run_classifier_pytorch.py 23.3 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""BERT finetuning runner."""

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

21
22
import csv
import os
23
24
25
26
import logging
import argparse

import numpy as np
VictorSanh's avatar
VictorSanh committed
27
import torch
28
29
30
31
32
33
from torch.utils.data import TensorDataset, DataLoader, RandomSampler, SequentialSampler
from torch.utils.data.distributed import DistributedSampler

import tokenization_pytorch
from modeling_pytorch import BertConfig, BertForSequenceClassification
from optimization_pytorch import BERTAdam
34
35
36
37
38

logging.basicConfig(format = '%(asctime)s - %(levelname)s - %(name)s -   %(message)s', 
                    datefmt = '%m/%d/%Y %H:%M:%S',
                    level = logging.INFO)
logger = logging.getLogger(__name__)
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75

parser = argparse.ArgumentParser()

## Required parameters
parser.add_argument("--data_dir",
                    default = None,
                    type = str,
                    required = True,
                    help = "The input data dir. Should contain the .tsv files (or other data files) for the task.")
parser.add_argument("--bert_config_file",
                    default = None,
                    type = str,
                    required = True,
                    help = "The config json file corresponding to the pre-trained BERT model. \n"
                        "This specifies the model architecture.")
parser.add_argument("--task_name",
                    default = None,
                    type = str,
                    required = True,
                    help = "The name of the task to train.")
parser.add_argument("--vocab_file",
                    default = None,
                    type = str,
                    required = True,
                    help = "The vocabulary file that the BERT model was trained on.")                    
parser.add_argument("--output_dir",
                    default = None,
                    type = str,
                    required = True,
                    help = "The output directory where the model checkpoints will be written.")                   

## Other parameters
parser.add_argument("--init_checkpoint",
                    default = None,
                    type = str,
                    help = "Initial checkpoint (usually from a pre-trained BERT model).")
parser.add_argument("--do_lower_case",
thomwolf's avatar
thomwolf committed
76
77
                    default = False,
                    action='store_true',
78
79
80
81
82
83
84
85
86
                    help = "Whether to lower case the input text. Should be True for uncased models and False for cased models.")
parser.add_argument("--max_seq_length",
                    default = 128,
                    type = int,
                    help = "The maximum total input sequence length after WordPiece tokenization. \n"
                        "Sequences longer than this will be truncated, and sequences shorter \n"
                        "than this will be padded.")
parser.add_argument("--do_train",
                    default = False,
thomwolf's avatar
thomwolf committed
87
                    action='store_true',
88
89
90
                    help = "Whether to run training.")
parser.add_argument("--do_eval",
                    default = False,
thomwolf's avatar
thomwolf committed
91
                    action='store_true',
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
                    help = "Whether to run eval on the dev set.")                                             
parser.add_argument("--train_batch_size",
                    default = 32,
                    type = int,
                    help = "Total batch size for training.")
parser.add_argument("--eval_batch_size",
                    default = 8,
                    type = int,
                    help = "Total batch size for eval.")
parser.add_argument("--learning_rate",
                    default = 5e-5,
                    type = float,
                    help = "The initial learning rate for Adam.")                                       
parser.add_argument("--num_train_epochs",
                    default = 3.0,
                    type = float,
                    help = "Total number of training epochs to perform.")                    
parser.add_argument("--warmup_proportion",
                    default = 0.1,
                    type = float,
                    help = "Proportion of training to perform linear learning rate warmup for. "
                        "E.g., 0.1 = 10%% of training.")
parser.add_argument("--save_checkpoints_steps",
                    default = 1000,
                    type = int,
                    help = "How often to save the model checkpoint.")                    
thomwolf's avatar
thomwolf committed
118
119
parser.add_argument("--no_cuda",
                    default = False,
thomwolf's avatar
thomwolf committed
120
                    action='store_true',
thomwolf's avatar
thomwolf committed
121
122
123
124
125
126
                    help = "Whether not to use CUDA when available")
parser.add_argument("--local_rank",
                    type=int,
                    default=-1,
                    help = "local_rank for distributed training on gpus")

127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
args = parser.parse_args()

class InputExample(object):
    """A single training/test example for simple sequence classification."""

    def __init__(self, guid, text_a, text_b=None, label=None):
        """Constructs a InputExample.

