run_classifier_pytorch.py 23.9 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""BERT finetuning runner."""

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

21
22
import csv
import os
23
24
25
26
import logging
import argparse

import numpy as np
thomwolf's avatar
thomwolf committed
27
from tqdm import tqdm, trange
VictorSanh's avatar
VictorSanh committed
28
import torch
29
30
31
32
33
34
from torch.utils.data import TensorDataset, DataLoader, RandomSampler, SequentialSampler
from torch.utils.data.distributed import DistributedSampler

import tokenization_pytorch
from modeling_pytorch import BertConfig, BertForSequenceClassification
from optimization_pytorch import BERTAdam
35
36
37
38
39

logging.basicConfig(format = '%(asctime)s - %(levelname)s - %(name)s -   %(message)s', 
                    datefmt = '%m/%d/%Y %H:%M:%S',
                    level = logging.INFO)
logger = logging.getLogger(__name__)
40

41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96

class InputExample(object):
    """A single training/test example for simple sequence classification."""

    def __init__(self, guid, text_a, text_b=None, label=None):
        """Constructs a InputExample.

        Args:
            guid: Unique id for the example.
            text_a: string. The untokenized text of the first sequence. For single
            sequence tasks, only this sequence must be specified.
            text_b: (Optional) string. The untokenized text of the second sequence.
            Only must be specified for sequence pair tasks.
            label: (Optional) string. The label of the example. This should be
            specified for train and dev examples, but not for test examples.
        """
        self.guid = guid
        self.text_a = text_a
        self.text_b = text_b
        self.label = label


class InputFeatures(object):
    """A single set of features of data."""

    def __init__(self, input_ids, input_mask, segment_ids, label_id):
        self.input_ids = input_ids
        self.input_mask = input_mask
        self.segment_ids = segment_ids
        self.label_id = label_id
        

class DataProcessor(object):
    """Base class for data converters for sequence classification data sets."""

    def get_train_examples(self, data_dir):
        """Gets a collection of `InputExample`s for the train set."""
        raise NotImplementedError()

    def get_dev_examples(self, data_dir):
        """Gets a collection of `InputExample`s for the dev set."""
        raise NotImplementedError()

    def get_labels(self):
        """Gets the list of labels for this data set."""
        raise NotImplementedError()

    @classmethod
    def _read_tsv(cls, input_file, quotechar=None):
        """Reads a tab separated value file."""
        with open(input_file, "r") as f:
            reader = csv.reader(f, delimiter="\t", quotechar=quotechar)
            lines = []
            for line in reader:
                lines.append(line)
            return lines
VictorSanh's avatar
wip  
VictorSanh committed
97
    
98
            
VictorSanh's avatar
wip  
VictorSanh committed
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
class MrpcProcessor(DataProcessor):
    """Processor for the MRPC data set (GLUE version)."""

    def get_train_examples(self, data_dir):
        """See base class."""
        print("LOOKING AT {}".format(os.path.join(data_dir, "train.tsv")))
        return self._create_examples(
            self._read_tsv(os.path.join(data_dir, "train.tsv")), "train")

    def get_dev_examples(self, data_dir):
        """See base class."""
        return self._create_examples(
            self._read_tsv(os.path.join(data_dir, "dev.tsv")), "dev")

    def get_labels(self):
        """See base class."""
        return ["0", "1"]

    def _create_examples(self, lines, set_type):
        """Creates examples for the training and dev sets."""
        examples = []
        for (i, line) in enumerate(lines):
            if i == 0:
                continue
            guid = "%s-%s" % (set_type, i)
            text_a = tokenization_pytorch.convert_to_unicode(line[3])
            text_b = tokenization_pytorch.convert_to_unicode(line[4])
            label = tokenization_pytorch.convert_to_unicode(line[0])
            examples.append(
                InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label))
        return examples

131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289

class MnliProcessor(DataProcessor):
    """Processor for the MultiNLI data set (GLUE version)."""

