run_classifier_pytorch.py 15.5 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""BERT finetuning runner."""

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

21
22
import csv
import os
23
24
# import modeling_pytorch
# import optimization
25
26
27
28
29
30
31
import tokenization_pytorch

import logging
logging.basicConfig(format = '%(asctime)s - %(levelname)s - %(name)s -   %(message)s', 
                    datefmt = '%m/%d/%Y %H:%M:%S',
                    level = logging.INFO)
logger = logging.getLogger(__name__)
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150

import argparse

parser = argparse.ArgumentParser()

## Required parameters
parser.add_argument("--data_dir",
                    default = None,
                    type = str,
                    required = True,
                    help = "The input data dir. Should contain the .tsv files (or other data files) for the task.")
parser.add_argument("--bert_config_file",
                    default = None,
                    type = str,
                    required = True,
                    help = "The config json file corresponding to the pre-trained BERT model. \n"
                        "This specifies the model architecture.")
parser.add_argument("--task_name",
                    default = None,
                    type = str,
                    required = True,
                    help = "The name of the task to train.")
parser.add_argument("--vocab_file",
                    default = None,
                    type = str,
                    required = True,
                    help = "The vocabulary file that the BERT model was trained on.")                    
parser.add_argument("--output_dir",
                    default = None,
                    type = str,
                    required = True,
                    help = "The output directory where the model checkpoints will be written.")                   

## Other parameters
parser.add_argument("--init_checkpoint",
                    default = None,
                    type = str,
                    help = "Initial checkpoint (usually from a pre-trained BERT model).")
parser.add_argument("--do_lower_case",
                    default = True,
                    type = bool,
                    help = "Whether to lower case the input text. Should be True for uncased models and False for cased models.")
parser.add_argument("--max_seq_length",
                    default = 128,
                    type = int,
                    help = "The maximum total input sequence length after WordPiece tokenization. \n"
                        "Sequences longer than this will be truncated, and sequences shorter \n"
                        "than this will be padded.")
parser.add_argument("--do_train",
                    default = False,
                    type = bool,
                    help = "Whether to run training.")
parser.add_argument("--do_eval",
                    default = False,
                    type = bool,
                    help = "Whether to run eval on the dev set.")                                             
parser.add_argument("--train_batch_size",
                    default = 32,
                    type = int,
                    help = "Total batch size for training.")
parser.add_argument("--eval_batch_size",
                    default = 8,
                    type = int,
                    help = "Total batch size for eval.")
parser.add_argument("--learning_rate",
                    default = 5e-5,
                    type = float,
                    help = "The initial learning rate for Adam.")                                       
parser.add_argument("--num_train_epochs",
                    default = 3.0,
                    type = float,
                    help = "Total number of training epochs to perform.")                    
parser.add_argument("--warmup_proportion",
                    default = 0.1,
                    type = float,
                    help = "Proportion of training to perform linear learning rate warmup for. "
                        "E.g., 0.1 = 10%% of training.")
parser.add_argument("--save_checkpoints_steps",
                    default = 1000,
                    type = int,
                    help = "How often to save the model checkpoint.")                    
parser.add_argument("--iterations_per_loop",
                    default = 1000,
                    type = int,
                    help = "How many steps to make in each estimator call.")
                    
### BEGIN - TO DELETE EVENTUALLY --> NO SENSE IN PYTORCH ###                   
parser.add_argument("--use_tpu",
                    default = False,
                    type = bool,
                    help = "Whether to use TPU or GPU/CPU.") 
parser.add_argument("--tpu_name",
                    default = None,
                    type = str,
                    help = "The Cloud TPU to use for training. This should be either the name "
                        "used when creating the Cloud TPU, or a grpc://ip.address.of.tpu:8470 "
                        "url.")
parser.add_argument("--tpu_zone",
                    default = None,
                    type = str,
                    help = "[Optional] GCE zone where the Cloud TPU is located in. If not "
                        "specified, we will attempt to automatically detect the GCE project from "
                        "metadata.")                    
parser.add_argument("--gcp_project",
                    default = None,
                    type = str,
                    help = "[Optional] Project name for the Cloud TPU-enabled project. If not "
                        "specified, we will attempt to automatically detect the GCE project from "
                        "metadata.")                     
parser.add_argument("--master",
                    default = None,
                    type = str,
                    help = "[Optional] TensorFlow master URL.")                                                    
parser.add_argument("--num_tpu_cores",
                    default = 8,
                    type = int,
                    help = "Only used if `use_tpu` is True. Total number of TPU cores to use.")
### END - TO DELETE EVENTUALLY --> NO SENSE IN PYTORCH ### 
  
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
args = parser.parse_args()

class InputExample(object):
    """A single training/test example for simple sequence classification."""

    def __init__(self, guid, text_a, text_b=None, label=None):
        """Constructs a InputExample.

