run_mlm_flax.py 39.6 KB
Newer Older
1
#!/usr/bin/env python
2
# coding=utf-8
3
# Copyright 2021 The HuggingFace Team All rights reserved.
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Fine-tuning the library models for masked language modeling (BERT, ALBERT, RoBERTa...) with whole word masking on a
text file or a dataset.

Here is the full list of checkpoints on the hub that can be fine-tuned by this script:
21
https://huggingface.co/models?filter=fill-mask
22
"""
Arthur's avatar
Arthur committed
23

Suraj Patil's avatar
Suraj Patil committed
24
import json
25
import logging
Suraj Patil's avatar
Suraj Patil committed
26
import math
27
28
import os
import sys
29
import time
30
31
from dataclasses import asdict, dataclass, field
from enum import Enum
32
from itertools import chain
33
34
35
36
37

# You can also adapt this script on your own masked language modeling task. Pointers for this are left as comments.
from pathlib import Path
from typing import Dict, List, Optional, Tuple

38
import flax
39
40
import jax
import jax.numpy as jnp
41
import numpy as np
42
import optax
43
from datasets import load_dataset
44
from flax import jax_utils, traverse_util
45
from flax.jax_utils import pad_shard_unpad
46
47
from flax.training import train_state
from flax.training.common_utils import get_metrics, onehot, shard
48
from huggingface_hub import HfApi
49
50
from tqdm import tqdm

51
52
from transformers import (
    CONFIG_MAPPING,
53
    FLAX_MODEL_FOR_MASKED_LM_MAPPING,
54
55
    AutoConfig,
    AutoTokenizer,
56
    FlaxAutoModelForMaskedLM,
57
58
59
60
61
62
    HfArgumentParser,
    PreTrainedTokenizerBase,
    TensorType,
    is_tensorboard_available,
    set_seed,
)
63
from transformers.utils import send_example_telemetry
64
65


66
MODEL_CONFIG_CLASSES = list(FLAX_MODEL_FOR_MASKED_LM_MAPPING.keys())
67
68
69
MODEL_TYPES = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES)


70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
@dataclass
class TrainingArguments:
    output_dir: str = field(
        metadata={"help": "The output directory where the model predictions and checkpoints will be written."},
    )
    overwrite_output_dir: bool = field(
        default=False,
        metadata={
            "help": (
                "Overwrite the content of the output directory. "
                "Use this to continue training if output_dir points to a checkpoint directory."
            )
        },
    )
    do_train: bool = field(default=False, metadata={"help": "Whether to run training."})
    do_eval: bool = field(default=False, metadata={"help": "Whether to run eval on the dev set."})
    per_device_train_batch_size: int = field(
        default=8, metadata={"help": "Batch size per GPU/TPU core/CPU for training."}
    )
    per_device_eval_batch_size: int = field(
        default=8, metadata={"help": "Batch size per GPU/TPU core/CPU for evaluation."}
    )
    learning_rate: float = field(default=5e-5, metadata={"help": "The initial learning rate for AdamW."})
    weight_decay: float = field(default=0.0, metadata={"help": "Weight decay for AdamW if we apply some."})
    adam_beta1: float = field(default=0.9, metadata={"help": "Beta1 for AdamW optimizer"})
    adam_beta2: float = field(default=0.999, metadata={"help": "Beta2 for AdamW optimizer"})
    adam_epsilon: float = field(default=1e-8, metadata={"help": "Epsilon for AdamW optimizer."})
    adafactor: bool = field(default=False, metadata={"help": "Whether or not to replace AdamW by Adafactor."})
    num_train_epochs: float = field(default=3.0, metadata={"help": "Total number of training epochs to perform."})
    warmup_steps: int = field(default=0, metadata={"help": "Linear warmup over warmup_steps."})
    logging_steps: int = field(default=500, metadata={"help": "Log every X updates steps."})
    save_steps: int = field(default=500, metadata={"help": "Save checkpoint every X updates steps."})
    eval_steps: int = field(default=None, metadata={"help": "Run an evaluation every X steps."})
    seed: int = field(default=42, metadata={"help": "Random seed that will be set at the beginning of training."})
    push_to_hub: bool = field(
        default=False, metadata={"help": "Whether or not to upload the trained model to the model hub after training."}
    )
    hub_model_id: str = field(
        default=None, metadata={"help": "The name of the repository to keep in sync with the local `output_dir`."}
    )
    hub_token: str = field(default=None, metadata={"help": "The token to use to push to the Model Hub."})
Karim Foda's avatar
Karim Foda committed
111
112
113
114
115
116
    gradient_checkpointing: bool = field(
        default=False,
        metadata={
            "help": "If True, use gradient checkpointing to save memory at the expense of slower backward pass."
        },
    )
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137

    def __post_init__(self):
        if self.output_dir is not None:
            self.output_dir = os.path.expanduser(self.output_dir)

    def to_dict(self):
        """
        Serializes this instance while replace `Enum` by their values (for JSON serialization support). It obfuscates
        the token values by removing their value.
        """
        d = asdict(self)
        for k, v in d.items():
            if isinstance(v, Enum):
                d[k] = v.value
            if isinstance(v, list) and len(v) > 0 and isinstance(v[0], Enum):
                d[k] = [x.value for x in v]
            if k.endswith("_token"):
                d[k] = f"<{k.upper()}>"
        return d


