run_classifier_pytorch.py 23.4 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""BERT finetuning runner."""

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

21
22
import csv
import os
23
24
25
26
import logging
import argparse

import numpy as np
VictorSanh's avatar
VictorSanh committed
27
import torch
28
29
30
31
32
33
from torch.utils.data import TensorDataset, DataLoader, RandomSampler, SequentialSampler
from torch.utils.data.distributed import DistributedSampler

import tokenization_pytorch
from modeling_pytorch import BertConfig, BertForSequenceClassification
from optimization_pytorch import BERTAdam
34
35
36
37
38

logging.basicConfig(format = '%(asctime)s - %(levelname)s - %(name)s -   %(message)s', 
                    datefmt = '%m/%d/%Y %H:%M:%S',
                    level = logging.INFO)
logger = logging.getLogger(__name__)
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121

parser = argparse.ArgumentParser()

## Required parameters
parser.add_argument("--data_dir",
                    default = None,
                    type = str,
                    required = True,
                    help = "The input data dir. Should contain the .tsv files (or other data files) for the task.")
parser.add_argument("--bert_config_file",
                    default = None,
                    type = str,
                    required = True,
                    help = "The config json file corresponding to the pre-trained BERT model. \n"
                        "This specifies the model architecture.")
parser.add_argument("--task_name",
                    default = None,
                    type = str,
                    required = True,
                    help = "The name of the task to train.")
parser.add_argument("--vocab_file",
                    default = None,
                    type = str,
                    required = True,
                    help = "The vocabulary file that the BERT model was trained on.")                    
parser.add_argument("--output_dir",
                    default = None,
                    type = str,
                    required = True,
                    help = "The output directory where the model checkpoints will be written.")                   

## Other parameters
parser.add_argument("--init_checkpoint",
                    default = None,
                    type = str,
                    help = "Initial checkpoint (usually from a pre-trained BERT model).")
parser.add_argument("--do_lower_case",
                    default = True,
                    type = bool,
                    help = "Whether to lower case the input text. Should be True for uncased models and False for cased models.")
parser.add_argument("--max_seq_length",
                    default = 128,
                    type = int,
                    help = "The maximum total input sequence length after WordPiece tokenization. \n"
                        "Sequences longer than this will be truncated, and sequences shorter \n"
                        "than this will be padded.")
parser.add_argument("--do_train",
                    default = False,
                    type = bool,
                    help = "Whether to run training.")
parser.add_argument("--do_eval",
                    default = False,
                    type = bool,
                    help = "Whether to run eval on the dev set.")                                             
parser.add_argument("--train_batch_size",
                    default = 32,
                    type = int,
                    help = "Total batch size for training.")
parser.add_argument("--eval_batch_size",
                    default = 8,
                    type = int,
                    help = "Total batch size for eval.")
parser.add_argument("--learning_rate",
                    default = 5e-5,
                    type = float,
                    help = "The initial learning rate for Adam.")                                       
parser.add_argument("--num_train_epochs",
                    default = 3.0,
                    type = float,
                    help = "Total number of training epochs to perform.")                    
parser.add_argument("--warmup_proportion",
                    default = 0.1,
                    type = float,
                    help = "Proportion of training to perform linear learning rate warmup for. "
                        "E.g., 0.1 = 10%% of training.")
parser.add_argument("--save_checkpoints_steps",
                    default = 1000,
                    type = int,
                    help = "How often to save the model checkpoint.")                    
parser.add_argument("--iterations_per_loop",
                    default = 1000,
                    type = int,
                    help = "How many steps to make in each estimator call.")
122

thomwolf's avatar
thomwolf committed
123
124
parser.add_argument("--no_cuda",
                    default = False,
VictorSanh's avatar
WIP  
VictorSanh committed
125
                    type = bool,
thomwolf's avatar
thomwolf committed
126
127
128
129
130
131
132
                    help = "Whether not to use CUDA when available")

parser.add_argument("--local_rank",
                    type=int,
                    default=-1,
                    help = "local_rank for distributed training on gpus")

133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
args = parser.parse_args()

class InputExample(object):
    """A single training/test example for simple sequence classification."""

    def __init__(self, guid, text_a, text_b=None, label=None):
        """Constructs a InputExample.