    def get_train_examples(self, data_dir):
        """See base class."""
        return self._create_examples(
            self._read_tsv(os.path.join(data_dir, "train.tsv")), "train")

    def get_dev_examples(self, data_dir):
        """See base class."""
        return self._create_examples(
            self._read_tsv(os.path.join(data_dir, "dev_matched.tsv")),
            "dev_matched")

    def get_labels(self):
        """See base class."""
        return ["contradiction", "entailment", "neutral"]

    def _create_examples(self, lines, set_type):
        """Creates examples for the training and dev sets."""
        examples = []
        for (i, line) in enumerate(lines):
            if i == 0:
                continue
            guid = "%s-%s" % (set_type, tokenization_pytorch.convert_to_unicode(line[0]))
            text_a = tokenization_pytorch.convert_to_unicode(line[8])
            text_b = tokenization_pytorch.convert_to_unicode(line[9])
            label = tokenization_pytorch.convert_to_unicode(line[-1])
            examples.append(
                InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label))
        return examples
        

class ColaProcessor(DataProcessor):
    """Processor for the CoLA data set (GLUE version)."""

    def get_train_examples(self, data_dir):
        """See base class."""
        return self._create_examples(
            self._read_tsv(os.path.join(data_dir, "train.tsv")), "train")

    def get_dev_examples(self, data_dir):
        """See base class."""
        return self._create_examples(
            self._read_tsv(os.path.join(data_dir, "dev.tsv")), "dev")

    def get_labels(self):
        """See base class."""
        return ["0", "1"]

    def _create_examples(self, lines, set_type):
        """Creates examples for the training and dev sets."""
        examples = []
        for (i, line) in enumerate(lines):
            guid = "%s-%s" % (set_type, i)
            text_a = tokenization_pytorch.convert_to_unicode(line[3])
            label = tokenization_pytorch.convert_to_unicode(line[1])
            examples.append(
                InputExample(guid=guid, text_a=text_a, text_b=None, label=label))
        return examples
        
        
def convert_examples_to_features(examples, label_list, max_seq_length,
                                                                 tokenizer):
    """Loads a data file into a list of `InputBatch`s."""

    label_map = {}
    for (i, label) in enumerate(label_list):
        label_map[label] = i

    features = []
    for (ex_index, example) in enumerate(examples):
        tokens_a = tokenizer.tokenize(example.text_a)

        tokens_b = None
        if example.text_b:
            tokens_b = tokenizer.tokenize(example.text_b)

        if tokens_b:
            # Modifies `tokens_a` and `tokens_b` in place so that the total
            # length is less than the specified length.
            # Account for [CLS], [SEP], [SEP] with "- 3"
            _truncate_seq_pair(tokens_a, tokens_b, max_seq_length - 3)
        else:
            # Account for [CLS] and [SEP] with "- 2"
            if len(tokens_a) > max_seq_length - 2:
                tokens_a = tokens_a[0:(max_seq_length - 2)]

        # The convention in BERT is:
        # (a) For sequence pairs:
        #  tokens:   [CLS] is this jack ##son ##ville ? [SEP] no it is not . [SEP]
        #  type_ids: 0   0  0    0    0     0       0 0    1  1  1  1   1 1
        # (b) For single sequences:
        #  tokens:   [CLS] the dog is hairy . [SEP]
        #  type_ids: 0   0   0   0  0     0 0
        #
        # Where "type_ids" are used to indicate whether this is the first
        # sequence or the second sequence. The embedding vectors for `type=0` and
        # `type=1` were learned during pre-training and are added to the wordpiece
        # embedding vector (and position vector). This is not *strictly* necessary
        # since the [SEP] token unambigiously separates the sequences, but it makes
        # it easier for the model to learn the concept of sequences.
        #
        # For classification tasks, the first vector (corresponding to [CLS]) is
        # used as as the "sentence vector". Note that this only makes sense because
        # the entire model is fine-tuned.
        tokens = []
        segment_ids = []
        tokens.append("[CLS]")
        segment_ids.append(0)
        for token in tokens_a:
            tokens.append(token)
            segment_ids.append(0)
        tokens.append("[SEP]")
        segment_ids.append(0)

        if tokens_b:
            for token in tokens_b:
                tokens.append(token)
                segment_ids.append(1)
            tokens.append("[SEP]")
            segment_ids.append(1)

        input_ids = tokenizer.convert_tokens_to_ids(tokens)

        # The mask has 1 for real tokens and 0 for padding tokens. Only real
        # tokens are attended to.
        input_mask = [1] * len(input_ids)