138
139
140
141
142
143
144
145
146
@dataclass
class ModelArguments:
    """
    Arguments pertaining to which model/config/tokenizer we are going to fine-tune, or train from scratch.
    """

    model_name_or_path: Optional[str] = field(
        default=None,
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
147
            "help": (
148
                "The model checkpoint for weights initialization. Don't set if you want to train a model from scratch."
Sylvain Gugger's avatar
Sylvain Gugger committed
149
            )
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
        },
    )
    model_type: Optional[str] = field(
        default=None,
        metadata={"help": "If training from scratch, pass a model type from the list: " + ", ".join(MODEL_TYPES)},
    )
    config_name: Optional[str] = field(
        default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"}
    )
    tokenizer_name: Optional[str] = field(
        default=None, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"}
    )
    cache_dir: Optional[str] = field(
        default=None, metadata={"help": "Where do you want to store the pretrained models downloaded from s3"}
    )
    use_fast_tokenizer: bool = field(
        default=True,
        metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."},
    )
169
170
171
    dtype: Optional[str] = field(
        default="float32",
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
172
173
174
175
            "help": (
                "Floating-point format in which the model weights should be initialized and trained. Choose one of"
                " `[float32, float16, bfloat16]`."
            )
176
177
        },
    )
178
179
    token: str = field(
        default=None,
180
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
181
            "help": (
182
183
                "The token to use as HTTP bearer authorization for remote files. If not specified, will use the token "
                "generated when running `huggingface-cli login` (stored in `~/.huggingface`)."
Sylvain Gugger's avatar
Sylvain Gugger committed
184
            )
185
186
        },
    )
187
188
189
190
    trust_remote_code: bool = field(
        default=False,
        metadata={
            "help": (
191
192
193
                "Whether to trust the execution of code from datasets/models defined on the Hub."
                " This option should only be set to `True` for repositories you trust and in which you have read the"
                " code, as it will execute code present on the Hub on your local machine."
194
195
196
            )
        },
    )
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226


@dataclass
class DataTrainingArguments:
    """
    Arguments pertaining to what data we are going to input our model for training and eval.
    """

    dataset_name: Optional[str] = field(
        default=None, metadata={"help": "The name of the dataset to use (via the datasets library)."}
    )
    dataset_config_name: Optional[str] = field(
        default=None, metadata={"help": "The configuration name of the dataset to use (via the datasets library)."}
    )
    train_file: Optional[str] = field(default=None, metadata={"help": "The input training data file (a text file)."})
    validation_file: Optional[str] = field(
        default=None,
        metadata={"help": "An optional input evaluation data file to evaluate the perplexity on (a text file)."},
    )
    train_ref_file: Optional[str] = field(
        default=None,
        metadata={"help": "An optional input train ref data file for whole word masking in Chinese."},
    )
    validation_ref_file: Optional[str] = field(
        default=None,
        metadata={"help": "An optional input validation ref data file for whole word masking in Chinese."},
    )
    overwrite_cache: bool = field(
        default=False, metadata={"help": "Overwrite the cached training and evaluation sets"}
    )
227
228
229
230
231
232
    validation_split_percentage: Optional[int] = field(
        default=5,
        metadata={
            "help": "The percentage of the train set used as validation set in case there's no validation split"
        },
    )
233
234
235
    max_seq_length: Optional[int] = field(
        default=None,
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
236
237
238
239
            "help": (
                "The maximum total input sequence length after tokenization. Sequences longer "
                "than this will be truncated. Default to the max input length of the model."
            )
240
241
242
243
244
245
246
247
248
249
250
251
        },
    )
    preprocessing_num_workers: Optional[int] = field(
        default=None,
        metadata={"help": "The number of processes to use for the preprocessing."},
    )
    mlm_probability: float = field(
        default=0.15, metadata={"help": "Ratio of tokens to mask for masked language modeling loss"}
    )
    pad_to_max_length: bool = field(
        default=False,
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
252
253
254
255
            "help": (
                "Whether to pad all samples to `max_seq_length`. "
                "If False, will pad the samples dynamically when batching to the maximum length in the batch."
            )
256
257
        },
    )
258
259
260
261
    line_by_line: bool = field(
        default=False,
        metadata={"help": "Whether distinct lines of text in the dataset are to be handled as distinct sequences."},
    )
262
263
264
265
266
267
268
269
270
271
272
273
274

    def __post_init__(self):
        if self.dataset_name is None and self.train_file is None and self.validation_file is None:
            raise ValueError("Need either a dataset name or a training/validation file.")
        else:
            if self.train_file is not None:
                extension = self.train_file.split(".")[-1]
                assert extension in ["csv", "json", "txt"], "`train_file` should be a csv, a json or a txt file."
            if self.validation_file is not None:
                extension = self.validation_file.split(".")[-1]
                assert extension in ["csv", "json", "txt"], "`validation_file` should be a csv, a json or a txt file."