        Args:
            guid: Unique id for the example.
            text_a: string. The untokenized text of the first sequence. For single
            sequence tasks, only this sequence must be specified.
            text_b: (Optional) string. The untokenized text of the second sequence.
            Only must be specified for sequence pair tasks.
            label: (Optional) string. The label of the example. This should be
            specified for train and dev examples, but not for test examples.
        """
        self.guid = guid
        self.text_a = text_a
        self.text_b = text_b
        self.label = label


class InputFeatures(object):
    """A single set of features of data."""

    def __init__(self, input_ids, input_mask, segment_ids, label_id):
        self.input_ids = input_ids
        self.input_mask = input_mask
        self.segment_ids = segment_ids
        self.label_id = label_id
        

class DataProcessor(object):
    """Base class for data converters for sequence classification data sets."""

    def get_train_examples(self, data_dir):
        """Gets a collection of `InputExample`s for the train set."""
        raise NotImplementedError()

    def get_dev_examples(self, data_dir):
        """Gets a collection of `InputExample`s for the dev set."""
        raise NotImplementedError()

    def get_labels(self):
        """Gets the list of labels for this data set."""
        raise NotImplementedError()

    @classmethod
    def _read_tsv(cls, input_file, quotechar=None):
        """Reads a tab separated value file."""
        with open(input_file, "r") as f:
            reader = csv.reader(f, delimiter="\t", quotechar=quotechar)
            lines = []
            for line in reader:
                lines.append(line)
            return lines
VictorSanh's avatar
wip  
VictorSanh committed
184
    
185
            
VictorSanh's avatar
wip  
VictorSanh committed
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
class MrpcProcessor(DataProcessor):
    """Processor for the MRPC data set (GLUE version)."""

    def get_train_examples(self, data_dir):
        """See base class."""
        print("LOOKING AT {}".format(os.path.join(data_dir, "train.tsv")))
        return self._create_examples(
            self._read_tsv(os.path.join(data_dir, "train.tsv")), "train")

    def get_dev_examples(self, data_dir):
        """See base class."""
        return self._create_examples(
            self._read_tsv(os.path.join(data_dir, "dev.tsv")), "dev")

    def get_labels(self):
        """See base class."""
        return ["0", "1"]

    def _create_examples(self, lines, set_type):
        """Creates examples for the training and dev sets."""
        examples = []
        for (i, line) in enumerate(lines):
            if i == 0:
                continue
            guid = "%s-%s" % (set_type, i)
            text_a = tokenization_pytorch.convert_to_unicode(line[3])
            text_b = tokenization_pytorch.convert_to_unicode(line[4])
            label = tokenization_pytorch.convert_to_unicode(line[0])
            examples.append(
                InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label))
        return examples

218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376

class MnliProcessor(DataProcessor):
    """Processor for the MultiNLI data set (GLUE version)."""

    def get_train_examples(self, data_dir):
        """See base class."""
        return self._create_examples(
            self._read_tsv(os.path.join(data_dir, "train.tsv")), "train")

    def get_dev_examples(self, data_dir):
        """See base class."""
        return self._create_examples(
            self._read_tsv(os.path.join(data_dir, "dev_matched.tsv")),
            "dev_matched")

    def get_labels(self):
        """See base class."""
        return ["contradiction", "entailment", "neutral"]

    def _create_examples(self, lines, set_type):
        """Creates examples for the training and dev sets."""
        examples = []
        for (i, line) in enumerate(lines):
            if i == 0:
                continue
            guid = "%s-%s" % (set_type, tokenization_pytorch.convert_to_unicode(line[0]))
            text_a = tokenization_pytorch.convert_to_unicode(line[8])
            text_b = tokenization_pytorch.convert_to_unicode(line[9])
            label = tokenization_pytorch.convert_to_unicode(line[-1])
            examples.append(
                InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label))
        return examples
        

class ColaProcessor(DataProcessor):
    """Processor for the CoLA data set (GLUE version)."""