        # Zero-pad up to the sequence length.
        while len(input_ids) < max_seq_length:
            input_ids.append(0)
            input_mask.append(0)
            segment_ids.append(0)

        assert len(input_ids) == max_seq_length
        assert len(input_mask) == max_seq_length
        assert len(segment_ids) == max_seq_length

        label_id = label_map[example.label]
        if ex_index < 5:
            logger.info("*** Example ***")
            logger.info("guid: %s" % (example.guid))
            logger.info("tokens: %s" % " ".join(
                    [tokenization_pytorch.printable_text(x) for x in tokens]))
            logger.info("input_ids: %s" % " ".join([str(x) for x in input_ids]))
            logger.info("input_mask: %s" % " ".join([str(x) for x in input_mask]))
            logger.info(
                    "segment_ids: %s" % " ".join([str(x) for x in segment_ids]))
            logger.info("label: %s (id = %d)" % (example.label, label_id))

        features.append(
                InputFeatures(
                        input_ids=input_ids,
                        input_mask=input_mask,
                        segment_ids=segment_ids,
                        label_id=label_id))
    return features
thomwolf's avatar
thomwolf committed
290
291


292
293
294
295
296
297
298
299
300
301
302
303
304
305
def _truncate_seq_pair(tokens_a, tokens_b, max_length):
    """Truncates a sequence pair in place to the maximum length."""

    # This is a simple heuristic which will always truncate the longer sequence
    # one token at a time. This makes more sense than truncating an equal percent
    # of tokens from each, since if one sequence is very short then each token
    # that's truncated likely contains more information than a longer sequence.
    while True:
        total_length = len(tokens_a) + len(tokens_b)
        if total_length <= max_length:
            break
        if len(tokens_a) > len(tokens_b):
            tokens_a.pop()
        else:
VictorSanh's avatar
VictorSanh committed
306
307
308
            tokens_b.pop()


309
310
def input_fn_builder(features, seq_length, train_batch_size):
    # TODO: delete
VictorSanh's avatar
VictorSanh committed
311
312
    """Creates an `input_fn` closure to be passed to TPUEstimator.""" ### ATTENTION - To rewrite ###

313
314
315
316
317
318
319
320
321
322
323
324
325
    all_input_ids = [f.input_ids for feature in features]
    all_input_mask = [f.input_mask for feature in features]
    all_segment_ids = [f.segment_ids for feature in features]
    all_label_ids = [f.label_id for feature in features]

    # for feature in features:
    #     all_input_ids.append(feature.input_ids)
    #     all_input_mask.append(feature.input_mask)
    #     all_segment_ids.append(feature.segment_ids)
    #     all_label_ids.append(feature.label_id)

    input_ids_tensor = torch.tensor(all_input_ids, dtype=torch.Long)
    input_mask_tensor = torch.tensor(all_input_mask, dtype=torch.Long)
326
327
    segment_tensor = torch.tensor(all_segment_ids, dtype=torch.Long)
    label_tensor = torch.tensor(all_label_ids, dtype=torch.Long)
328
329
330
331
332
333
334
335

    train_data = TensorDataset(input_ids_tensor, input_mask_tensor,
                               segment_tensor, label_tensor)
    if args.local_rank == -1:
        train_sampler = RandomSampler(train_data)
    else:
        train_sampler = DistributedSampler(train_data)
    train_dataloader = DataLoader(train_data, sampler=train_sampler, batch_size=train_batch_size)
VictorSanh's avatar
VictorSanh committed
336

337
    return train_dataloader
VictorSanh's avatar
WIP  
VictorSanh committed
338

339
340
def accuracy(out, labels):
    outputs = np.argmax(out, axis=1)
341
    return np.sum(outputs==labels)
VictorSanh's avatar
WIP  
VictorSanh committed
342

343
def main():
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
    parser = argparse.ArgumentParser()

    ## Required parameters
    parser.add_argument("--data_dir",
                        default=None,
                        type=str,
                        required=True,
                        help="The input data dir. Should contain the .tsv files (or other data files) for the task.")
    parser.add_argument("--bert_config_file",
                        default=None,
                        type=str,
                        required=True,
                        help="The config json file corresponding to the pre-trained BERT model. \n"
                             "This specifies the model architecture.")
    parser.add_argument("--task_name",
                        default=None,
                        type=str,
                        required=True,
                        help="The name of the task to train.")
    parser.add_argument("--vocab_file",
                        default=None,
                        type=str,
                        required=True,
                        help="The vocabulary file that the BERT model was trained on.")
    parser.add_argument("--output_dir",
                        default=None,
                        type=str,
                        required=True,
                        help="The output directory where the model checkpoints will be written.")