275
@flax.struct.dataclass
276
277
278
279
280
281
282
283
284
class FlaxDataCollatorForLanguageModeling:
    """
    Data collator used for language modeling. Inputs are dynamically padded to the maximum length of a batch if they
    are not all of the same length.

    Args:
        tokenizer (:class:`~transformers.PreTrainedTokenizer` or :class:`~transformers.PreTrainedTokenizerFast`):
            The tokenizer used for encoding the data.
        mlm_probability (:obj:`float`, `optional`, defaults to 0.15):
285
            The probability with which to (randomly) mask tokens in the input.
286
287
288
289
290
291
292
293
294
295
296
297
298

    .. note::

        For best performance, this data collator should be used with a dataset having items that are dictionaries or
        BatchEncoding, with the :obj:`"special_tokens_mask"` key, as returned by a
        :class:`~transformers.PreTrainedTokenizer` or a :class:`~transformers.PreTrainedTokenizerFast` with the
        argument :obj:`return_special_tokens_mask=True`.
    """

    tokenizer: PreTrainedTokenizerBase
    mlm_probability: float = 0.15

    def __post_init__(self):
299
        if self.tokenizer.mask_token is None:
300
301
302
303
304
305
306
307
308
309
310
            raise ValueError(
                "This tokenizer does not have a mask token which is necessary for masked language modeling. "
                "You should pass `mlm=False` to train on causal language modeling instead."
            )

    def __call__(self, examples: List[Dict[str, np.ndarray]], pad_to_multiple_of: int) -> Dict[str, np.ndarray]:
        # Handle dict or lists with proper padding and conversion to tensor.
        batch = self.tokenizer.pad(examples, pad_to_multiple_of=pad_to_multiple_of, return_tensors=TensorType.NUMPY)

        # If special token mask has been preprocessed, pop it from the dict.
        special_tokens_mask = batch.pop("special_tokens_mask", None)
311
312
313
314

        batch["input_ids"], batch["labels"] = self.mask_tokens(
            batch["input_ids"], special_tokens_mask=special_tokens_mask
        )
315
316
317
318
        return batch

    def mask_tokens(
        self, inputs: np.ndarray, special_tokens_mask: Optional[np.ndarray]
319
    ) -> Tuple[np.ndarray, np.ndarray]:
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
        """
        Prepare masked tokens inputs/labels for masked language modeling: 80% MASK, 10% random, 10% original.
        """
        labels = inputs.copy()
        # We sample a few tokens in each sequence for MLM training (with probability `self.mlm_probability`)
        probability_matrix = np.full(labels.shape, self.mlm_probability)
        special_tokens_mask = special_tokens_mask.astype("bool")

        probability_matrix[special_tokens_mask] = 0.0
        masked_indices = np.random.binomial(1, probability_matrix).astype("bool")
        labels[~masked_indices] = -100  # We only compute loss on masked tokens

        # 80% of the time, we replace masked input tokens with tokenizer.mask_token ([MASK])
        indices_replaced = np.random.binomial(1, np.full(labels.shape, 0.8)).astype("bool") & masked_indices
        inputs[indices_replaced] = self.tokenizer.convert_tokens_to_ids(self.tokenizer.mask_token)

        # 10% of the time, we replace masked input tokens with random word
        indices_random = np.random.binomial(1, np.full(labels.shape, 0.5)).astype("bool")
        indices_random &= masked_indices & ~indices_replaced

        random_words = np.random.randint(self.tokenizer.vocab_size, size=labels.shape, dtype="i4")
        inputs[indices_random] = random_words[indices_random]

        # The rest of the time (10% of the time) we keep the masked input tokens unchanged
        return inputs, labels


347
348
349
def generate_batch_splits(samples_idx: np.ndarray, batch_size: int, drop_last=True) -> np.ndarray:
    """Generate batches of data for a specified batch size from sample indices. If the dataset size is not divisible by
    the batch size and `drop_last` is `True`, the last incomplete batch is dropped. Else, it is returned."""
350
    num_samples = len(samples_idx)
351
352
353
354
355
356
357
358
359
360
    if drop_last:
        samples_to_remove = num_samples % batch_size
        if samples_to_remove != 0:
            samples_idx = samples_idx[:-samples_to_remove]
        sections_split = num_samples // batch_size
        samples_idx = samples_idx.reshape((sections_split, batch_size))
    else:
        sections_split = math.ceil(num_samples / batch_size)
        samples_idx = np.array_split(samples_idx, sections_split)
    return samples_idx
361
362