        Args:
            guid: Unique id for the example.
            text_a: string. The untokenized text of the first sequence. For single
            sequence tasks, only this sequence must be specified.
            text_b: (Optional) string. The untokenized text of the second sequence.
            Only must be specified for sequence pair tasks.
            label: (Optional) string. The label of the example. This should be
            specified for train and dev examples, but not for test examples.
        """
        self.guid = guid
        self.text_a = text_a
        self.text_b = text_b
        self.label = label


class InputFeatures(object):
    """A single set of features of data."""

    def __init__(self, input_ids, input_mask, segment_ids, label_id):
        self.input_ids = input_ids
        self.input_mask = input_mask
        self.segment_ids = segment_ids
        self.label_id = label_id
        

class DataProcessor(object):
    """Base class for data converters for sequence classification data sets."""

    def get_train_examples(self, data_dir):
        """Gets a collection of `InputExample`s for the train set."""
        raise NotImplementedError()

    def get_dev_examples(self, data_dir):
        """Gets a collection of `InputExample`s for the dev set."""
        raise NotImplementedError()

    def get_labels(self):
        """Gets the list of labels for this data set."""
        raise NotImplementedError()

    @classmethod
    def _read_tsv(cls, input_file, quotechar=None):
        """Reads a tab separated value file."""
        with open(input_file, "r") as f:
            reader = csv.reader(f, delimiter="\t", quotechar=quotechar)
            lines = []
            for line in reader:
                lines.append(line)
            return lines
VictorSanh's avatar
wip  
VictorSanh committed
190
    
191
            
VictorSanh's avatar
wip  
VictorSanh committed
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
class MrpcProcessor(DataProcessor):
    """Processor for the MRPC data set (GLUE version)."""

    def get_train_examples(self, data_dir):
        """See base class."""
        print("LOOKING AT {}".format(os.path.join(data_dir, "train.tsv")))
        return self._create_examples(
            self._read_tsv(os.path.join(data_dir, "train.tsv")), "train")

    def get_dev_examples(self, data_dir):
        """See base class."""
        return self._create_examples(
            self._read_tsv(os.path.join(data_dir, "dev.tsv")), "dev")

    def get_labels(self):
        """See base class."""
        return ["0", "1"]

    def _create_examples(self, lines, set_type):
        """Creates examples for the training and dev sets."""
        examples = []
        for (i, line) in enumerate(lines):
            if i == 0:
                continue
            guid = "%s-%s" % (set_type, i)
            text_a = tokenization_pytorch.convert_to_unicode(line[3])
            text_b = tokenization_pytorch.convert_to_unicode(line[4])
            label = tokenization_pytorch.convert_to_unicode(line[0])
            examples.append(
                InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label))
        return examples

224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382

class MnliProcessor(DataProcessor):
    """Processor for the MultiNLI data set (GLUE version)."""

    def get_train_examples(self, data_dir):
        """See base class."""
        return self._create_examples(
            self._read_tsv(os.path.join(data_dir, "train.tsv")), "train")

    def get_dev_examples(self, data_dir):
        """See base class."""
        return self._create_examples(
            self._read_tsv(os.path.join(data_dir, "dev_matched.tsv")),
            "dev_matched")

    def get_labels(self):
        """See base class."""
        return ["contradiction", "entailment", "neutral"]

    def _create_examples(self, lines, set_type):
        """Creates examples for the training and dev sets."""
        examples = []
        for (i, line) in enumerate(lines):
            if i == 0:
                continue
            guid = "%s-%s" % (set_type, tokenization_pytorch.convert_to_unicode(line[0]))
            text_a = tokenization_pytorch.convert_to_unicode(line[8])
            text_b = tokenization_pytorch.convert_to_unicode(line[9])
            label = tokenization_pytorch.convert_to_unicode(line[-1])
            examples.append(
                InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label))
        return examples
        

class ColaProcessor(DataProcessor):
    """Processor for the CoLA data set (GLUE version)."""