    ## Other parameters
    parser.add_argument("--init_checkpoint",
                        default=None,
                        type=str,
                        help="Initial checkpoint (usually from a pre-trained BERT model).")
    parser.add_argument("--do_lower_case",
                        default=False,
                        action='store_true',
                        help="Whether to lower case the input text. Should be True for uncased models and False for cased models.")
    parser.add_argument("--max_seq_length",
                        default=128,
                        type=int,
                        help="The maximum total input sequence length after WordPiece tokenization. \n"
                             "Sequences longer than this will be truncated, and sequences shorter \n"
                             "than this will be padded.")
    parser.add_argument("--do_train",
                        default=False,
                        action='store_true',
                        help="Whether to run training.")
    parser.add_argument("--do_eval",
                        default=False,
                        action='store_true',
                        help="Whether to run eval on the dev set.")
    parser.add_argument("--train_batch_size",
                        default=32,
                        type=int,
                        help="Total batch size for training.")
    parser.add_argument("--eval_batch_size",
                        default=8,
                        type=int,
                        help="Total batch size for eval.")
    parser.add_argument("--learning_rate",
                        default=5e-5,
                        type=float,
                        help="The initial learning rate for Adam.")
    parser.add_argument("--num_train_epochs",
                        default=3.0,
                        type=float,
                        help="Total number of training epochs to perform.")
    parser.add_argument("--warmup_proportion",
                        default=0.1,
                        type=float,
                        help="Proportion of training to perform linear learning rate warmup for. "
                             "E.g., 0.1 = 10%% of training.")
    parser.add_argument("--save_checkpoints_steps",
                        default=1000,
                        type=int,
                        help="How often to save the model checkpoint.")
    parser.add_argument("--no_cuda",
                        default=False,
                        action='store_true',
                        help="Whether not to use CUDA when available")
    parser.add_argument("--local_rank",
                        type=int,
                        default=-1,
                        help="local_rank for distributed training on gpus")

    args = parser.parse_args()

VictorSanh's avatar
WIP  
VictorSanh committed
433
434
435
436
437
    processors = {
        "cola": ColaProcessor,
        "mnli": MnliProcessor,
        "mrpc": MrpcProcessor,
    }
thomwolf's avatar
thomwolf committed
438
439
440
441
442
443
444

    if args.local_rank == -1 or args.no_cuda:
        device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu")
        n_gpu = torch.cuda.device_count()
    else:
        device = torch.device("cuda", args.local_rank)
        n_gpu = 1
thomwolf's avatar
thomwolf committed
445
        # print("Initializing the distributed backend: NCCL")
thomwolf's avatar
thomwolf committed
446
447
    print("device", device, "n_gpu", n_gpu)

VictorSanh's avatar
WIP  
VictorSanh committed
448
449
    if not args.do_train and not args.do_eval:
        raise ValueError("At least one of `do_train` or `do_eval` must be True.")
thomwolf's avatar
thomwolf committed
450
451
452

    bert_config = BertConfig.from_json_file(args.bert_config_file)

VictorSanh's avatar
WIP  
VictorSanh committed
453
454
    if args.max_seq_length > bert_config.max_position_embeddings:
        raise ValueError(
thomwolf's avatar
thomwolf committed
455
456
            "Cannot use sequence length {} because the BERT model was only trained up to sequence length {}".format(
            args.max_seq_length, bert_config.max_position_embeddings))
457