363
def write_train_metric(summary_writer, train_metrics, train_time, step):
364
365
366
367
368
369
370
371
    summary_writer.scalar("train_time", train_time, step)

    train_metrics = get_metrics(train_metrics)
    for key, vals in train_metrics.items():
        tag = f"train_{key}"
        for i, val in enumerate(vals):
            summary_writer.scalar(tag, val, step - len(vals) + i + 1)

372
373

def write_eval_metric(summary_writer, eval_metrics, step):
374
375
376
377
    for metric_name, value in eval_metrics.items():
        summary_writer.scalar(f"eval_{metric_name}", value, step)


Suraj Patil's avatar
Suraj Patil committed
378
def main():
379
380
381
382
383
384
385
386
387
388
389
390
    # See all possible arguments in src/transformers/training_args.py
    # or by passing the --help flag to this script.
    # We now keep distinct sets of args, for a cleaner separation of concerns.

    parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments))
    if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
        # If we pass only one argument to the script and it's the path to a json file,
        # let's parse it to get our arguments.
        model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1]))
    else:
        model_args, data_args, training_args = parser.parse_args_into_dataclasses()

391
392
393
394
    # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The
    # information sent is the one passed as arguments along with your Python/PyTorch versions.
    send_example_telemetry("run_mlm", model_args, data_args, framework="flax")

395
396
397
398
399
400
401
    if (
        os.path.exists(training_args.output_dir)
        and os.listdir(training_args.output_dir)
        and training_args.do_train
        and not training_args.overwrite_output_dir
    ):
        raise ValueError(
402
            f"Output directory ({training_args.output_dir}) already exists and is not empty. "
403
404
405
406
407
            "Use --overwrite_output_dir to overcome."
        )

    # Setup logging
    logging.basicConfig(
408
        format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
409
        level=logging.INFO,
410
411
412
413
414
415
416
        datefmt="[%X]",
    )

    # Log on each process the small summary:
    logger = logging.getLogger(__name__)

    # Set the verbosity to info of the Transformers logger (on main process only):
417
    logger.info(f"Training/evaluation parameters {training_args}")
418
419
420
421

    # Set seed before initializing model.
    set_seed(training_args.seed)

422
423
    # Handle the repository creation
    if training_args.push_to_hub:
424
425
426
427
428
        # Retrieve of infer repo_name
        repo_name = training_args.hub_model_id
        if repo_name is None:
            repo_name = Path(training_args.output_dir).absolute().name
        # Create repo and retrieve repo_id
429
430
        api = HfApi()
        repo_id = api.create_repo(repo_name, exist_ok=True, token=training_args.hub_token).repo_id
431

432
433
434
435
436
437
438
439
440
441
442
    # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below)
    # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/
    # (the dataset will be downloaded automatically from the datasets Hub).
    #
    # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called
    # 'text' is found. You can easily tweak this behavior (see below).
    #
    # In distributed training, the load_dataset function guarantees that only one local process can concurrently
    # download the dataset.
    if data_args.dataset_name is not None:
        # Downloading and loading a dataset from the hub.
443
444
445
446
        datasets = load_dataset(
            data_args.dataset_name,
            data_args.dataset_config_name,
            cache_dir=model_args.cache_dir,
447
            token=model_args.token,
448
            num_proc=data_args.preprocessing_num_workers,
449
            trust_remote_code=model_args.trust_remote_code,
450
        )
451

452
453
454
455
456
        if "validation" not in datasets.keys():
            datasets["validation"] = load_dataset(
                data_args.dataset_name,
                data_args.dataset_config_name,
                split=f"train[:{data_args.validation_split_percentage}%]",
457
                cache_dir=model_args.cache_dir,
458
                token=model_args.token,
459
                num_proc=data_args.preprocessing_num_workers,
460
                trust_remote_code=model_args.trust_remote_code,
461
462
463
464
465
            )
            datasets["train"] = load_dataset(
                data_args.dataset_name,
                data_args.dataset_config_name,
                split=f"train[{data_args.validation_split_percentage}%:]",
466
                cache_dir=model_args.cache_dir,
467
                token=model_args.token,
468
                num_proc=data_args.preprocessing_num_workers,
469
                trust_remote_code=model_args.trust_remote_code,
470
            )
471
472
473
474
    else:
        data_files = {}
        if data_args.train_file is not None:
            data_files["train"] = data_args.train_file
475
            extension = data_args.train_file.split(".")[-1]
476
477
        if data_args.validation_file is not None:
            data_files["validation"] = data_args.validation_file
478
            extension = data_args.validation_file.split(".")[-1]
479
480
        if extension == "txt":
            extension = "text"
481
482
483
484
        datasets = load_dataset(
            extension,
            data_files=data_files,
            cache_dir=model_args.cache_dir,
485
            token=model_args.token,
486
            num_proc=data_args.preprocessing_num_workers,
487
        )
488
489
490
491
492
493
494

