hasattr(self.model_tester, "num_hidden_states_types"):
                added_hidden_states = self.model_tester.num_hidden_states_types
            elif self.is_encoder_decoder:
                added_hidden_states = 2
            else:
                added_hidden_states = 1
589
590
591
592
593
594
595
            self.assertEqual(out_len + added_hidden_states, len(outputs))

            self_attentions = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions
            self.assertEqual(len(self_attentions), self.model_tester.num_hidden_layers)

            self.assertListEqual(
                list(self_attentions[0].shape[-3:]),
Daniel Stancl's avatar
Daniel Stancl committed
596
                [self.model_tester.num_attention_heads, encoder_seq_length, encoder_key_length],
597
            )
598

599
    def test_load_with_mismatched_shapes(self):
600
601
        if not self.test_mismatched_shapes:
            return
602
603
604
605
606
607
608
609
610
611
612
613
614
615
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            if model_class not in get_values(FLAX_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING):
                continue

            with self.subTest(msg=f"Testing {model_class}"):
                with tempfile.TemporaryDirectory() as tmp_dir:
                    model = model_class(config)
                    model.save_pretrained(tmp_dir)

                    # Fails when we don't set ignore_mismatched_sizes=True
                    with self.assertRaises(ValueError):
                        new_model = FlaxAutoModelForSequenceClassification.from_pretrained(tmp_dir, num_labels=42)
616
617
                    with self.assertRaises(ValueError):
                        new_model_without_prefix = FlaxAutoModel.from_pretrained(tmp_dir, vocab_size=10)
618
619
620
621
622
623
624
625
626
627
628

                    logger = logging.get_logger("transformers.modeling_flax_utils")
                    with CaptureLogger(logger) as cl:
                        new_model = FlaxAutoModelForSequenceClassification.from_pretrained(
                            tmp_dir, num_labels=42, ignore_mismatched_sizes=True
                        )
                    self.assertIn("the shapes did not match", cl.out)

                    logits = new_model(**inputs_dict)["logits"]
                    self.assertEqual(logits.shape[1], 42)

629
630
631
632
633
634
635
636
637
638
639
                    with CaptureLogger(logger) as cl:
                        new_model_without_prefix = FlaxAutoModel.from_pretrained(
                            tmp_dir, vocab_size=10, ignore_mismatched_sizes=True
                        )
                    self.assertIn("the shapes did not match", cl.out)
                    input_ids = ids_tensor((2, 8), 10)
                    if self.is_encoder_decoder:
                        new_model_without_prefix(input_ids, decoder_input_ids=input_ids)
                    else:
                        new_model_without_prefix(input_ids)

Suraj Patil's avatar
Suraj Patil committed
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
    def test_default_params_dtype(self):
        config, _ = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            # check if all params are still in float32 when dtype of computation is half-precision
            model = model_class(config, dtype=jnp.float16)
            types = jax.tree_map(lambda x: x.dtype, model.params)
            types = flatten_dict(types)

            for name, type_ in types.items():
                self.assertEquals(type_, jnp.float32, msg=f"param {name} is not initialized in fp32.")

    def test_to_bf16(self):
        config, _ = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)

            # cast all params to bf16
            params = model.to_bf16(model.params)
            types = flatten_dict(jax.tree_map(lambda x: x.dtype, params))
            # test if all params are in bf16
            for name, type_ in types.items():
                self.assertEqual(type_, jnp.bfloat16, msg=f"param {name} is not in bf16.")

            # test masking
            flat_params = flatten_dict(params)
            key = random.choice(list(flat_params.keys()))  # choose a random param
            mask = {path: path != key for path in flat_params}  # don't cast the key
            mask = unflatten_dict(mask)

            params = model.to_bf16(model.params, mask)
            types = flatten_dict(jax.tree_map(lambda x: x.dtype, params))
            # test if all params are in bf16 except key
            for name, type_ in types.items():
                if name == key:
                    self.assertEqual(type_, jnp.float32, msg=f"param {name} should be in fp32.")
                else:
                    self.assertEqual(type_, jnp.bfloat16, msg=f"param {name} is not in bf16.")

    def test_to_fp16(self):
        config, _ = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)

            # cast all params to fp16
            params = model.to_fp16(model.params)
            types = flatten_dict(jax.tree_map(lambda x: x.dtype, params))
            # test if all params are in fp16
            for name, type_ in types.items():
                self.assertEqual(type_, jnp.float16, msg=f"param {name} is not in fp16.")