VictorSanh's avatar
WIP  
VictorSanh committed
458
    if os.path.exists(args.output_dir) and os.listdir(args.output_dir):
thomwolf's avatar
thomwolf committed
459
        raise ValueError("Output directory ({}) already exists and is not empty.".format(args.output_dir))
VictorSanh's avatar
WIP  
VictorSanh committed
460
461
462
    os.makedirs(args.output_dir, exist_ok=True)

    task_name = args.task_name.lower()
thomwolf's avatar
thomwolf committed
463

VictorSanh's avatar
WIP  
VictorSanh committed
464
465
466
467
468
469
470
    if task_name not in processors:
        raise ValueError("Task not found: %s" % (task_name))

    processor = processors[task_name]()

    label_list = processor.get_labels()

VictorSanh's avatar
wip  
VictorSanh committed
471
    tokenizer = tokenization_pytorch.FullTokenizer(
VictorSanh's avatar
WIP  
VictorSanh committed
472
        vocab_file=args.vocab_file, do_lower_case=args.do_lower_case)
thomwolf's avatar
thomwolf committed
473

VictorSanh's avatar
WIP  
VictorSanh committed
474
475
476
477
478
479
    train_examples = None
    num_train_steps = None
    if args.do_train:
        train_examples = processor.get_train_examples(args.data_dir)
        num_train_steps = int(
            len(train_examples) / args.train_batch_size * args.num_train_epochs)
thomwolf's avatar
thomwolf committed
480

481
    model = BertForSequenceClassification(bert_config, len(label_list))
thomwolf's avatar
thomwolf committed
482
    if args.init_checkpoint is not None:
483
        model.bert.load_state_dict(torch.load(args.init_checkpoint, map_location='cpu'))
thomwolf's avatar
thomwolf committed
484
    model.to(device)
485
486
487
    
    if n_gpu > 1:
        model = torch.nn.DataParallel(model)
thomwolf's avatar
thomwolf committed
488

thomwolf's avatar
thomwolf committed
489
490
491
492
493
494
495
496
    no_decay = ['bias', 'gamma', 'beta']
    optimizer_parameters = [
        {'params': [p for n, p in model.named_parameters() if n not in no_decay], 'weight_decay_rate': 0.01},
        {'params': [p for n, p in model.named_parameters() if n in no_decay], 'weight_decay_rate': 0.0}
        ]

    optimizer = BERTAdam(optimizer_parameters,
                         lr=args.learning_rate,
thomwolf's avatar
thomwolf committed
497
498
499
                         warmup=args.warmup_proportion,
                         t_total=num_train_steps)

thomwolf's avatar
thomwolf committed
500
    global_step = 0
501
    total_tr_loss = 0
VictorSanh's avatar
WIP  
VictorSanh committed
502
503
504
505
506
507
508
    if args.do_train:
        train_features = convert_examples_to_features(
            train_examples, label_list, args.max_seq_length, tokenizer)
        logger.info("***** Running training *****")
        logger.info("  Num examples = %d", len(train_examples))
        logger.info("  Batch size = %d", args.train_batch_size)
        logger.info("  Num steps = %d", num_train_steps)
thomwolf's avatar
thomwolf committed
509

510
511
512
513
        all_input_ids = torch.tensor([f.input_ids for f in train_features], dtype=torch.long)
        all_input_mask = torch.tensor([f.input_mask for f in train_features], dtype=torch.long)
        all_segment_ids = torch.tensor([f.segment_ids for f in train_features], dtype=torch.long)
        all_label_ids = torch.tensor([f.label_id for f in train_features], dtype=torch.long)
thomwolf's avatar
thomwolf committed
514

515
516
517
518
519
520
521
522
        train_data = TensorDataset(all_input_ids, all_input_mask, all_segment_ids, all_label_ids)
        if args.local_rank == -1:
            train_sampler = RandomSampler(train_data)
        else:
            train_sampler = DistributedSampler(train_data)
        train_dataloader = DataLoader(train_data, sampler=train_sampler, batch_size=args.train_batch_size)

        model.train()
523
        nb_tr_examples = 0
VictorSanh's avatar
VictorSanh committed
524
        for epoch in trange(int(args.num_train_epochs), desc="Epoch"):
thomwolf's avatar
thomwolf committed
525
            for input_ids, input_mask, segment_ids, label_ids in tqdm(train_dataloader, desc="Iteration"):
thomwolf's avatar
thomwolf committed
526
527
528
529
530
531
                input_ids = input_ids.to(device)
                input_mask = input_mask.float().to(device)
                segment_ids = segment_ids.to(device)
                label_ids = label_ids.to(device)

                loss, _ = model(input_ids, segment_ids, input_mask, label_ids)
532
533
                total_tr_loss += loss.item()
                nb_tr_examples += input_ids.size(0)
thomwolf's avatar
thomwolf committed
534
535
536
                loss.backward()
                optimizer.step()
                global_step += 1
thomwolf's avatar
thomwolf committed
537