        if "validation" not in datasets.keys():
            datasets["validation"] = load_dataset(
                extension,
                data_files=data_files,
                split=f"train[:{data_args.validation_split_percentage}%]",
                cache_dir=model_args.cache_dir,
495
                token=model_args.token,
496
                num_proc=data_args.preprocessing_num_workers,
497
498
499
500
501
502
            )
            datasets["train"] = load_dataset(
                extension,
                data_files=data_files,
                split=f"train[{data_args.validation_split_percentage}%:]",
                cache_dir=model_args.cache_dir,
503
                token=model_args.token,
504
                num_proc=data_args.preprocessing_num_workers,
505
            )
506
    # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at
507
    # https://huggingface.co/docs/datasets/loading_datasets.
508
509
510
511
512
513
514

    # Load pretrained model and tokenizer

    # Distributed training:
    # The .from_pretrained methods guarantee that only one local process can concurrently
    # download model & vocab.
    if model_args.config_name:
515
516
517
        config = AutoConfig.from_pretrained(
            model_args.config_name,
            cache_dir=model_args.cache_dir,
518
            token=model_args.token,
519
            trust_remote_code=model_args.trust_remote_code,
520
        )
521
    elif model_args.model_name_or_path:
522
523
524
        config = AutoConfig.from_pretrained(
            model_args.model_name_or_path,
            cache_dir=model_args.cache_dir,
525
            token=model_args.token,
526
            trust_remote_code=model_args.trust_remote_code,
527
        )
528
529
530
531
532
533
    else:
        config = CONFIG_MAPPING[model_args.model_type]()
        logger.warning("You are instantiating a new config instance from scratch.")

    if model_args.tokenizer_name:
        tokenizer = AutoTokenizer.from_pretrained(
534
535
536
            model_args.tokenizer_name,
            cache_dir=model_args.cache_dir,
            use_fast=model_args.use_fast_tokenizer,
537
            token=model_args.token,
538
            trust_remote_code=model_args.trust_remote_code,
539
540
541
        )
    elif model_args.model_name_or_path:
        tokenizer = AutoTokenizer.from_pretrained(
542
543
544
            model_args.model_name_or_path,
            cache_dir=model_args.cache_dir,
            use_fast=model_args.use_fast_tokenizer,
545
            token=model_args.token,
546
            trust_remote_code=model_args.trust_remote_code,
547
548
549
        )
    else:
        raise ValueError(
550
            "You are instantiating a new tokenizer from scratch. This is not supported by this script. "
551
552
553
554
555
556
557
558
559
560
561
            "You can do it from another script, save it, and load it from here, using --tokenizer_name."
        )

    # Preprocessing the datasets.
    # First we tokenize all the texts.
    if training_args.do_train:
        column_names = datasets["train"].column_names
    else:
        column_names = datasets["validation"].column_names
    text_column_name = "text" if "text" in column_names else column_names[0]

562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
    max_seq_length = min(data_args.max_seq_length, tokenizer.model_max_length)

    if data_args.line_by_line:
        # When using line_by_line, we just tokenize each nonempty line.
        padding = "max_length" if data_args.pad_to_max_length else False

        def tokenize_function(examples):
            # Remove empty lines
            examples = [line for line in examples if len(line) > 0 and not line.isspace()]
            return tokenizer(
                examples,
                return_special_tokens_mask=True,
                padding=padding,
                truncation=True,
                max_length=max_seq_length,
            )

        tokenized_datasets = datasets.map(
            tokenize_function,
            input_columns=[text_column_name],
            batched=True,
            num_proc=data_args.preprocessing_num_workers,
            remove_columns=column_names,
            load_from_cache_file=not data_args.overwrite_cache,
586
587
        )

588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
    else:
        # Otherwise, we tokenize every text, then concatenate them together before splitting them in smaller parts.
        # We use `return_special_tokens_mask=True` because DataCollatorForLanguageModeling (see below) is more
        # efficient when it receives the `special_tokens_mask`.
        def tokenize_function(examples):
            return tokenizer(examples[text_column_name], return_special_tokens_mask=True)

        tokenized_datasets = datasets.map(
            tokenize_function,
            batched=True,
            num_proc=data_args.preprocessing_num_workers,
            remove_columns=column_names,
            load_from_cache_file=not data_args.overwrite_cache,
        )

        # Main data processing function that will concatenate all texts from our dataset and generate chunks of
        # max_seq_length.
        def group_texts(examples):
            # Concatenate all texts.
607
            concatenated_examples = {k: list(chain(*examples[k])) for k in examples.keys()}
608
609
610
            total_length = len(concatenated_examples[list(examples.keys())[0]])
            # We drop the small remainder, we could add padding if the model supported it instead of this drop, you can
            # customize this part to your needs.
611
612
            if total_length >= max_seq_length:
                total_length = (total_length // max_seq_length) * max_seq_length
613
614
615
616
617
618
619
620
621
622
623
624
            # Split by chunks of max_len.
            result = {
                k: [t[i : i + max_seq_length] for i in range(0, total_length, max_seq_length)]
                for k, t in concatenated_examples.items()
            }
            return result