            # test masking
            flat_params = flatten_dict(params)
            key = random.choice(list(flat_params.keys()))  # choose a random param
            mask = {path: path != key for path in flat_params}  # don't cast the key
            mask = unflatten_dict(mask)

            params = model.to_fp16(model.params, mask)
            types = flatten_dict(jax.tree_map(lambda x: x.dtype, params))
            # test if all params are in fp16 except key
            for name, type_ in types.items():
                if name == key:
                    self.assertEqual(type_, jnp.float32, msg=f"param {name} should be in fp32.")
                else:
                    self.assertEqual(type_, jnp.float16, msg=f"param {name} is not in fp16.")

    def test_to_fp32(self):
        config, _ = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)

            # cast all params to fp16 and back to fp32
            params = model.to_fp16(model.params)
            params = model.to_fp32(params)

            # test if all params are in fp32
            types = flatten_dict(jax.tree_map(lambda x: x.dtype, params))
            for name, type_ in types.items():
                self.assertEqual(type_, jnp.float32, msg=f"param {name} is not in fp32.")

            # test masking
            flat_params = flatten_dict(params)
            key = random.choice(list(flat_params.keys()))  # choose a random param
            mask = {path: path != key for path in flat_params}  # don't cast the key
            mask = unflatten_dict(mask)

            # cast to fp16 and back to fp32 with mask
            params = model.to_fp16(model.params)
            params = model.to_fp32(params, mask)

            # test if all params are in fp32 except key
            types = flatten_dict(jax.tree_map(lambda x: x.dtype, params))
            for name, type_ in types.items():
                if name == key:
                    self.assertEqual(type_, jnp.float16, msg=f"param {name} should be in fp16.")
                else:
                    self.assertEqual(type_, jnp.float32, msg=f"param {name} is not in fp32.")

    def test_save_load_in_fp16(self):
        config, _ = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)

        # convert weights to fp16 and save
        params = model.to_fp16(model.params)
        with tempfile.TemporaryDirectory() as tmpdirname:
            model.save_pretrained(tmpdirname, params=params)

            # load the weights again and check if they are still in fp16
            model = model_class.from_pretrained(tmpdirname)
            types = flatten_dict(jax.tree_map(lambda x: x.dtype, model.params))
            for name, type_ in types.items():
                self.assertEqual(type_, jnp.float16, msg=f"param {name} is not in fp16.")

    def test_save_load_in_bf16(self):
        config, _ = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)

        # convert weights to bf16 and save
        params = model.to_bf16(model.params)
        with tempfile.TemporaryDirectory() as tmpdirname:
            model.save_pretrained(tmpdirname, params=params)

            # load the weights again and check if they are still in fp16
            model = model_class.from_pretrained(tmpdirname)
            types = flatten_dict(jax.tree_map(lambda x: x.dtype, model.params))
            for name, type_ in types.items():
                self.assertEqual(type_, jnp.bfloat16, msg=f"param {name} is not in bf16.")

775
776
777
778
779
780
781
    def test_model_main_input_name(self):
        for model_class in self.all_model_classes:
            model_signature = inspect.signature(getattr(model_class, "__call__"))
            # The main input is the name of the argument after `self`
            observed_main_input_name = list(model_signature.parameters.keys())[1]
            self.assertEqual(model_class.main_input_name, observed_main_input_name)