    def get_train_examples(self, data_dir):
        """See base class."""
        return self._create_examples(
            self._read_tsv(os.path.join(data_dir, "train.tsv")), "train")

    def get_dev_examples(self, data_dir):
        """See base class."""
        return self._create_examples(
            self._read_tsv(os.path.join(data_dir, "dev.tsv")), "dev")

    def get_labels(self):
        """See base class."""
        return ["0", "1"]

    def _create_examples(self, lines, set_type):
        """Creates examples for the training and dev sets."""
        examples = []
        for (i, line) in enumerate(lines):
            guid = "%s-%s" % (set_type, i)
            text_a = tokenization_pytorch.convert_to_unicode(line[3])
            label = tokenization_pytorch.convert_to_unicode(line[1])
            examples.append(
                InputExample(guid=guid, text_a=text_a, text_b=None, label=label))
        return examples
        
        
def convert_examples_to_features(examples, label_list, max_seq_length,
                                                                 tokenizer):
    """Loads a data file into a list of `InputBatch`s."""

    label_map = {}
    for (i, label) in enumerate(label_list):
        label_map[label] = i

    features = []
    for (ex_index, example) in enumerate(examples):
        tokens_a = tokenizer.tokenize(example.text_a)

        tokens_b = None
        if example.text_b:
            tokens_b = tokenizer.tokenize(example.text_b)

        if tokens_b:
            # Modifies `tokens_a` and `tokens_b` in place so that the total
            # length is less than the specified length.
            # Account for [CLS], [SEP], [SEP] with "- 3"
            _truncate_seq_pair(tokens_a, tokens_b, max_seq_length - 3)
        else:
            # Account for [CLS] and [SEP] with "- 2"
            if len(tokens_a) > max_seq_length - 2:
                tokens_a = tokens_a[0:(max_seq_length - 2)]

        # The convention in BERT is:
        # (a) For sequence pairs:
        #  tokens:   [CLS] is this jack ##son ##ville ? [SEP] no it is not . [SEP]
        #  type_ids: 0   0  0    0    0     0       0 0    1  1  1  1   1 1
        # (b) For single sequences:
        #  tokens:   [CLS] the dog is hairy . [SEP]
        #  type_ids: 0   0   0   0  0     0 0
        #
        # Where "type_ids" are used to indicate whether this is the first
        # sequence or the second sequence. The embedding vectors for `type=0` and
        # `type=1` were learned during pre-training and are added to the wordpiece
        # embedding vector (and position vector). This is not *strictly* necessary
        # since the [SEP] token unambigiously separates the sequences, but it makes
        # it easier for the model to learn the concept of sequences.
        #
        # For classification tasks, the first vector (corresponding to [CLS]) is
        # used as as the "sentence vector". Note that this only makes sense because
        # the entire model is fine-tuned.
        tokens = []
        segment_ids = []
        tokens.append("[CLS]")
        segment_ids.append(0)
        for token in tokens_a:
            tokens.append(token)
            segment_ids.append(0)
        tokens.append("[SEP]")
        segment_ids.append(0)

        if tokens_b:
            for token in tokens_b:
                tokens.append(token)
                segment_ids.append(1)
            tokens.append("[SEP]")
            segment_ids.append(1)

        input_ids = tokenizer.convert_tokens_to_ids(tokens)

        # The mask has 1 for real tokens and 0 for padding tokens. Only real
        # tokens are attended to.
        input_mask = [1] * len(input_ids)