    def get_train_examples(self, data_dir):
        """See base class."""
        return self._create_examples(
            self._read_tsv(os.path.join(data_dir, "train.tsv")), "train")

    def get_dev_examples(self, data_dir):
        """See base class."""
        return self._create_examples(
            self._read_tsv(os.path.join(data_dir, "dev.tsv")), "dev")

    def get_labels(self):
        """See base class."""
        return ["0", "1"]

    def _create_examples(self, lines, set_type):
        """Creates examples for the training and dev sets."""
        examples = []
        for (i, line) in enumerate(lines):
            guid = "%s-%s" % (set_type, i)
            text_a = tokenization_pytorch.convert_to_unicode(line[3])
            label = tokenization_pytorch.convert_to_unicode(line[1])
            examples.append(
                InputExample(guid=guid, text_a=text_a, text_b=None, label=label))
        return examples
        
        
def convert_examples_to_features(examples, label_list, max_seq_length,
                                                                 tokenizer):
    """Loads a data file into a list of `InputBatch`s."""

    label_map = {}
    for (i, label) in enumerate(label_list):
        label_map[label] = i

    features = []
    for (ex_index, example) in enumerate(examples):
        tokens_a = tokenizer.tokenize(example.text_a)

        tokens_b = None
        if example.text_b:
            tokens_b = tokenizer.tokenize(example.text_b)

        if tokens_b:
            # Modifies `tokens_a` and `tokens_b` in place so that the total
            # length is less than the specified length.
            # Account for [CLS], [SEP], [SEP] with "- 3"
            _truncate_seq_pair(tokens_a, tokens_b, max_seq_length - 3)
        else:
            # Account for [CLS] and [SEP] with "- 2"
            if len(tokens_a) > max_seq_length - 2:
                tokens_a = tokens_a[0:(max_seq_length - 2)]

        # The convention in BERT is:
        # (a) For sequence pairs:
        #  tokens:   [CLS] is this jack ##son ##ville ? [SEP] no it is not . [SEP]
        #  type_ids: 0   0  0    0    0     0       0 0    1  1  1  1   1 1
        # (b) For single sequences:
        #  tokens:   [CLS] the dog is hairy . [SEP]
        #  type_ids: 0   0   0   0  0     0 0
        #
        # Where "type_ids" are used to indicate whether this is the first
        # sequence or the second sequence. The embedding vectors for `type=0` and
        # `type=1` were learned during pre-training and are added to the wordpiece
        # embedding vector (and position vector). This is not *strictly* necessary
        # since the [SEP] token unambigiously separates the sequences, but it makes
        # it easier for the model to learn the concept of sequences.
        #
        # For classification tasks, the first vector (corresponding to [CLS]) is
        # used as as the "sentence vector". Note that this only makes sense because
        # the entire model is fine-tuned.
        tokens = []
        segment_ids = []
        tokens.append("[CLS]")
        segment_ids.append(0)
        for token in tokens_a:
            tokens.append(token)
            segment_ids.append(0)
        tokens.append("[SEP]")
        segment_ids.append(0)

        if tokens_b:
            for token in tokens_b:
                tokens.append(token)
                segment_ids.append(1)
            tokens.append("[SEP]")
            segment_ids.append(1)

        input_ids = tokenizer.convert_tokens_to_ids(tokens)

        # The mask has 1 for real tokens and 0 for padding tokens. Only real
        # tokens are attended to.
        input_mask = [1] * len(input_ids)

        # Zero-pad up to the sequence length.
        while len(input_ids) < max_seq_length:
            input_ids.append(0)
            input_mask.append(0)
            segment_ids.append(0)

        assert len(input_ids) == max_seq_length
        assert len(input_mask) == max_seq_length
        assert len(segment_ids) == max_seq_length

        label_id = label_map[example.label]
        if ex_index < 5:
            logger.info("*** Example ***")
            logger.info("guid: %s" % (example.guid))
            logger.info("tokens: %s" % " ".join(
                    [tokenization_pytorch.printable_text(x) for x in tokens]))
            logger.info("input_ids: %s" % " ".join([str(x) for x in input_ids]))
            logger.info("input_mask: %s" % " ".join([str(x) for x in input_mask]))
            logger.info(
                    "segment_ids: %s" % " ".join([str(x) for x in segment_ids]))
            logger.info("label: %s (id = %d)" % (example.label, label_id))

        features.append(
                InputFeatures(
                        input_ids=input_ids,
                        input_mask=input_mask,
                        segment_ids=segment_ids,
                        label_id=label_id))
    return features
thomwolf's avatar
thomwolf committed
377
378