        Args:
            guid: Unique id for the example.
            text_a: string. The untokenized text of the first sequence. For single
            sequence tasks, only this sequence must be specified.
            text_b: (Optional) string. The untokenized text of the second sequence.
            Only must be specified for sequence pair tasks.
            label: (Optional) string. The label of the example. This should be
            specified for train and dev examples, but not for test examples.
        """
        self.guid = guid
        self.text_a = text_a
        self.text_b = text_b
        self.label = label


class InputFeatures(object):
    """A single set of features of data."""

    def __init__(self, input_ids, input_mask, segment_ids, label_id):
        self.input_ids = input_ids
        self.input_mask = input_mask
        self.segment_ids = segment_ids
        self.label_id = label_id
        

class DataProcessor(object):
    """Base class for data converters for sequence classification data sets."""

    def get_train_examples(self, data_dir):
        """Gets a collection of `InputExample`s for the train set."""
        raise NotImplementedError()

    def get_dev_examples(self, data_dir):
        """Gets a collection of `InputExample`s for the dev set."""
        raise NotImplementedError()

    def get_labels(self):
        """Gets the list of labels for this data set."""
        raise NotImplementedError()

    @classmethod
    def _read_tsv(cls, input_file, quotechar=None):
        """Reads a tab separated value file."""
        with open(input_file, "r") as f:
            reader = csv.reader(f, delimiter="\t", quotechar=quotechar)
            lines = []
            for line in reader:
                lines.append(line)
            return lines
            

class MnliProcessor(DataProcessor):
    """Processor for the MultiNLI data set (GLUE version)."""

    def get_train_examples(self, data_dir):
        """See base class."""
        return self._create_examples(
            self._read_tsv(os.path.join(data_dir, "train.tsv")), "train")

    def get_dev_examples(self, data_dir):
        """See base class."""
        return self._create_examples(
            self._read_tsv(os.path.join(data_dir, "dev_matched.tsv")),
            "dev_matched")

    def get_labels(self):
        """See base class."""
        return ["contradiction", "entailment", "neutral"]

    def _create_examples(self, lines, set_type):
        """Creates examples for the training and dev sets."""
        examples = []
        for (i, line) in enumerate(lines):
            if i == 0:
                continue
            guid = "%s-%s" % (set_type, tokenization_pytorch.convert_to_unicode(line[0]))
            text_a = tokenization_pytorch.convert_to_unicode(line[8])
            text_b = tokenization_pytorch.convert_to_unicode(line[9])
            label = tokenization_pytorch.convert_to_unicode(line[-1])
            examples.append(
                InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label))
        return examples
        

class ColaProcessor(DataProcessor):
    """Processor for the CoLA data set (GLUE version)."""

    def get_train_examples(self, data_dir):
        """See base class."""
        return self._create_examples(
            self._read_tsv(os.path.join(data_dir, "train.tsv")), "train")

    def get_dev_examples(self, data_dir):
        """See base class."""
        return self._create_examples(
            self._read_tsv(os.path.join(data_dir, "dev.tsv")), "dev")

    def get_labels(self):
        """See base class."""
        return ["0", "1"]

    def _create_examples(self, lines, set_type):
        """Creates examples for the training and dev sets."""
        examples = []
        for (i, line) in enumerate(lines):
            guid = "%s-%s" % (set_type, i)
            text_a = tokenization_pytorch.convert_to_unicode(line[3])
            label = tokenization_pytorch.convert_to_unicode(line[1])
            examples.append(
                InputExample(guid=guid, text_a=text_a, text_b=None, label=label))
        return examples
        
        
def convert_examples_to_features(examples, label_list, max_seq_length,
                                                                 tokenizer):
    """Loads a data file into a list of `InputBatch`s."""