        # Zero-pad up to the sequence length.
        while len(input_ids) < max_seq_length:
            input_ids.append(0)
            input_mask.append(0)
            segment_ids.append(0)

        assert len(input_ids) == max_seq_length
        assert len(input_mask) == max_seq_length
        assert len(segment_ids) == max_seq_length

        label_id = label_map[example.label]
        if ex_index < 5:
            logger.info("*** Example ***")
            logger.info("guid: %s" % (example.guid))
            logger.info("tokens: %s" % " ".join(
                    [tokenization_pytorch.printable_text(x) for x in tokens]))
            logger.info("input_ids: %s" % " ".join([str(x) for x in input_ids]))
            logger.info("input_mask: %s" % " ".join([str(x) for x in input_mask]))
            logger.info(
                    "segment_ids: %s" % " ".join([str(x) for x in segment_ids]))
            logger.info("label: %s (id = %d)" % (example.label, label_id))

        features.append(
                InputFeatures(
                        input_ids=input_ids,
                        input_mask=input_mask,
                        segment_ids=segment_ids,
                        label_id=label_id))
    return features
thomwolf's avatar
thomwolf committed
383
384


385
386
387
388
389
390
391
392
393
394
395
396
397
398
def _truncate_seq_pair(tokens_a, tokens_b, max_length):
    """Truncates a sequence pair in place to the maximum length."""

    # This is a simple heuristic which will always truncate the longer sequence
    # one token at a time. This makes more sense than truncating an equal percent
    # of tokens from each, since if one sequence is very short then each token
    # that's truncated likely contains more information than a longer sequence.
    while True:
        total_length = len(tokens_a) + len(tokens_b)
        if total_length <= max_length:
            break
        if len(tokens_a) > len(tokens_b):
            tokens_a.pop()
        else:
VictorSanh's avatar
VictorSanh committed
399
400
401
            tokens_b.pop()


402
403
def input_fn_builder(features, seq_length, train_batch_size):
    # TODO: delete
VictorSanh's avatar
VictorSanh committed
404
405
    """Creates an `input_fn` closure to be passed to TPUEstimator.""" ### ATTENTION - To rewrite ###

406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
    all_input_ids = [f.input_ids for feature in features]
    all_input_mask = [f.input_mask for feature in features]
    all_segment_ids = [f.segment_ids for feature in features]
    all_label_ids = [f.label_id for feature in features]

    # for feature in features:
    #     all_input_ids.append(feature.input_ids)
    #     all_input_mask.append(feature.input_mask)
    #     all_segment_ids.append(feature.segment_ids)
    #     all_label_ids.append(feature.label_id)

    input_ids_tensor = torch.tensor(all_input_ids, dtype=torch.Long)
    input_mask_tensor = torch.tensor(all_input_mask, dtype=torch.Long)
    segment_tensor = torch.tensor(all_segment, dtype=torch.Long)
    label_tensor = torch.tensor(all_label, dtype=torch.Long)

    train_data = TensorDataset(input_ids_tensor, input_mask_tensor,
                               segment_tensor, label_tensor)
    if args.local_rank == -1:
        train_sampler = RandomSampler(train_data)
    else:
        train_sampler = DistributedSampler(train_data)
    train_dataloader = DataLoader(train_data, sampler=train_sampler, batch_size=train_batch_size)
VictorSanh's avatar
VictorSanh committed
429

430
    return train_dataloader
VictorSanh's avatar
WIP  
VictorSanh committed
431

432
433
434
def accuracy(out, labels):
    outputs = np.argmax(out, axis=1)
    return np.sum(outputs==labels)/float(labels.size)
VictorSanh's avatar
WIP  
VictorSanh committed
435

436
def main():
VictorSanh's avatar
WIP  
VictorSanh committed
437
438
439
440
441
    processors = {
        "cola": ColaProcessor,
        "mnli": MnliProcessor,
        "mrpc": MrpcProcessor,
    }
thomwolf's avatar
thomwolf committed
442
443
444
445
446
447
448
449
450
451

    if args.local_rank == -1 or args.no_cuda:
        device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu")
        n_gpu = torch.cuda.device_count()
    else:
        device = torch.device("cuda", args.local_rank)
        n_gpu = 1
        print("Initializing the distributed backend: NCCL")
    print("device", device, "n_gpu", n_gpu)