379
380
381
382
383
384
385
386
387
388
389
390
391
392
def _truncate_seq_pair(tokens_a, tokens_b, max_length):
    """Truncates a sequence pair in place to the maximum length."""

    # This is a simple heuristic which will always truncate the longer sequence
    # one token at a time. This makes more sense than truncating an equal percent
    # of tokens from each, since if one sequence is very short then each token
    # that's truncated likely contains more information than a longer sequence.
    while True:
        total_length = len(tokens_a) + len(tokens_b)
        if total_length <= max_length:
            break
        if len(tokens_a) > len(tokens_b):
            tokens_a.pop()
        else:
VictorSanh's avatar
VictorSanh committed
393
394
395
            tokens_b.pop()


396
397
def input_fn_builder(features, seq_length, train_batch_size):
    # TODO: delete
VictorSanh's avatar
VictorSanh committed
398
399
    """Creates an `input_fn` closure to be passed to TPUEstimator.""" ### ATTENTION - To rewrite ###

400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
    all_input_ids = [f.input_ids for feature in features]
    all_input_mask = [f.input_mask for feature in features]
    all_segment_ids = [f.segment_ids for feature in features]
    all_label_ids = [f.label_id for feature in features]

    # for feature in features:
    #     all_input_ids.append(feature.input_ids)
    #     all_input_mask.append(feature.input_mask)
    #     all_segment_ids.append(feature.segment_ids)
    #     all_label_ids.append(feature.label_id)

    input_ids_tensor = torch.tensor(all_input_ids, dtype=torch.Long)
    input_mask_tensor = torch.tensor(all_input_mask, dtype=torch.Long)
    segment_tensor = torch.tensor(all_segment, dtype=torch.Long)
    label_tensor = torch.tensor(all_label, dtype=torch.Long)

    train_data = TensorDataset(input_ids_tensor, input_mask_tensor,
                               segment_tensor, label_tensor)
    if args.local_rank == -1:
        train_sampler = RandomSampler(train_data)
    else:
        train_sampler = DistributedSampler(train_data)
    train_dataloader = DataLoader(train_data, sampler=train_sampler, batch_size=train_batch_size)
VictorSanh's avatar
VictorSanh committed
423

424
    return train_dataloader
VictorSanh's avatar
WIP  
VictorSanh committed
425

426
427
428
def accuracy(out, labels):
    outputs = np.argmax(out, axis=1)
    return np.sum(outputs==labels)/float(labels.size)
VictorSanh's avatar
WIP  
VictorSanh committed
429

430
def main():
VictorSanh's avatar
WIP  
VictorSanh committed
431
432
433
434
435
    processors = {
        "cola": ColaProcessor,
        "mnli": MnliProcessor,
        "mrpc": MrpcProcessor,
    }
thomwolf's avatar
thomwolf committed
436
437
438
439
440
441
442

    if args.local_rank == -1 or args.no_cuda:
        device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu")
        n_gpu = torch.cuda.device_count()
    else:
        device = torch.device("cuda", args.local_rank)
        n_gpu = 1
thomwolf's avatar
thomwolf committed
443
        # print("Initializing the distributed backend: NCCL")
thomwolf's avatar
thomwolf committed
444
445
    print("device", device, "n_gpu", n_gpu)

VictorSanh's avatar
WIP  
VictorSanh committed
446
447
    if not args.do_train and not args.do_eval:
        raise ValueError("At least one of `do_train` or `do_eval` must be True.")
thomwolf's avatar
thomwolf committed
448
449
450

    bert_config = BertConfig.from_json_file(args.bert_config_file)