VictorSanh's avatar
WIP  
VictorSanh committed
538
539
540
541
542
    if args.do_eval:
        eval_examples = processor.get_dev_examples(args.data_dir)
        eval_features = convert_examples_to_features(
            eval_examples, label_list, args.max_seq_length, tokenizer)

VictorSanh's avatar
wip  
VictorSanh committed
543
544
545
        logger.info("***** Running evaluation *****")
        logger.info("  Num examples = %d", len(eval_examples))
        logger.info("  Batch size = %d", args.eval_batch_size)
VictorSanh's avatar
WIP  
VictorSanh committed
546

547
548
549
550
        all_input_ids = torch.tensor([f.input_ids for f in eval_features], dtype=torch.long)
        all_input_mask = torch.tensor([f.input_mask for f in eval_features], dtype=torch.long)
        all_segment_ids = torch.tensor([f.segment_ids for f in eval_features], dtype=torch.long)
        all_label_ids = torch.tensor([f.label_id for f in eval_features], dtype=torch.long)
551
552
553
554
555
556
557
558
559
560
561

        eval_data = TensorDataset(all_input_ids, all_input_mask, all_segment_ids, all_label_ids)
        if args.local_rank == -1:
            eval_sampler = SequentialSampler(eval_data)
        else:
            eval_sampler = DistributedSampler(eval_data)
        eval_dataloader = DataLoader(eval_data, sampler=eval_sampler, batch_size=args.eval_batch_size)

        model.eval()
        eval_loss = 0
        eval_accuracy = 0
VictorSanh's avatar
VictorSanh committed
562
        nb_eval_examples = 0
563
        for input_ids, input_mask, segment_ids, label_ids in eval_dataloader:
564
565
566
            input_ids = input_ids.to(device)
            input_mask = input_mask.float().to(device)
            segment_ids = segment_ids.to(device)
567
            label_ids = label_ids.to(device)
568
569

            tmp_eval_loss, logits = model(input_ids, segment_ids, input_mask, label_ids)
thomwolf's avatar
thomwolf committed
570
571
572

            logits = logits.detach().cpu().numpy()
            label_ids = label_ids.to('cpu').numpy()
573
574
575
576
            tmp_eval_accuracy = accuracy(logits, label_ids)

            eval_loss += tmp_eval_loss.item()
            eval_accuracy += tmp_eval_accuracy
VictorSanh's avatar
VictorSanh committed
577
578
            
            nb_eval_examples += input_ids.size(0)
VictorSanh's avatar
WIP  
VictorSanh committed
579

VictorSanh's avatar
VictorSanh committed
580
581
        eval_loss = eval_loss / nb_eval_examples #len(eval_dataloader)
        eval_accuracy = eval_accuracy / nb_eval_examples #len(eval_dataloader)
VictorSanh's avatar
WIP  
VictorSanh committed
582

583
584
585
        result = {'eval_loss': eval_loss,
                  'eval_accuracy': eval_accuracy,
                  'global_step': global_step,
586
                  'loss': total_tr_loss/nb_tr_examples}#'loss': loss.item()}
VictorSanh's avatar
WIP  
VictorSanh committed
587
588

        output_eval_file = os.path.join(args.output_dir, "eval_results.txt")
VictorSanh's avatar
wip  
VictorSanh committed
589
590
        with open(output_eval_file, "w") as writer:
            logger.info("***** Eval results *****")
VictorSanh's avatar
WIP  
VictorSanh committed
591
            for key in sorted(result.keys()):
VictorSanh's avatar
wip  
VictorSanh committed
592
                logger.info("  %s = %s", key, str(result[key]))
VictorSanh's avatar
WIP  
VictorSanh committed
593
                writer.write("%s = %s\n" % (key, str(result[key])))
594

VictorSanh's avatar
WIP  
VictorSanh committed
595
596
if __name__ == "__main__":
    main()