        # Note that with `batched=True`, this map processes 1,000 texts together, so group_texts throws away a
        # remainder for each of those groups of 1,000 texts. You can adjust that batch_size here but a higher value
        # might be slower to preprocess.
        #
        # To speed up this part, we use multiprocessing. See the documentation of the map method for more information:
625
        # https://huggingface.co/docs/datasets/process#map
626
627
628
629
630
631
        tokenized_datasets = tokenized_datasets.map(
            group_texts,
            batched=True,
            num_proc=data_args.preprocessing_num_workers,
            load_from_cache_file=not data_args.overwrite_cache,
        )
632
633

    # Enable tensorboard only on the master node
634
    has_tensorboard = is_tensorboard_available()
635
    if has_tensorboard and jax.process_index() == 0:
636
637
638
639
640
641
642
643
644
645
646
647
648
649
        try:
            from flax.metrics.tensorboard import SummaryWriter

            summary_writer = SummaryWriter(log_dir=Path(training_args.output_dir))
        except ImportError as ie:
            has_tensorboard = False
            logger.warning(
                f"Unable to display metrics through TensorBoard because some package are not installed: {ie}"
            )
    else:
        logger.warning(
            "Unable to display metrics through TensorBoard because the package is not installed: "
            "Please run pip install tensorboard to enable."
        )
650
651
652
653
654
655
656
657
658

    # Data collator
    # This one will take care of randomly masking the tokens.
    data_collator = FlaxDataCollatorForLanguageModeling(tokenizer=tokenizer, mlm_probability=data_args.mlm_probability)

    # Initialize our training
    rng = jax.random.PRNGKey(training_args.seed)
    dropout_rngs = jax.random.split(rng, jax.local_device_count())

659
660
    if model_args.model_name_or_path:
        model = FlaxAutoModelForMaskedLM.from_pretrained(
661
662
663
664
            model_args.model_name_or_path,
            config=config,
            seed=training_args.seed,
            dtype=getattr(jnp, model_args.dtype),
665
            token=model_args.token,
666
            trust_remote_code=model_args.trust_remote_code,
667
668
669
        )
    else:
        model = FlaxAutoModelForMaskedLM.from_config(
670
671
672
            config,
            seed=training_args.seed,
            dtype=getattr(jnp, model_args.dtype),
673
            trust_remote_code=model_args.trust_remote_code,
674
        )
675

Karim Foda's avatar
Karim Foda committed
676
677
678
    if training_args.gradient_checkpointing:
        model.enable_gradient_checkpointing()

679
680
681
    # Store some constant
    num_epochs = int(training_args.num_train_epochs)
    train_batch_size = int(training_args.per_device_train_batch_size) * jax.device_count()
682
683
    per_device_eval_batch_size = int(training_args.per_device_eval_batch_size)
    eval_batch_size = per_device_eval_batch_size * jax.device_count()
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699

    num_train_steps = len(tokenized_datasets["train"]) // train_batch_size * num_epochs

    # Create learning rate schedule
    warmup_fn = optax.linear_schedule(
        init_value=0.0, end_value=training_args.learning_rate, transition_steps=training_args.warmup_steps
    )
    decay_fn = optax.linear_schedule(
        init_value=training_args.learning_rate,
        end_value=0,
        transition_steps=num_train_steps - training_args.warmup_steps,
    )
    linear_decay_lr_schedule_fn = optax.join_schedules(
        schedules=[warmup_fn, decay_fn], boundaries=[training_args.warmup_steps]
    )

700
701
702
703
704
705
    # We use Optax's "masking" functionality to not apply weight decay
    # to bias and LayerNorm scale parameters. decay_mask_fn returns a
    # mask boolean with the same structure as the parameters.
    # The mask is True for parameters that should be decayed.
    def decay_mask_fn(params):
        flat_params = traverse_util.flatten_dict(params)
706
707
        # find out all LayerNorm parameters
        layer_norm_candidates = ["layernorm", "layer_norm", "ln"]
708
709
710
711
712
713
        layer_norm_named_params = {
            layer[-2:]
            for layer_norm_name in layer_norm_candidates
            for layer in flat_params.keys()
            if layer_norm_name in "".join(layer).lower()
        }
714
        flat_mask = {path: (path[-1] != "bias" and path[-2:] not in layer_norm_named_params) for path in flat_params}
715
716
        return traverse_util.unflatten_dict(flat_mask)