VictorSanh's avatar
WIP  
VictorSanh committed
451
452
453
454
455
    if args.max_seq_length > bert_config.max_position_embeddings:
        raise ValueError(
            "Cannot use sequence length %d because the BERT model "
            "was only trained up to sequence length %d" %
            (args.max_seq_length, bert_config.max_position_embeddings))
456

VictorSanh's avatar
WIP  
VictorSanh committed
457
    if os.path.exists(args.output_dir) and os.listdir(args.output_dir):
VictorSanh's avatar
wip  
VictorSanh committed
458
                    raise ValueError(f"Output directory ({args.output_dir}) already exists and is "
VictorSanh's avatar
WIP  
VictorSanh committed
459
460
461
462
                                     f"not empty.")
    os.makedirs(args.output_dir, exist_ok=True)

    task_name = args.task_name.lower()
thomwolf's avatar
thomwolf committed
463

VictorSanh's avatar
WIP  
VictorSanh committed
464
465
466
467
468
469
470
    if task_name not in processors:
        raise ValueError("Task not found: %s" % (task_name))

    processor = processors[task_name]()

    label_list = processor.get_labels()

VictorSanh's avatar
wip  
VictorSanh committed
471
    tokenizer = tokenization_pytorch.FullTokenizer(
VictorSanh's avatar
WIP  
VictorSanh committed
472
        vocab_file=args.vocab_file, do_lower_case=args.do_lower_case)
thomwolf's avatar
thomwolf committed
473

VictorSanh's avatar
WIP  
VictorSanh committed
474
475
476
477
478
479
    train_examples = None
    num_train_steps = None
    if args.do_train:
        train_examples = processor.get_train_examples(args.data_dir)
        num_train_steps = int(
            len(train_examples) / args.train_batch_size * args.num_train_epochs)
thomwolf's avatar
thomwolf committed
480

481
    model = BertForSequenceClassification(bert_config, len(label_list))
thomwolf's avatar
thomwolf committed
482
    if args.init_checkpoint is not None:
483
        model.bert.load_state_dict(torch.load(args.init_checkpoint, map_location='cpu'))
thomwolf's avatar
thomwolf committed
484
485
486
    model.to(device)

    optimizer = BERTAdam([{'params': [p for n, p in model.named_parameters() if n != 'bias'], 'l2': 0.01},
487
                          {'params': [p for n, p in model.named_parameters() if n == 'bias'], 'l2': 0.}
thomwolf's avatar
thomwolf committed
488
489
490
491
492
                         ],
                         lr=args.learning_rate, schedule='warmup_linear',
                         warmup=args.warmup_proportion,
                         t_total=num_train_steps)

thomwolf's avatar
thomwolf committed
493
    global_step = 0
VictorSanh's avatar
WIP  
VictorSanh committed
494
495
496
497
498
499
500
    if args.do_train:
        train_features = convert_examples_to_features(
            train_examples, label_list, args.max_seq_length, tokenizer)
        logger.info("***** Running training *****")
        logger.info("  Num examples = %d", len(train_examples))
        logger.info("  Batch size = %d", args.train_batch_size)
        logger.info("  Num steps = %d", num_train_steps)
thomwolf's avatar
thomwolf committed
501

502
503
504
505
        all_input_ids = torch.tensor([f.input_ids for f in train_features], dtype=torch.long)
        all_input_mask = torch.tensor([f.input_mask for f in train_features], dtype=torch.long)
        all_segment_ids = torch.tensor([f.segment_ids for f in train_features], dtype=torch.long)
        all_label_ids = torch.tensor([f.label_id for f in train_features], dtype=torch.long)
thomwolf's avatar
thomwolf committed
506