VictorSanh's avatar
WIP  
VictorSanh committed
452
453
    if not args.do_train and not args.do_eval:
        raise ValueError("At least one of `do_train` or `do_eval` must be True.")
thomwolf's avatar
thomwolf committed
454
455
456

    bert_config = BertConfig.from_json_file(args.bert_config_file)

VictorSanh's avatar
WIP  
VictorSanh committed
457
458
459
460
461
    if args.max_seq_length > bert_config.max_position_embeddings:
        raise ValueError(
            "Cannot use sequence length %d because the BERT model "
            "was only trained up to sequence length %d" %
            (args.max_seq_length, bert_config.max_position_embeddings))
462

VictorSanh's avatar
WIP  
VictorSanh committed
463
    if os.path.exists(args.output_dir) and os.listdir(args.output_dir):
VictorSanh's avatar
wip  
VictorSanh committed
464
                    raise ValueError(f"Output directory ({args.output_dir}) already exists and is "
VictorSanh's avatar
WIP  
VictorSanh committed
465
466
467
468
                                     f"not empty.")
    os.makedirs(args.output_dir, exist_ok=True)

    task_name = args.task_name.lower()
thomwolf's avatar
thomwolf committed
469

VictorSanh's avatar
WIP  
VictorSanh committed
470
471
472
473
474
475
476
    if task_name not in processors:
        raise ValueError("Task not found: %s" % (task_name))

    processor = processors[task_name]()

    label_list = processor.get_labels()

VictorSanh's avatar
wip  
VictorSanh committed
477
    tokenizer = tokenization_pytorch.FullTokenizer(
VictorSanh's avatar
WIP  
VictorSanh committed
478
        vocab_file=args.vocab_file, do_lower_case=args.do_lower_case)
thomwolf's avatar
thomwolf committed
479

VictorSanh's avatar
WIP  
VictorSanh committed
480
481
482
483
484
485
    train_examples = None
    num_train_steps = None
    if args.do_train:
        train_examples = processor.get_train_examples(args.data_dir)
        num_train_steps = int(
            len(train_examples) / args.train_batch_size * args.num_train_epochs)
thomwolf's avatar
thomwolf committed
486

487
    model = BertForSequenceClassification(bert_config, len(label_list))
thomwolf's avatar
thomwolf committed
488
    if args.init_checkpoint is not None:
489
        model.bert.load_state_dict(torch.load(args.init_checkpoint, map_location='cpu'))
thomwolf's avatar
thomwolf committed
490
491
492
    model.to(device)

    optimizer = BERTAdam([{'params': [p for n, p in model.named_parameters() if n != 'bias'], 'l2': 0.01},
493
                          {'params': [p for n, p in model.named_parameters() if n == 'bias'], 'l2': 0.}
thomwolf's avatar
thomwolf committed
494
495
496
497
498
                         ],
                         lr=args.learning_rate, schedule='warmup_linear',
                         warmup=args.warmup_proportion,
                         t_total=num_train_steps)

VictorSanh's avatar
WIP  
VictorSanh committed
499
500
501
502
503
504
505
    if args.do_train:
        train_features = convert_examples_to_features(
            train_examples, label_list, args.max_seq_length, tokenizer)
        logger.info("***** Running training *****")
        logger.info("  Num examples = %d", len(train_examples))
        logger.info("  Batch size = %d", args.train_batch_size)
        logger.info("  Num steps = %d", num_train_steps)
thomwolf's avatar
thomwolf committed
506

507
508
509
510
        all_input_ids = torch.tensor([f.input_ids for f in train_features], dtype=torch.long)
        all_input_mask = torch.tensor([f.input_mask for f in train_features], dtype=torch.long)
        all_segment_ids = torch.tensor([f.segment_ids for f in train_features], dtype=torch.long)
        all_label_ids = torch.tensor([f.label_id for f in train_features], dtype=torch.long)
thomwolf's avatar
thomwolf committed
511