717
    # create adam optimizer
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
    if training_args.adafactor:
        # We use the default parameters here to initialize adafactor,
        # For more details about the parameters please check https://github.com/deepmind/optax/blob/ed02befef9bf81cbbf236be3d2b0e032e9ed4a40/optax/_src/alias.py#L74
        optimizer = optax.adafactor(
            learning_rate=linear_decay_lr_schedule_fn,
        )
    else:
        optimizer = optax.adamw(
            learning_rate=linear_decay_lr_schedule_fn,
            b1=training_args.adam_beta1,
            b2=training_args.adam_beta2,
            eps=training_args.adam_epsilon,
            weight_decay=training_args.weight_decay,
            mask=decay_mask_fn,
        )
733

734
    # Setup train state
735
    state = train_state.TrainState.create(apply_fn=model.__call__, params=model.params, tx=optimizer)
736

737
738
739
    # Define gradient update step fn
    def train_step(state, batch, dropout_rng):
        dropout_rng, new_dropout_rng = jax.random.split(dropout_rng)
740

741
742
        def loss_fn(params):
            labels = batch.pop("labels")
743

744
745
746
747
748
749
750
            logits = state.apply_fn(**batch, params=params, dropout_rng=dropout_rng, train=True)[0]

            # compute loss, ignore padded input tokens
            label_mask = jnp.where(labels > 0, 1.0, 0.0)
            loss = optax.softmax_cross_entropy(logits, onehot(labels, logits.shape[-1])) * label_mask

            # take average
751
752
            loss = loss.sum()
            num_labels = label_mask.sum()
753

754
            return loss, num_labels
755

756
757
758
759
760
761
762
763
764
765
766
        grad_fn = jax.value_and_grad(loss_fn, has_aux=True)
        (loss, num_labels), grad = grad_fn(state.params)
        num_labels = jax.lax.psum(num_labels, "batch")

        # true loss = total loss / total samples
        loss = jax.lax.psum(loss, "batch")
        loss = jax.tree_util.tree_map(lambda x: x / num_labels, loss)

        # true grad = total grad / total samples
        grad = jax.lax.psum(grad, "batch")
        grad = jax.tree_util.tree_map(lambda x: x / num_labels, grad)
767
        new_state = state.apply_gradients(grads=grad)
768

769
        metrics = {"loss": loss, "learning_rate": linear_decay_lr_schedule_fn(state.step)}
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802

        return new_state, metrics, new_dropout_rng

    # Create parallel version of the train step
    p_train_step = jax.pmap(train_step, "batch", donate_argnums=(0,))

    # Define eval fn
    def eval_step(params, batch):
        labels = batch.pop("labels")

        logits = model(**batch, params=params, train=False)[0]

        # compute loss, ignore padded input tokens
        label_mask = jnp.where(labels > 0, 1.0, 0.0)
        loss = optax.softmax_cross_entropy(logits, onehot(labels, logits.shape[-1])) * label_mask

        # compute accuracy
        accuracy = jnp.equal(jnp.argmax(logits, axis=-1), labels) * label_mask

        # summarize metrics
        metrics = {"loss": loss.sum(), "accuracy": accuracy.sum(), "normalizer": label_mask.sum()}
        metrics = jax.lax.psum(metrics, axis_name="batch")

        return metrics

    p_eval_step = jax.pmap(eval_step, "batch", donate_argnums=(0,))

    # Replicate the train state on each device
    state = jax_utils.replicate(state)

    train_time = 0
    epochs = tqdm(range(num_epochs), desc=f"Epoch ... (1/{num_epochs})", position=0)
    for epoch in epochs:
803
        # ======================== Training ================================
804
        train_start = time.time()
805
        train_metrics = []
806

807
        # Create sampling rng
808
        rng, input_rng = jax.random.split(rng)
809
810

        # Generate an epoch by shuffling sampling indices from the train dataset
811
        num_train_samples = len(tokenized_datasets["train"])
812
813
        # Avoid using jax.numpy here in case of TPU training
        train_samples_idx = np.random.permutation(np.arange(num_train_samples))
814
        train_batch_idx = generate_batch_splits(train_samples_idx, train_batch_size)
815
816

        # Gather the indexes for creating the batch and do a training step
817
        for step, batch_idx in enumerate(tqdm(train_batch_idx, desc="Training...", position=1)):
818
819
820
821
            samples = [tokenized_datasets["train"][int(idx)] for idx in batch_idx]
            model_inputs = data_collator(samples, pad_to_multiple_of=16)

            # Model forward
822
823
824
            model_inputs = shard(model_inputs.data)
            state, train_metric, dropout_rngs = p_train_step(state, model_inputs, dropout_rngs)
            train_metrics.append(train_metric)
825

826
            cur_step = epoch * (num_train_samples // train_batch_size) + step
827

