"PPOCRLabel/vscode:/vscode.git/clone" did not exist on "56ee176c246100cdb1c0ed17338fe89704467e65"
test_modeling_tf_distilbert.py 8.87 KB
Newer Older
thomwolf's avatar
thomwolf committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Aymeric Augustin's avatar
Aymeric Augustin committed
15

thomwolf's avatar
thomwolf committed
16

17
18
import unittest

Aymeric Augustin's avatar
Aymeric Augustin committed
19
from transformers import DistilBertConfig, is_tf_available
20
from transformers.testing_utils import require_tf, slow
Aymeric Augustin's avatar
Aymeric Augustin committed
21

22
from .test_configuration_common import ConfigTester
23
from .test_modeling_tf_common import TFModelTesterMixin, ids_tensor
thomwolf's avatar
thomwolf committed
24
25
26


if is_tf_available():
27
    import tensorflow as tf
28

29
    from transformers.modeling_tf_distilbert import (
30
        TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST,
31
        TFDistilBertForMaskedLM,
32
        TFDistilBertForMultipleChoice,
33
34
        TFDistilBertForQuestionAnswering,
        TFDistilBertForSequenceClassification,
35
        TFDistilBertForTokenClassification,
36
        TFDistilBertModel,
37
    )
thomwolf's avatar
thomwolf committed
38
39


40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
class TFDistilBertModelTester:
    def __init__(
        self, parent,
    ):
        self.parent = parent
        self.batch_size = 13
        self.seq_length = 7
        self.is_training = True
        self.use_input_mask = True
        self.use_token_type_ids = False
        self.use_labels = True
        self.vocab_size = 99
        self.hidden_size = 32
        self.num_hidden_layers = 5
        self.num_attention_heads = 4
        self.intermediate_size = 37
        self.hidden_act = "gelu"
        self.hidden_dropout_prob = 0.1
        self.attention_probs_dropout_prob = 0.1
        self.max_position_embeddings = 512
        self.type_vocab_size = 16
        self.type_sequence_label_size = 2
        self.initializer_range = 0.02
        self.num_labels = 3
        self.num_choices = 4
        self.scope = None

    def prepare_config_and_inputs(self):
        input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)

        input_mask = None
        if self.use_input_mask:
            input_mask = ids_tensor([self.batch_size, self.seq_length], vocab_size=2)

        sequence_labels = None
        token_labels = None
        choice_labels = None
        if self.use_labels:
            sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size)
            token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels)
            choice_labels = ids_tensor([self.batch_size], self.num_choices)

        config = DistilBertConfig(
            vocab_size=self.vocab_size,
            dim=self.hidden_size,
            n_layers=self.num_hidden_layers,
            n_heads=self.num_attention_heads,
            hidden_dim=self.intermediate_size,
            hidden_act=self.hidden_act,
            dropout=self.hidden_dropout_prob,
            attention_dropout=self.attention_probs_dropout_prob,
            max_position_embeddings=self.max_position_embeddings,
            initializer_range=self.initializer_range,
Sylvain Gugger's avatar
Sylvain Gugger committed
93
            return_dict=True,
94
95
96
97
98
99
100
101
102
103
        )

        return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels

    def create_and_check_distilbert_model(
        self, config, input_ids, input_mask, sequence_labels, token_labels, choice_labels
    ):
        model = TFDistilBertModel(config=config)
        inputs = {"input_ids": input_ids, "attention_mask": input_mask}

Sylvain Gugger's avatar
Sylvain Gugger committed
104
        result = model(inputs)
105
106
107

        inputs = [input_ids, input_mask]

Sylvain Gugger's avatar
Sylvain Gugger committed
108
        result = model(inputs)
109

110
        self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))
111
112
113
114
115
116

    def create_and_check_distilbert_for_masked_lm(
        self, config, input_ids, input_mask, sequence_labels, token_labels, choice_labels
    ):
        model = TFDistilBertForMaskedLM(config=config)
        inputs = {"input_ids": input_ids, "attention_mask": input_mask}
Sylvain Gugger's avatar
Sylvain Gugger committed
117
        result = model(inputs)
118
        self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size))
119
120
121
122
123