512
513
514
515
516
517
518
519
520
521
        train_data = TensorDataset(all_input_ids, all_input_mask, all_segment_ids, all_label_ids)
        if args.local_rank == -1:
            train_sampler = RandomSampler(train_data)
        else:
            train_sampler = DistributedSampler(train_data)
        train_dataloader = DataLoader(train_data, sampler=train_sampler, batch_size=args.train_batch_size)

        model.train()
        global_step = 0
        for input_ids, input_mask, segment_ids, label_ids in train_dataloader:
522
523
524
525
            input_ids = input_ids.to(device)
            input_mask = input_mask.float().to(device)
            segment_ids = segment_ids.to(device)
            label_ids = label_ids.to(device)
526

527
            loss, _ = model(input_ids, segment_ids, input_mask, label_ids)
528
529
530
            loss.backward()
            optimizer.step()
            global_step += 1
thomwolf's avatar
thomwolf committed
531

VictorSanh's avatar
WIP  
VictorSanh committed
532
533
534
535
536
    if args.do_eval:
        eval_examples = processor.get_dev_examples(args.data_dir)
        eval_features = convert_examples_to_features(
            eval_examples, label_list, args.max_seq_length, tokenizer)

VictorSanh's avatar
wip  
VictorSanh committed
537
538
539
        logger.info("***** Running evaluation *****")
        logger.info("  Num examples = %d", len(eval_examples))
        logger.info("  Batch size = %d", args.eval_batch_size)
VictorSanh's avatar
WIP  
VictorSanh committed
540

541
542
543
544
        all_input_ids = torch.tensor([f.input_ids for f in eval_features], dtype=torch.long)
        all_input_mask = torch.tensor([f.input_mask for f in eval_features], dtype=torch.long)
        all_segment_ids = torch.tensor([f.segment_ids for f in eval_features], dtype=torch.long)
        all_label_ids = torch.tensor([f.label_id for f in eval_features], dtype=torch.long)
545
546
547
548
549
550
551
552
553
554
555
556

        eval_data = TensorDataset(all_input_ids, all_input_mask, all_segment_ids, all_label_ids)
        if args.local_rank == -1:
            eval_sampler = SequentialSampler(eval_data)
        else:
            eval_sampler = DistributedSampler(eval_data)
        eval_dataloader = DataLoader(eval_data, sampler=eval_sampler, batch_size=args.eval_batch_size)

        model.eval()
        eval_loss = 0
        eval_accuracy = 0
        for input_ids, input_mask, segment_ids, label_ids in eval_dataloader:
557
558
559
560
            input_ids = input_ids.to(device)
            input_mask = input_mask.float().to(device)
            segment_ids = segment_ids.to(device)
            label_ids = label_ids.to(device)
561
562
563
564
565
566

            tmp_eval_loss, logits = model(input_ids, segment_ids, input_mask, label_ids)
            tmp_eval_accuracy = accuracy(logits, label_ids)

            eval_loss += tmp_eval_loss.item()
            eval_accuracy += tmp_eval_accuracy
VictorSanh's avatar
WIP  
VictorSanh committed
567

568
569
        eval_loss = eval_loss / len(eval_dataloader)
        eval_accuracy = eval_accuracy / len(eval_dataloader)
VictorSanh's avatar
WIP  
VictorSanh committed
570

571
572
573
574
        result = {'eval_loss': eval_loss,
                  'eval_accuracy': eval_accuracy,
                  'global_step': global_step,
                  'loss': loss.item()}
VictorSanh's avatar
WIP  
VictorSanh committed
575
576

        output_eval_file = os.path.join(args.output_dir, "eval_results.txt")
VictorSanh's avatar
wip  
VictorSanh committed
577
578
        with open(output_eval_file, "w") as writer:
            logger.info("***** Eval results *****")
VictorSanh's avatar
WIP  
VictorSanh committed
579
            for key in sorted(result.keys()):
VictorSanh's avatar
wip  
VictorSanh committed
580
                logger.info("  %s = %s", key, str(result[key]))
VictorSanh's avatar
WIP  
VictorSanh committed
581
                writer.write("%s = %s\n" % (key, str(result[key])))
582

VictorSanh's avatar
WIP  
VictorSanh committed
583
584
if __name__ == "__main__":
    main()