782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
    def test_headmasking(self):
        if not self.test_head_masking:
            return
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        config.return_dict = True

        def _prepare_layer_head_mask(i, attention_heads, num_hidden_layers):
            if i == 0:
                return np.concatenate([np.zeros(1, dtype=jnp.int32), np.ones(attention_heads - 1, dtype=jnp.int32)])
            if i == num_hidden_layers - 1:
                return np.concatenate([np.zeros(attention_heads - 1, dtype=jnp.int32), np.ones(1, dtype=jnp.int32)])
            return np.ones(attention_heads, dtype=jnp.int32)

        for model_class in self.all_model_classes:
            model = model_class(config)

            inputs_dict["output_attentions"] = True
            inputs_dict["output_hidden_states"] = False
            inputs = self._prepare_for_class(inputs_dict, model_class).copy()
            # Prepare head mask
            inputs["head_mask"] = np.stack(
                [
                    _prepare_layer_head_mask(i, config.num_attention_heads, config.num_hidden_layers)
                    for i in range(config.num_hidden_layers)
                ]
            )
            outputs = model(**inputs)

            def _check_attentions_validity(attentions):
                # Remove NaN
                for t in attentions:
                    # Check we don't have more than 25% nans (arbitrary)
                    self.assertLess(np.isnan(t).sum(), t.size / 4)
                attentions = [np.where(np.isnan(t), 0.0, t) for t in attentions]

                self.assertAlmostEqual(attentions[0][..., 0, :, :].sum(), 0.0)
                self.assertNotEqual(attentions[0][..., -1, :, :].sum(), 0.0)
                if len(attentions) > 2:  # encoder-decodere models have only 2 layers in each modules
                    self.assertNotEqual(attentions[1][..., 0, :, :].sum(), 0.0)
                self.assertAlmostEqual(attentions[-1][..., -2, :, :].sum(), 0.0)
                self.assertNotEqual(attentions[-1][..., -1, :, :].sum(), 0.0)

            if model.config.is_encoder_decoder:
                raise NotImplementedError("The test has not been implemented for encoder-decoder models yet.")
            else:
                _check_attentions_validity(outputs.attentions)

829
830
831
832
833
834

@require_flax
@is_staging_test
class FlaxModelPushToHubTester(unittest.TestCase):
    @classmethod
    def setUpClass(cls):
835
        cls._token = login(username=USER, password=PASS)
836
837
838
839

    @classmethod
    def tearDownClass(cls):
        try:
840
            delete_repo(token=cls._token, name="test-model-flax")
841
842
843
844
        except HTTPError:
            pass

        try:
845
            delete_repo(token=cls._token, name="test-model-flax-org", organization="valid_org")
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
        except HTTPError:
            pass

    def test_push_to_hub(self):
        config = BertConfig(
            vocab_size=99, hidden_size=32, num_hidden_layers=5, num_attention_heads=4, intermediate_size=37
        )
        model = FlaxBertModel(config)
        with tempfile.TemporaryDirectory() as tmp_dir:
            model.save_pretrained(
                os.path.join(tmp_dir, "test-model-flax"), push_to_hub=True, use_auth_token=self._token
            )

            new_model = FlaxBertModel.from_pretrained(f"{USER}/test-model-flax")

            base_params = flatten_dict(unfreeze(model.params))
            new_params = flatten_dict(unfreeze(new_model.params))

            for key in base_params.keys():
                max_diff = (base_params[key] - new_params[key]).sum().item()
                self.assertLessEqual(max_diff, 1e-3, msg=f"{key} not identical")

    def test_push_to_hub_in_organization(self):
        config = BertConfig(
            vocab_size=99, hidden_size=32, num_hidden_layers=5, num_attention_heads=4, intermediate_size=37
        )
        model = FlaxBertModel(config)
        with tempfile.TemporaryDirectory() as tmp_dir:
            model.save_pretrained(
                os.path.join(tmp_dir, "test-model-flax-org"),
                push_to_hub=True,
                use_auth_token=self._token,
                organization="valid_org",
            )

            new_model = FlaxBertModel.from_pretrained("valid_org/test-model-flax-org")

            base_params = flatten_dict(unfreeze(model.params))
            new_params = flatten_dict(unfreeze(new_model.params))

            for key in base_params.keys():
                max_diff = (base_params[key] - new_params[key]).sum().item()
                self.assertLessEqual(max_diff, 1e-3, msg=f"{key} not identical")