507
508
509
510
511
512
513
514
        train_data = TensorDataset(all_input_ids, all_input_mask, all_segment_ids, all_label_ids)
        if args.local_rank == -1:
            train_sampler = RandomSampler(train_data)
        else:
            train_sampler = DistributedSampler(train_data)
        train_dataloader = DataLoader(train_data, sampler=train_sampler, batch_size=args.train_batch_size)

        model.train()
thomwolf's avatar
thomwolf committed
515
516
517
518
519
520
521
522
523
524
525
        for epoch in args.num_train_epochs:
            for input_ids, input_mask, segment_ids, label_ids in train_dataloader:
                input_ids = input_ids.to(device)
                input_mask = input_mask.float().to(device)
                segment_ids = segment_ids.to(device)
                label_ids = label_ids.to(device)

                loss, _ = model(input_ids, segment_ids, input_mask, label_ids)
                loss.backward()
                optimizer.step()
                global_step += 1
thomwolf's avatar
thomwolf committed
526

VictorSanh's avatar
WIP  
VictorSanh committed
527
528
529
530
531
    if args.do_eval:
        eval_examples = processor.get_dev_examples(args.data_dir)
        eval_features = convert_examples_to_features(
            eval_examples, label_list, args.max_seq_length, tokenizer)

VictorSanh's avatar
wip  
VictorSanh committed
532
533
534
        logger.info("***** Running evaluation *****")
        logger.info("  Num examples = %d", len(eval_examples))
        logger.info("  Batch size = %d", args.eval_batch_size)
VictorSanh's avatar
WIP  
VictorSanh committed
535

536
537
538
539
        all_input_ids = torch.tensor([f.input_ids for f in eval_features], dtype=torch.long)
        all_input_mask = torch.tensor([f.input_mask for f in eval_features], dtype=torch.long)
        all_segment_ids = torch.tensor([f.segment_ids for f in eval_features], dtype=torch.long)
        all_label_ids = torch.tensor([f.label_id for f in eval_features], dtype=torch.long)
540
541
542
543
544
545
546
547
548
549
550
551

        eval_data = TensorDataset(all_input_ids, all_input_mask, all_segment_ids, all_label_ids)
        if args.local_rank == -1:
            eval_sampler = SequentialSampler(eval_data)
        else:
            eval_sampler = DistributedSampler(eval_data)
        eval_dataloader = DataLoader(eval_data, sampler=eval_sampler, batch_size=args.eval_batch_size)

        model.eval()
        eval_loss = 0
        eval_accuracy = 0
        for input_ids, input_mask, segment_ids, label_ids in eval_dataloader:
552
553
554
            input_ids = input_ids.to(device)
            input_mask = input_mask.float().to(device)
            segment_ids = segment_ids.to(device)
555
556

            tmp_eval_loss, logits = model(input_ids, segment_ids, input_mask, label_ids)
thomwolf's avatar
thomwolf committed
557
558
559

            logits = logits.detach().cpu().numpy()
            label_ids = label_ids.to('cpu').numpy()
560
561
562
563
            tmp_eval_accuracy = accuracy(logits, label_ids)

            eval_loss += tmp_eval_loss.item()
            eval_accuracy += tmp_eval_accuracy
VictorSanh's avatar
WIP  
VictorSanh committed
564

565
566
        eval_loss = eval_loss / len(eval_dataloader)
        eval_accuracy = eval_accuracy / len(eval_dataloader)
VictorSanh's avatar
WIP  
VictorSanh committed
567

568
569
570
571
        result = {'eval_loss': eval_loss,
                  'eval_accuracy': eval_accuracy,
                  'global_step': global_step,
                  'loss': loss.item()}
VictorSanh's avatar
WIP  
VictorSanh committed
572
573

        output_eval_file = os.path.join(args.output_dir, "eval_results.txt")
VictorSanh's avatar
wip  
VictorSanh committed
574
575
        with open(output_eval_file, "w") as writer:
            logger.info("***** Eval results *****")
VictorSanh's avatar
WIP  
VictorSanh committed
576
            for key in sorted(result.keys()):
VictorSanh's avatar
wip  
VictorSanh committed
577
                logger.info("  %s = %s", key, str(result[key]))
VictorSanh's avatar
WIP  
VictorSanh committed
578
                writer.write("%s = %s\n" % (key, str(result[key])))
579

VictorSanh's avatar
WIP  
VictorSanh committed
580
581
if __name__ == "__main__":
    main()