    def create_and_check_distilbert_for_question_answering(
        self, config, input_ids, input_mask, sequence_labels, token_labels, choice_labels
    ):
        model = TFDistilBertForQuestionAnswering(config=config)
124
125
126
        inputs = {
            "input_ids": input_ids,
            "attention_mask": input_mask,
127
        }
Sylvain Gugger's avatar
Sylvain Gugger committed
128
        result = model(inputs)
129
130
        self.parent.assertEqual(result.start_logits.shape, (self.batch_size, self.seq_length))
        self.parent.assertEqual(result.end_logits.shape, (self.batch_size, self.seq_length))
131
132
133
134
135
136
137

    def create_and_check_distilbert_for_sequence_classification(
        self, config, input_ids, input_mask, sequence_labels, token_labels, choice_labels
    ):
        config.num_labels = self.num_labels
        model = TFDistilBertForSequenceClassification(config)
        inputs = {"input_ids": input_ids, "attention_mask": input_mask}
Sylvain Gugger's avatar
Sylvain Gugger committed
138
        result = model(inputs)
139
        self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels))
140

141
142
143
144
145
146
147
148
149
150
151
    def create_and_check_distilbert_for_multiple_choice(
        self, config, input_ids, input_mask, sequence_labels, token_labels, choice_labels
    ):
        config.num_choices = self.num_choices
        model = TFDistilBertForMultipleChoice(config)
        multiple_choice_inputs_ids = tf.tile(tf.expand_dims(input_ids, 1), (1, self.num_choices, 1))
        multiple_choice_input_mask = tf.tile(tf.expand_dims(input_mask, 1), (1, self.num_choices, 1))
        inputs = {
            "input_ids": multiple_choice_inputs_ids,
            "attention_mask": multiple_choice_input_mask,
        }
Sylvain Gugger's avatar
Sylvain Gugger committed
152
        result = model(inputs)
153
        self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_choices))
154
155
156
157
158
159
160

    def create_and_check_distilbert_for_token_classification(
        self, config, input_ids, input_mask, sequence_labels, token_labels, choice_labels
    ):
        config.num_labels = self.num_labels
        model = TFDistilBertForTokenClassification(config)
        inputs = {"input_ids": input_ids, "attention_mask": input_mask}
Sylvain Gugger's avatar
Sylvain Gugger committed
161
        result = model(inputs)
162
        self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.num_labels))
163

164
165
166
167
168
169
170
    def prepare_config_and_inputs_for_common(self):
        config_and_inputs = self.prepare_config_and_inputs()
        (config, input_ids, input_mask, sequence_labels, token_labels, choice_labels) = config_and_inputs
        inputs_dict = {"input_ids": input_ids, "attention_mask": input_mask}
        return config, inputs_dict


171
@require_tf
172
class TFDistilBertModelTest(TFModelTesterMixin, unittest.TestCase):
thomwolf's avatar
thomwolf committed
173

174
175
176
177
178
179
    all_model_classes = (
        (
            TFDistilBertModel,
            TFDistilBertForMaskedLM,
            TFDistilBertForQuestionAnswering,
            TFDistilBertForSequenceClassification,
180
181
            TFDistilBertForTokenClassification,
            TFDistilBertForMultipleChoice,
182
183
184
185
        )
        if is_tf_available()
        else None
    )
thomwolf's avatar
thomwolf committed
186
187
188
189
190
    test_pruning = True
    test_torchscript = True
    test_head_masking = True

    def setUp(self):
191
        self.model_tester = TFDistilBertModelTester(self)
thomwolf's avatar
thomwolf committed
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
        self.config_tester = ConfigTester(self, config_class=DistilBertConfig, dim=37)

    def test_config(self):
        self.config_tester.run_common_tests()

    def test_distilbert_model(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_distilbert_model(*config_and_inputs)

    def test_for_masked_lm(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_distilbert_for_masked_lm(*config_and_inputs)

    def test_for_question_answering(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_distilbert_for_question_answering(*config_and_inputs)

    def test_for_sequence_classification(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_distilbert_for_sequence_classification(*config_and_inputs)

213
214
215
216
217
218
219
220
    def test_for_multiple_choice(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_distilbert_for_multiple_choice(*config_and_inputs)

    def test_for_token_classification(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_distilbert_for_token_classification(*config_and_inputs)

221
222
223
224
225
    @slow
    def test_model_from_pretrained(self):
        for model_name in list(TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]):
            model = TFDistilBertModel.from_pretrained(model_name)
            self.assertIsNotNone(model)