828
            if cur_step % training_args.logging_steps == 0 and cur_step > 0:
829
830
831
832
833
834
835
                # Save metrics
                train_metric = jax_utils.unreplicate(train_metric)
                train_time += time.time() - train_start
                if has_tensorboard and jax.process_index() == 0:
                    write_train_metric(summary_writer, train_metrics, train_time, cur_step)

                epochs.write(
Sylvain Gugger's avatar
Sylvain Gugger committed
836
837
                    f"Step... ({cur_step} | Loss: {train_metric['loss']}, Learning Rate:"
                    f" {train_metric['learning_rate']})"
838
839
840
                )

                train_metrics = []
841

842
843
844
            if cur_step % training_args.eval_steps == 0 and cur_step > 0:
                # ======================== Evaluating ==============================
                num_eval_samples = len(tokenized_datasets["validation"])
845
846
                # Avoid using jax.numpy here in case of TPU training
                eval_samples_idx = np.arange(num_eval_samples)
847
                eval_batch_idx = generate_batch_splits(eval_samples_idx, eval_batch_size, drop_last=False)
848
849
850
851
852
853
854

                eval_metrics = []
                for i, batch_idx in enumerate(tqdm(eval_batch_idx, desc="Evaluating ...", position=2)):
                    samples = [tokenized_datasets["validation"][int(idx)] for idx in batch_idx]
                    model_inputs = data_collator(samples, pad_to_multiple_of=16)

                    # Model forward
855
856
857
                    metrics = pad_shard_unpad(p_eval_step, static_return=True)(
                        state.params, model_inputs.data, min_device_batch=per_device_eval_batch_size
                    )
858
859
860
861
                    eval_metrics.append(metrics)

                # normalize eval metrics
                eval_metrics = get_metrics(eval_metrics)
862
                eval_metrics = jax.tree_util.tree_map(jnp.sum, eval_metrics)
863
                eval_normalizer = eval_metrics.pop("normalizer")
864
                eval_metrics = jax.tree_util.tree_map(lambda x: x / eval_normalizer, eval_metrics)
865
866
867

                # Update progress bar
                epochs.desc = f"Step... ({cur_step} | Loss: {eval_metrics['loss']}, Acc: {eval_metrics['accuracy']})"
868

869
870
871
872
873
874
875
                # Save metrics
                if has_tensorboard and jax.process_index() == 0:
                    write_eval_metric(summary_writer, eval_metrics, cur_step)

            if cur_step % training_args.save_steps == 0 and cur_step > 0:
                # save checkpoint after each epoch and push checkpoint to the hub
                if jax.process_index() == 0:
876
                    params = jax.device_get(jax.tree_util.tree_map(lambda x: x[0], state.params))
877
878
879
                    model.save_pretrained(training_args.output_dir, params=params)
                    tokenizer.save_pretrained(training_args.output_dir)
                    if training_args.push_to_hub:
880
881
882
883
884
885
886
                        api.upload_folder(
                            commit_message=f"Saving weights and logs of step {cur_step}",
                            folder_path=training_args.output_dir,
                            repo_id=repo_id,
                            repo_type="model",
                            token=training_args.hub_token,
                        )
Suraj Patil's avatar
Suraj Patil committed
887
888
889
    # Eval after training
    if training_args.do_eval:
        num_eval_samples = len(tokenized_datasets["validation"])
890
891
        # Avoid using jax.numpy here in case of TPU training
        eval_samples_idx = np.arange(num_eval_samples)
892
        eval_batch_idx = generate_batch_splits(eval_samples_idx, eval_batch_size, drop_last=False)
Suraj Patil's avatar
Suraj Patil committed
893
894
895
896
897
898
899

        eval_metrics = []
        for _, batch_idx in enumerate(tqdm(eval_batch_idx, desc="Evaluating ...", position=2)):
            samples = [tokenized_datasets["validation"][int(idx)] for idx in batch_idx]
            model_inputs = data_collator(samples, pad_to_multiple_of=16)

            # Model forward
900
901
902
            metrics = pad_shard_unpad(p_eval_step, static_return=True)(
                state.params, model_inputs.data, min_device_batch=per_device_eval_batch_size
            )
Suraj Patil's avatar
Suraj Patil committed
903
904
905
906
            eval_metrics.append(metrics)

        # normalize eval metrics
        eval_metrics = get_metrics(eval_metrics)
907
        eval_metrics = jax.tree_util.tree_map(lambda metric: jnp.sum(metric).item(), eval_metrics)
Suraj Patil's avatar
Suraj Patil committed
908
        eval_normalizer = eval_metrics.pop("normalizer")
909
        eval_metrics = jax.tree_util.tree_map(lambda x: x / eval_normalizer, eval_metrics)
Suraj Patil's avatar
Suraj Patil committed
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925

        try:
            perplexity = math.exp(eval_metrics["loss"])
        except OverflowError:
            perplexity = float("inf")
        eval_metrics["perplexity"] = perplexity

        if jax.process_index() == 0:
            eval_metrics = {f"eval_{metric_name}": value for metric_name, value in eval_metrics.items()}
            path = os.path.join(training_args.output_dir, "eval_results.json")
            with open(path, "w") as f:
                json.dump(eval_metrics, f, indent=4, sort_keys=True)


if __name__ == "__main__":
    main()