    label_map = {}
    for (i, label) in enumerate(label_list):
        label_map[label] = i

    features = []
    for (ex_index, example) in enumerate(examples):
        tokens_a = tokenizer.tokenize(example.text_a)

        tokens_b = None
        if example.text_b:
            tokens_b = tokenizer.tokenize(example.text_b)

        if tokens_b:
            # Modifies `tokens_a` and `tokens_b` in place so that the total
            # length is less than the specified length.
            # Account for [CLS], [SEP], [SEP] with "- 3"
            _truncate_seq_pair(tokens_a, tokens_b, max_seq_length - 3)
        else:
            # Account for [CLS] and [SEP] with "- 2"
            if len(tokens_a) > max_seq_length - 2:
                tokens_a = tokens_a[0:(max_seq_length - 2)]

        # The convention in BERT is:
        # (a) For sequence pairs:
        #  tokens:   [CLS] is this jack ##son ##ville ? [SEP] no it is not . [SEP]
        #  type_ids: 0   0  0    0    0     0       0 0    1  1  1  1   1 1
        # (b) For single sequences:
        #  tokens:   [CLS] the dog is hairy . [SEP]
        #  type_ids: 0   0   0   0  0     0 0
        #
        # Where "type_ids" are used to indicate whether this is the first
        # sequence or the second sequence. The embedding vectors for `type=0` and
        # `type=1` were learned during pre-training and are added to the wordpiece
        # embedding vector (and position vector). This is not *strictly* necessary
        # since the [SEP] token unambigiously separates the sequences, but it makes
        # it easier for the model to learn the concept of sequences.
        #
        # For classification tasks, the first vector (corresponding to [CLS]) is
        # used as as the "sentence vector". Note that this only makes sense because
        # the entire model is fine-tuned.
        tokens = []
        segment_ids = []
        tokens.append("[CLS]")
        segment_ids.append(0)
        for token in tokens_a:
            tokens.append(token)
            segment_ids.append(0)
        tokens.append("[SEP]")
        segment_ids.append(0)

        if tokens_b:
            for token in tokens_b:
                tokens.append(token)
                segment_ids.append(1)
            tokens.append("[SEP]")
            segment_ids.append(1)

        input_ids = tokenizer.convert_tokens_to_ids(tokens)

        # The mask has 1 for real tokens and 0 for padding tokens. Only real
        # tokens are attended to.
        input_mask = [1] * len(input_ids)

        # Zero-pad up to the sequence length.
        while len(input_ids) < max_seq_length:
            input_ids.append(0)
            input_mask.append(0)
            segment_ids.append(0)

        assert len(input_ids) == max_seq_length
        assert len(input_mask) == max_seq_length
        assert len(segment_ids) == max_seq_length

        label_id = label_map[example.label]
        if ex_index < 5:
            logger.info("*** Example ***")
            logger.info("guid: %s" % (example.guid))
            logger.info("tokens: %s" % " ".join(
                    [tokenization_pytorch.printable_text(x) for x in tokens]))
            logger.info("input_ids: %s" % " ".join([str(x) for x in input_ids]))
            logger.info("input_mask: %s" % " ".join([str(x) for x in input_mask]))
            logger.info(
                    "segment_ids: %s" % " ".join([str(x) for x in segment_ids]))
            logger.info("label: %s (id = %d)" % (example.label, label_id))

        features.append(
                InputFeatures(
                        input_ids=input_ids,
                        input_mask=input_mask,
                        segment_ids=segment_ids,
                        label_id=label_id))
    return features
    
    
def _truncate_seq_pair(tokens_a, tokens_b, max_length):
    """Truncates a sequence pair in place to the maximum length."""

    # This is a simple heuristic which will always truncate the longer sequence
    # one token at a time. This makes more sense than truncating an equal percent
    # of tokens from each, since if one sequence is very short then each token
    # that's truncated likely contains more information than a longer sequence.
    while True:
        total_length = len(tokens_a) + len(tokens_b)
        if total_length <= max_length:
            break
        if len(tokens_a) > len(tokens_b):
            tokens_a.pop()
        else:
            tokens_b.pop()